
Meeting the Challenges of UltraMeeting the Challenges of Ultra--LargeLarge--
Scale Systems via ModelScale Systems via Model--DrivenDriven

Engineering Engineering

February 2, 2007February 2, 2007

Dr. Douglas C. Schmidt
d.schmidt@vanderbilt.edu

www.dre.vanderbilt.edu/~schmidt

Vanderbilt University
Nashville, Tennessee

Institute for Software
Integrated Systems

New Demands on Distributed Real-time &
Embedded (DRE) Systems

Key challenges in the solution space
• Vast accidental & inherent

complexities

• Continuous evolution & change

• Highly heterogeneous (& legacy
constrained) platform, language, &
tool environments

Key challenges in the problem space
• Network-centric, dynamic, very large-scale
“systems of systems”

• Stringent simultaneous quality of service
(QoS) demands

• Highly diverse, complex, & increasingly
integrated/autonomous application domains

Mapping & integrating problem artifacts & solution artifacts is hard

Evolution of DRE Systems Development

Mission-critical DRE systems
have historically been built
directly atop hardware

• Tedious
• Error-prone
• Costly over lifecycles

Consequence: Small
changes to legacy
software often have
big (negative) impact
on DRE system QoS
& maintenance

Technology Problems
• Legacy DRE systems

often tend to be:
• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Air
Frame

AP

Nav HUD

GPS IFF

FLIR

Cyclic
Exec

CLI

SS7

SM CM

RX TX

IP

RTOS

Evolution of DRE Systems Development

Mission-critical DRE systems
historically have been built
directly atop hardware

• Tedious
• Error-prone
• Costly over lifecycles

•Middleware has effectively factored out
many reusable services from traditional
DRE application responsibility
•Essential for product-line architectures

•Middleware is no longer the primary DRE
system performance bottleneck

Technology Problems
• Legacy DRE systems

often tend to be:
• Stovepiped
• Proprietary
• Brittle & non-adaptive
• Expensive
• Vulnerable

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

Middleware

Middleware
Services

DRE
Applications

Operating Sys
& Protocols

Hardware &
Networks

•Components encapsulate application
“business” logic

•Components interact via ports
•Provided interfaces, e.g.,facets
•Required connection points, e.g.,
receptacles

•Event sinks & sources
•Attributes

•Containers provide portable execution
environment for components that
have common operating requirements

•Components/containers can also

•Communicate via a middleware bus
and

•Reuse common middleware
services

SecurityReplication NotificationPersistence

SchedulingA/V Streaming Load Balancing

…

Container

… …

Middleware Bus

Container

…

Overview of Component Middleware
“Write Code That Reuses Code”

• CORBA is standard middleware

• Real-time CORBA adds QoS to
classic CORBA to control:

www.omg.org

3. Memory Resources
•Request buffering

•These capabilities address key
DRE application development &
QoS-enforcement challenges

2. Network Resources
• Protocol policies
• Explicit binding

Protocol
Properties

Explicit Binding

Client Propagation & Server Declared Priority Models

Portable Priorities

Thread Pools

Static Scheduling
Service

Standard
Synchonizers

1. Processor Resources
• Thread pools
• Priority models
• Portable priorities
• Standard synchronizers
• Static scheduling service

Request
Buffering

DOC Middleware for DRE Systems (1/2)

www.dre.vanderbilt.edu/TAO/

• TAO is an open-
source version of
Real-time CORBA
• >> 1,000,000
SLOC

• 100+ person
years of effort

• Pioneered R&D on
DRE middleware
design &
optimizations

• TAO is basis for
many middleware
R&D efforts

• Example of good
synergy between
researchers &
practitioners

DOC Middleware for DRE Systems (2/2)

Applying TAO in Mission-Critical DRE Systems

www.dre.vanderbilt.edu/users.html

Monitor H.323 ServersCUSeeMe

Airborne early warning & control (AWACS)Northrup-Grumman

SOFIA telescope, Cassini space probeJPL/NASA

Joint Tactical Radio System (JTRS)BAE Systems

Joint Tactical Terminal (JTT)Raytheon & Army

Surface mounted “pick-and-place” systemsContact Systems

Shipboard resource managementTurkish Navy

Process automation & quality controlKrones

Hot rolling mill control systemsSiemens

Dynamic shipboard resource management (DDG)LMCO & Raytheon

Automated stock tradingATDesk

Wireless/wireline network managementCisco & Qualcomm

Aircraft carrier & destroyer computing systemsRaytheon

Distributed interactive simulation (HLA/RTI)SAIC

Aircraft mission & flight control computersBoeing

Application DomainOrganization

Component Middleware for DRE Systems

www.dre.vanderbilt.edu/

Event
Notifications

Multimedia
Streaming

Dynamic & Static
Scheduling

Real-time Policies
& Mechanisms

Security

Fault Tolerance & Load Balancing

Component
Implementation

Definition
Language

Component
Deployment &
Configuration

Time/space
Optimizations

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

DRE Systems: The Challenges Ahead
•Limit to how much application
functionality can be refactored into
reusable COTS middleware

•Middleware itself has become very
hard to use & provision statically &
dynamically

IntServ + Diffserv

RTOS + RT Java

RT/DP CORBA + DRTSJ

Load Balancer
FT CORBA

Network latency
& bandwidth

Workload &
Replicas

CPU & memory

Connections &
priority bands

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

•Component-based DRE systems are
also very hard to deploy & configure

•There are many middleware platform
technologies to choose from

Gigabit
Ethernet

Gigabit
Ethernet

Middleware alone is insufficient to solve key large-scale DRE system challenges!

Middleware

Middleware
Services

DRE Applications

Operating System
& Protocols

Hardware &
Networks

DRE Systems: The Challenges Ahead

RT-CORBA

RT-CORBA
Services

RT-CORBA
Apps

J2ME

J2ME
Services

J2ME
Apps

DRTSJ

DRTSJ
Services

DRTSJ
Apps

It’s enough to make you scream!

Gigabit
Ethernet

Gigabit
Ethernet

Technology Evolution (1/4)

Level of A
bstraction

Programming Languages
& Platforms

Model-Driven Engineering (MDE)

• State chart

• Data & process flow

• Petri NetsTra
nsla

tio
n

Large
Semantic
Gap

Tra
nsla

tio
n

Tra
nsla

tio
n

CodeCodeCodeCodeCodeCodeModelModel

ModelModelModelModelModel

Generated
Code

Model

Platform

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Technology Evolution (2/4)
Programming Languages

& Platforms

Level of A
bstraction

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Domain Specific
Framework

Platform
Frameworks

Framework
Pattern Language

Platform

Application Code

•Newer 3rd-generation languages &
platforms have raised abstraction level
significantly

•“Horizontal” platform reuse
alleviates the need to redevelop
common services

•There are two problems, however:

•Platform complexity evolved faster
than 3rd-generation languages

•Much application/platform code still
(unnecessarily) written manually

Semi-automated

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams

Technology Evolution (3/4)
Programming Languages

& Platforms

Level of A
bstraction

Saturation!!!!

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual
translation

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Technology Evolution (3/4)
Programming Languages

& Platforms

Level of A
bstraction

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual
translation

Semi-automated

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams

• OMG is evaluating MDE via MIC PSIG
• mic.omg.org

Technology Evolution (3/4)
Programming Languages

& Platforms

Level of A
bstraction

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model

Application Code
Domain Specific

Framework

Platform
Frameworks

Model

Generated Code
Framework

Pattern Language

Platform

Model-Driven Engineering (MDE)

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsManual
translation

C++/JavaClass Libraries
Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

• OMG is evaluating MDE via MIC PSIG
• mic.omg.org

Semi-automated

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams

Technology Evolution (4/4)
Programming Languages

& Platforms

Needs Automation

Needs
Automation

Research is needed to automate
DSMLs & model translators

Level of A
bstraction

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Platform
Frameworks

Application Code

Model

Platform

Generated Code

Model

Domain-specific
modeling languages

• ESML

• PICML

• Mathematica
• Excel

• MetamodelsNeeds
Automation

Domain-independent
modeling languages

• State Charts
• Interaction Diagrams

• Activity Diagrams
C++/JavaClass Libraries

Frameworks
Components

Machine code
Assembly
C/Fortran

Hardware

Operating
Systems

Model-Driven Engineering (MDE)

See February 2006 IEEE Computer special issue on MDE techniques & tools

Pattern, Framework, & MDD Synergies

• Patterns codify expertise in
the form of reusable
architecture design themes &
styles, which can be reused
event when algorithms,
components implementations,
or frameworks cannot

• Frameworks codify
expertise in the form of
reusable algorithms,
component
implementations, &
extensible architectures

Application-specific
functionality

Acceptor
Connecto

r
Component
Configurator

Stream

Reactor

Proactor

Task

There are now powerful feedback loops advancing these technologies

• MDE tools codify
expertise by automating
key aspects of pattern
languages & providing
developers with domain-
specific modeling
languages to access the
powerful (& complex)
capabilities of frameworks

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

Model

Application Code

Domain Specific
Framework

Platform

Frameworks

Model

Generated Code

Framework

Pattern Language

Platform

MDD Tool Development in GME
•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

MDD Tool Development in GME
•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

•Define static
semantics via Object
Constraint Language
(OCL)

MDD Tool Development in GME
•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

•Define static
semantics via Object
Constraint Language
(OCL)

•Dynamic semantics
implemented via
model interpreters

MDD Tool Development in GME
•Tool developers use
MetaGME to develop a
domain-specific
graphical modeling
environment

•Define syntax &
visualization of the
environment via
metamodeling

•Define static
semantics via Object
Constraint Language
(OCL)

•Dynamic semantics
implemented via
model interpreters

MDD Application Development with GME

•Application
developers use
modeling environments
created w/MetaGME to
build applications

•Capture elements &
dependencies
visually

Example DSL is the
“Platform-Independent
Component Modeling

Language” (PICML) tool

MDD Application Development with GME

•Application
developers use
modeling environments
created w/MetaGME to
build applications

•Capture elements &
dependencies
visually

Example DSL is the
“Platform-Independent
Component Modeling

Language” (PICML) tool

MDD Application Development with GME

•Application
developers use
modeling environments
created w/MetaGME to
build applications

•Capture elements &
dependencies
visually

•Model interpreter
produces something
useful from the
models

•e.g., 3rd generation
code, simulations,
deployment
descriptions &
configurations

<connection>
 <name>compressionQosPredictor_qosLevels</name>
 <internalEndpoint>
 <portName>qosLevels</portName>
 <instance xmi:idref="CompressionQosPredictor_F3C2CBE0-B2CE-46CC-B446-
F64D91B44E56"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>compressionQosPredictor</portName>
 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
 </internalEndpoint>
 </connection>
 <connection>
 <name>scalingQosPredictor_qosLevels</name>
 <internalEndpoint>
 <portName>qosLevels</portName>
 <instance xmi:idref="ScaleQosPredictor_F3024A4F-F6E8-4B9A-BD56-
A2E802C33E32"/>
 </internalEndpoint>
 <internalEndpoint>
 <portName>scalingQosPredictor</portName>
 <instance xmi:idref="LocalResourceManagerComponent_7EF8B77A-F5EA-
4D1A-942E-13AE7CFED30A"/>
 </internalEndpoint>
 </connection>

ima
inc
cur

out

CropQosket
[CropQosket]

qos

CroppingQosPredictor
[CroppingQosPredictor]

pol
res
inc
com
sca
cro

ima
out
cro
sca
com

dif
cpu

LocalResourceManagerComponent
[LocalResourceManagerComponent]

ima
inc
cur

out

CompressQosket
[CompressQosket]

ima
sen

out

Sender
[Sender]

qos

CompressionQosPredictor
[CompressionQosPredictor]

qos

ScaleQosPredictor
[ScaleQosPredictor]

ima
inc
cur

out

ScaleQosket
[ScaleQosket]

cpu

CPUBrokerComponent
[CPUBrokerComponent]

inc out

LocalReceiver
[LocalReceiver]

PolicyChangeEvt

ResourceAllocationEvt

ImageGenerationEvt

ima
inc
cur

out

DiffServQosket
[Dif fServQosket]

delegatesTo

delegatesTo

emit

invoke

invoke

invoke
invoke

invoke

emit emit emit
invoke

invoke
invoke

emit

delegatesTo

PICML generates XML descriptors
corresponding to OMG Deployment
& Configuration (D&C) specification

OMG Component Deployment & Configuration

SW Deployer
Deployment

InfrastructureDeployment
Tools (generic)

Deployment
Interfaces

Infrastructure
Interfaces

Shipping

SW
Creator2

A2A1

Deployment
requirements

Implementations

SW
Creator

1

OMG Deployment & Configuration (D&C) specification (ptc/05-01-07)

Goals of D&C Phase

• Promote component reuse

• Build complex applications by assembling
existing components

• Automate common services configuration
• Declaratively inject QoS policies into

applications
• Dynamically deploy components to target

heterogeneous domains

• Optimize systems based on component
configuration & deployment settings

OMG Component Deployment & Configuration

SW Deployer
Deployment

InfrastructureDeployment
Tools (generic)

Deployment
Interfaces

Infrastructure
Interfaces

Shipping

SW
Creator2

A2A1

Deployment
requirements

Implementations

SW
Creator

1

Interchange
Formats

D & C
Profile

XMLSchema
Generation

IDL
Generation

OMG D & C Spec
(PIM & PSMs)

OMG Deployment & Configuration (D&C) specification (ptc/05-01-07)

Specification & Implementation
• Defining, partitioning, & implementing app functionality as
standalone components

Packaging
• Bundling a suite of software binary modules & metadata
representing app components

Installation
• Populating a repository with packages required by app

Configuration
• Configuring packages with appropriate parameters to satisfy
functional & systemic requirements of an application without
constraining to physical resources

Planning
• Making deployment decisions to identify nodes in target
environment where packages will be deployed

Preparation
• Moving binaries to identified entities of target environment

Launching
• Triggering installed binaries & bringing app to ready state

QoS Assurance & Adaptation
• Runtime (re)configuration & resource management to
maintain end-to-end QoS

OMG Deployment &
Configuration (D&C)

specification (ptc/05-01-07)

MDD Example: OMG Deployment & Configuration

Challenge 1: The Packaging Aspect

•Application components are bundled
together into assemblies

•Several different assemblies tailored
towards delivering different end-to-
end QoS and/or using different
algorithms can be part of the package

•e.g., large-scale DRE systems
require 100s-1,000s of components

•Packages describing the components
& assemblies can be scripted via
XML descriptors

Packaging Aspect Problems (1/2)
Ad hoc techniques for ensuring component
syntactic & semantic compatibility

Distribution &
deployment done in
ad hoc manner

Ad hoc means to
determine pub/sub
support

Inherent Complexities

RT Event
Channel

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

Container

Servant

Component
Specific
Context

CCMContext

Main
Component

Executor

ExecutorsExecutorsExecutors

POA

EnterpriseComponent

CCMContext

<!– Associate components with impls -->
<assemblyImpl>

<instance xmi:id="RateGen">
<name>RateGen Subcomponent</name>
<package href="RateGen.cpd"/>

</instance>
<instance xmi:id="GPS">
<name>GPS Subcomponent</name>
<package href="GPS.cpd"/>

</instance>
<instance xmi:id="NavDisplay">
<name>NavDisplay Subcomponent</name>
<package href="NavDisplay.cpd"/>

</instance>
</assemblyImpl>

Packaging Aspect Problems (2/2)

XML file in
excess of 3,000
lines, even for
medium sized
scenarios

Existing practices
involve handcrafting
XML descriptors

Modifications to the
assemblies requires
modifying XML file

Accidental Complexities

MDD Solution for Packaging Aspect

•PICML is developed using Generic
Modeling Environment (GME)

Approach:
• Develop a Platform-Independent Component Modeling Language

(PICML) to address inherent & accidental complexities of packaging

• Capture dependencies visually

• Define semantic constraints using
Object Constraint Language (OCL)

• Generate domain-specific
metadata from models

• Correct-by-construction

www.cs.wustl.edu/~schmidt/PDF/RTAS-PICML.pdf

Example Metadata Generated by PICML

Based on OMG (D&C)
specification (ptc/05-01-07)

Component
Packaging

Application
Assembly

Component
DLLs

Component &
Home Properties

Component
Interface

Descriptors
(.ccd)

Packaging
Tools

Component
Packages

(*.cpk)

Component &
Home Properties

Component
Package

Descriptors
(.cpd)

Implementation
Artifact

Descriptors
(.iad)

Assembly
Tools

Component
Implementation

Descriptor
(*.cid)

• Component Interface Descriptor (.ccd)

• Describes the interface, ports, properties of a single
component

• Implementation Artifact Descriptor (.iad)

• Describes the implementation artifacts (e.g., DLLs, OS, etc.)
of one component

• Component Package Descriptor (.cpd)

• Describes multiple alternative implementations of a single
component

• Package Configuration Descriptor (.pcd)

• Describes a configuration of a component package

• Top-level Package Descriptor (package.tpd)

• Describes the top-level component package in a package
(.cpk)

• Component Implementation Descriptor (.cid)

• Describes a specific implementation of a component
interface

• Implementation can be either monolithic- or assembly-based

• Contains sub-component instantiations in case of assembly
based implementations

• Contains inter-connection information between components

• Component Packages (.cpk)

• A component package can contain a single component

• A component package can also contain an assembly

Example Output from PICML Model

<monolithicImpl> [...]
<deployRequirement>
<name>GPS</name>
<resourceType>GPS Device</resourceType>
<property><name>vendor</name>
<value>
<type> <kind>tk_string</kind> </type>
<value> <string>My GPS Vendor</string>

</value>
</property>

</deployRequirement>
[... Requires Windows OS ...]

</monolithicImpl>

• Describes a specific implementation
of a component interface

• Describes component
interconnections

A Component Implementation Descriptor (*.cid) file

<connection> <name>GPS Trigger</name>
<internalEndpoint> <portName>Pulse</portName>
<instance href="#RateGen"/>

</internalEndpoint>
<internalEndpoint> <portName>Refresh</portName>
<instance href="#GPS"/>

</internalEndpoint>
</connection>
<connection> <name>NavDisplay Trigger</name>
<internalEndpoint> <portName>Ready</portName>
<instance href="#GPS"/>

</internalEndpoint>
<internalEndpoint> <portName>Refresh</portName>
<instance href="#NavDisplay"/>

</internalEndpoint>
</connection>

Challenge 2: The Configuration Aspect
Component middleware is characterized by a large configuration
space that maps known variations in the application requirements

space to known variations in the middleware solution space

Hook for the
concurrency
strategy

Hook for
the request
demuxing
strategy

Hook for
marshaling
strategy

Hook for the
connection
management
strategy

Hook for the
underlying
transport
strategy

Hook for the event
demuxing strategy

Configuration Aspect Problems
Middleware developers

• Documentation & capability
synchronization

• Semantic constraints & QoS
evaluation of specific configurations

XML Configuration Files

XML Property Files

CIAO/CCM provides ~500
configuration options

Application developers

• Must understand middleware
constraints & semantics

• Increases accidental complexity

• Different middleware uses different
configuration mechanisms

MDD Solutions for Configuration Aspect
Approach:

•Develop an Options Configuration Modeling Language (OCML)
w/GME to ensure semantic consistency of option configurations

•OCML is used by

•Middleware developers to
design the configuration model

•Application developers to
configure the middleware for a
specific application

•OCML metamodel is platform-
independent

•OCML models are platform-
specific

www.cs.wustl.edu/~schmidt/PDF/RTAS-process.pdf

Applying OCML to CIAO+TAO

•Configuration space
•Constraints

•OCML generates config model

•Middleware developers specify

Applying OCML to CIAO+TAO
•Middleware developers specify

•Configuration space
•Constraints

•OCML generates config model
•Application developers provide
a model of desired options &
their values, e.g.,
•Network resources
•Concurrency & connection
management strategies

Applying OCML to CIAO+TAO
•Middleware developers specify

•Configuration space
•Constraints

•OCML generates config model
•Application developers provide
a model of desired options &
their values, e.g.,
•Network resources
•Concurrency & connection
management strategies

•OCML constraint checker flags
incompatible options & then
•Synthesizes XML descriptors
for middleware configuration

•Generates documentation
for middleware configuration

•Validates the configurations

Challenge 3: Planning Aspect

Determine current
resource allocations
on target platforms

Select the
appropriate
package to
deploy on
selected
target

Select appropriate
target platform to
deploy packages

Component integrators must make appropriate deployment decisions,
identifying nodes in target environment where packages will be deployed

Planning Aspect Problems

How do you
determine
current resource
allocations?

How do you ensure that
selected targets will
deliver required QoS

How do you correlate QoS
requirements of packages
to resource needs

How to ensure deployment plans meet DRE system QoS requirements

How do you evaluate
QoS of infrastructure
before applications
are built?

MDD Solution for Planning Aspect
Approach
• Develop Component Workload Emulator (CoWorkEr) Utilization Test

Suite (CUTS) w/GME to allow architects to detect, diagnose, & resolve
system QoS problems before system integration phase

• CoWorkEr is an component
assembly of monolithic
components responsible for
generating respective workload

• CoWorkEr ports can be connected
to define operational strings

• Workload Modeling Language
(WML) is used to define CoWorkEr
behavior

• WML is translated to XML
metadata descriptors that
configure CoWorkErs

www.cs.wustl.edu/~schmidt/PDF/QoSPML-WML.pdf

1 2

34

MDD Solution for Planning Aspect

www.cs.wustl.edu/~schmidt/PDF/CUTS.pdf

CUTS Workflow for Architects

1. Compose scenarios to
exercise critical system paths

2. Associate performance
properties with scenarios &
assign properties to
components specific to paths

3. Configure CoWorkers to run
experiments, generate
deployment plans, & measure
performance along critical
paths

4. Analyze results to verify if
deployment plan &
configurations meet
performance requirements

CoWorkEr
models system
components,
requirements,
& constraints

Deployment Plan

• Deployment And
Configuration
Engine (DAnCE)
maps plans to
computing nodes

• RACE controls
reallocations

Gigabit Ethernet

Resource Allocation &
Control Engine (RACE)

middleware provides
deployment planners

Plan
Analyzers

XML to
IDL

LISP to
IDL

2D Bin
packing

path

Priority
Sched.

path

Plan
Managers

2D Bin
packing

Priority
Sched.

Output
Adapters

To
DAnCE

To
OpenCCM

Applications that fetch
XML or LISP and call
appropriate plug-ins

R-F

F-R F-R

F-R

R-F

R-F

Deployment Manager

Integrating MDD & Middleware for Planning

www.cs.wustl.edu/~schmidt/PDF/DAnCE.pdf

www.softwarefactories.com

• Software Factories go beyond “models as documentation” by

• Using highly-tuned DSL & XML as source artifacts &
• Capturing life cycle metadata to support high-fidelity model

transformation, code generation & other forms of automation

www.eclipse.org/gmf/

• The Graphical Modeling Framework (GMF) forms
a generative bridge between EMF & GEF, which
linkes diagram definitions to domain models as
input to generation of visual editors

• GMF provides this framework, in addition to tools
for select domain models that illustrate its
capabilities

• openArchitectureWare (oAW) is a modular MDA/MDE generator
framework implemented in Java

• It supports parsing of arbitrary models & a language family to check &
transform models, as well as generate code based on them

www.openarchitectureware.org

Commercial Related Work

Concluding Remarks
•To realize the promise of model-
driven technologies, we need to
augment model-driven method-
ologies with a solid (ideally
standard) tool infrastructure

•Model-driven tools need to
coexist with & enhance existing
middleware platform technologies

•We need to validate model-driven
technologies on (increasingly)
large-scale, real-world systems

•Open-source CoSMIC MDD tools use Generic Modeling Environment (GME)

•CoSMIC is available from www.dre.vanderbilt.edu/cosmic

•GME is available from www.isis.vanderbilt.edu/Projects/gme/default.htm

Although hard problems with model-driven technologies remain, we’re
reaching critical mass after decades of R&D & commercial progress

ANALYSIS MDD TOOLSAPPLICATION MDD TOOLS

PLATFORM MDD TOOLS

