
© 2008 Carnegie Mellon University

Identifying Acquisition
Patterns of Failure Using
Systems Archetypes

Finding the Root Causes of
Acquisition Problems

April 2, 2008

Brian Gallagher

2
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Challenges of Software

Software is invisible
• Typically we don’t buy code – we buy a system

Software embodies “unlimited” complexity
• Complexity is often not understood nor appreciated

Doing it “right” requires persistence and discipline
• Not the most common traits throughout humanity

• Adopting good software engineering practices has a
good ROI, but there is a “cash-flow” problem

Software and hardware technology continues to evolve very rapidly
Few program managers — the key decision-makers — have in-depth
understanding of software technology

Software project management is still immature. Software engineering
is arguably, still in its infancy

3
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Challenges of Software

The flowchart might correspond to a 100
LOC module with a single loop that may be
executed no more than 20 times.

There are approximately 1014 possible paths
that may be executed!

For any but the smallest programs, complete
path coverage for defect detection is
impractical.

Adapted from Pressman, R.S., Software Engineering: A Practitioner’s Approach,
Third Edition, McGraw Hil, 1992

4
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Challenges of Software

Typical Industry Software Quality at Delivery
• A 1,000 line-of-code (1 KLOC) program listing has about 20

pages of executable code

• For industrial software, typical shipped quality levels are 5 to
10 defects per KLOC or 1 defect in 2 – 4 pages

• A 1 million line-of-code (1 MLOC) printed listing stands
roughly 5’7” and contains between 5,000 to 10,000 defects
when shipped

For DoD acquisition programs, these realities are often
ignored resulting in unrealistic schedules and unplanned
test/fix cycles inserted to grow the reliability of low quality
software.

5
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

The Buzzword Quagmire and Quest for the “Silver
Bullet”

Evolutionary Acquisition

Capability-Based Acquisition

Interoperability

CMMI

Service-Based Acquisition

Systems Engineering Revitalization

Acquisition Reform

Net-Centric Warfare

Open Systems

Total System Performance Responsibility

Insight versus Oversight

Architecture-based Development

Agile Acquisition

Lean Acquisition

Lean Six Sigma

Service-Oriented Architecture

Time-Certain Development

Team Software Process

Incremental Commitment Model

Extreme Programming

Open Architecture

DoDAF

FEAFATAM

Win-Win Spiral

Earned-Value

6
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Evolution of Concerns

Buzzwords come and go, the underlying concerns remain fairly
constant

1. Software is developed by teams of between 5 and 20 people

• A team can deliver ~XXX software lines of code in 6 months with
highly predictable cost, performance, and quality (SEI’s TSP, Agile
Scrums, …)

• Individual team performance can be extended to a team of teams –
but breaks down in larger projects….

2. Optimizing team performance on larger project requires…

• A software architecture that allows each team to operate
autonomously

• Disciplined project management and system engineering practices
that facilitate communication across teams

7
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Why is Software-Intensive Acquisition Hard?

Complex interactions between PMO, contractors, sponsors, and users
• Full chain of actions & their longer-term consequences are not clear
• Hard to apply corrective actions when status is uncertain

Significant delays exist between applying changes and seeing results
• Difficult to control systems with long delays between cause & effect
• Example: Steering an aircraft carrier

Unpredictable and unmanageable progress and results
• Limited visibility into real progress & status
• Complexity of interdependencies has unintended consequences

Uncontrolled escalation of situations despite best management efforts
• Misaligned goals can drive potentially conflicting behaviors

Linear partitioning is the standard approach to address large systems
• When systems have feedback between components that are partitioned, it

makes it difficult to see & address these interactions

Exponential growth of interactions as size grows linearly

8
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

What is Systems Thinking?

Systems Thinking is a method for analyzing complex systems

Developed by Jay W. Forrester at MIT modeling electrical feedback
• Also exists in economic, political, business, and organizational behaviors

Uses feedback loops to analyze common system structures that either
spin out of control, or regulate themselves

Helps identify a system’s underlying structure, and what actions will
produce which results (and when)

Systems Thinking teaches us that:
• System behavior is greater than the sum of component behaviors
• “Quick fix” solutions usually have side-effects that make things worse
• True improvement comes from changing the underlying system structure

9
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

What are the Acquisition Archetypes?

The Acquisition Archetypes depict the underlying structures of a set of
dynamic behaviors that occur throughout acquisition organizations

• Each diagram tells a familiar, recurring story

• Each describes the structure that causes the dynamic

Acquisition Archetypes are used to:

• Identify failure patterns as they develop (recognition)

• Single out root causes (diagnosis)

• Engage in “big picture” thinking (avoid oversimplification)

• Promote shared understanding of problems (build consensus)

• Find interventions to break out of ongoing dynamics (recovery)

• Avoid future counter-productive behaviors (prevention)

10
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

“Firefighting” concept from “Past the Tipping Point”

Fix
S

O

B

Problem
Symptom

R

“Fixes That Fail” – Systems Archetype

S

Unintended
Consequences

S

based on “Fixes That Fail”

A quick Fix for a Problem Symptom
has immediate positive results, but
also has long-term Unintended
Consequences that, after a delay,
worsen the original Problem Symptom
as the Fix is used more often.

Dela
y

11
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

“Firefighting” concept from “Past the Tipping Point”

Schedule
Pressure

Rework
S

O

B

Available
Resources O

QualityO

Errors

O

O

R

As schedule
pressure

increases…

…quality suffers… …and
errors

increase…

…requiring
more

rework…

…which reduces
errors.

However, rework
consumes resources…

…which
increases
schedule

pressure…

…and
the cycle
repeats

and
worsens.

“Sacrificing Quality” – Acquisition Archetype

based on “Fixes That Fail”

As schedule pressure
increases, processes are
shortcut, quality suffers, and
errors increase—requiring
more re-work. However, re-
work consumes resources,
which increases schedule
pressure, and the cycle
repeats and worsens.

12
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Acquisition Archetypes

• Sacrificing Quality

• Firefighting

• The “Bow Wave” Effect

• Underbidding the Contract

• Shooting the Messenger

• Robbing Peter to Pay Paul

• Longer Begets Bigger

. . .

• The 90% Syndrome

• Requirements Scope Creep

• Feeding the Sacred Cow

• Brooks’ Law

• PMO vs. Contractor Hostility

• Staff Burnout and Turnover

• The Improvement Paradox

. . .

There are many recurring patterns of behavior in software acquisition and
development that have been modelled using Systems Archetypes and CLDs:

13
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

ASP is producing a set of
“Acquisition Archetypes” concept

briefs, analyzing recurring patterns in
actual acquisition programs, and
recommending interventions and

preventative actions

Acquisition Archetypes – Concept Briefs

14
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Why Is This Approach Important?

Increasing complexity and acceleration in technical and organizational systems

Linear behaviors become nonlinear and unpredictable when combined

We lack problem solving methods that serve a “whole systems” view

Our current tools and methods are suited for handling detailed complexity—
where there are many variables.

Dynamic complexity refers to “situations where cause and effect are subtle,
and where the effects over time of interventions are not obvious” (Senge, 1990,
p. 71)

• When the same action has dramatically different effects in the short run and the
long run

• When an action has one set of consequences locally and very different
consequences in a different part of the system, there is dynamic complexity.

• When obvious interventions produce nonobvious consequences

15
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Four Confounding Factors

1. Patterns & structural properties are hard to perceive & discern. Too much
situational flux; few are looking closely or are in a position to look broadly.
2. Our problem solving strategies (for handling detail) are a poor match for
handling dynamic complexity, and provide false assurance

• Few alternatives; this requires a radical shift in point of view and new
problem solving methods

3. Work-life values can run contrary to a systems view—with a focus on short
term, bottom line, and stovepipes. Actions based purely on these values often
result in counter productive behavior. We think we are doing the right thing, but
our perspective is too small or too short.

• Solutions that sound good but often backfire (insidious traps)
— “results” focused
— tyranny of consensus
— low hanging fruit

4. Need to balance tackling the fundamental solution and achieving results.
The challenge: Can you find “quick fixes” that contribute to the fundamental
solution?

16
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

Next Steps and Future Directions

Pattern Library of Acquisition Archetypes
• Eleven Acquisition Archetypes have been described
• Plan to identify additional acquisition dynamics & root causes

Collaborative Consulting
• Help customers identify program-specific, counter-productive behaviors

Learning Experiments
• Interactive “hands-on” exercises that demonstrate key dynamics in software

acquisition programs

Acquisition Archetypes Workshop, 2 days, high interaction

• “Improving Acquisition Practice and Avoiding Patterns of Failure” will
introduce the systems thinking approach, apply it to acquisition, present classic
failure traps, and facilitate identifying specific failure patterns on their program

17
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

For More Information

Brian Gallagher
Director, Acquisition Support Program
Software Engineering Institute
4500 Fifth Ave.
Pittsburgh, PA 15213-3890
(412) 268-7157
bg@sei.cmu.edu

Army
Cecilia Albert, cca@sei.cmu.edu

Navy
Rick Barbour, reb@sei.cmu.edu

Air Force
John Foreman, jtf@sei.cmu.edu

Intelligence Community
Rita Creel, rc@sei.cmu.edu

Civil Agencies
Steve Palmquist, msp@sei.cmu.edu

Knowledge Integration & Transfer
Linda Levine, ll@sei.cmu.edu

http://www.sei.cmu.edu/programs/acquisition-support

18
GSAW – 2008
Brian Gallagher
© 2006 Carnegie Mellon University

