
Strong Process Foundations, New Horizons
18th Annual Premier Conference • March 6-9, 2006
Gaylord Opryland • Nashville, Tennessee

SEPG
2006

Engineering
Safety-Related Requirements for
Software-Intensive Systems

Donald Firesmith, Software Engineering Institute,
USA

Engineering Safety-Related Requirements for Software-Intensive Systems 2

The Challenge

Poor requirements are a root cause of many (or most)
accidents involving software-intensive systems.

Requirements engineering and safety engineering:
Different communities
Different disciplines with different training, books,
journals, and conferences
Different professions with different job titles
Different fundamental underlying concepts and
terminologies
Different tasks, techniques, and tools

This separation of RE and SE causes poor safety-related
requirements.

Engineering Safety-Related Requirements for Software-Intensive Systems 3

Topics

Requirements Engineering Overview for Safety Team

Safety Engineering Overview for Requirements Team

Break (3:00PM – 3:30PM)

Safety-Related Requirements:
Safety [Quality] Requirements
Safety-Significant Requirements
Safety Subsystem Requirements
Safety Constraints

Method for Engineering Safety-Related Requirements

Engineering Safety-Related Requirements for Software-Intensive Systems 4

Requirements Engineering Overview

Definition of Requirements Engineering

Importance and Difficulty of Requirements Engineering

Goals vs. Scenarios vs. Requirements

Characteristics of Good Requirements

Types of Requirements

Engineering Safety-Related Requirements for Software-Intensive Systems 5

Requirements Engineering

Requirements engineering (RE) is the cohesive
collection of all tasks that are primarily performed to
produce the requirements and other related requirements
work products for an endeavor.

Today, these RE tasks are typically performed in an
iterative, incremental, parallel, and ongoing manner rather
than according to the traditional Waterfall development
cycle.

Engineering Safety-Related Requirements for Software-Intensive Systems 6

Importance of Requirements

Poor requirements are a primary cause of more than half of
all project failures (defined in terms of):

Major cost overruns
Major schedule overruns
Major functionality not delivered
Cancelled projects
Delivered systems that are never used

Engineering Safety-Related Requirements for Software-Intensive Systems 7

Difficulty of Requirements

“The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the detailed
technical requirements, including all the interfaces to
people, to machines, and to other software systems. No
other part of the work so cripples the resulting system if
done wrong. No other part is more difficult to rectify later.”

F. Brooks, No Silver Bullet, IEEE Computer, 1987

Engineering Safety-Related Requirements for Software-Intensive Systems 8

Goals

A goal is an informally documented perceived need of a
legitimate stakeholder.

Goals are typically documented in a vision statement.
Goals drive the analysis and formal specification of the
requirements.
Examples:

The system shall support user activity X.
The system shall be efficient.
The system shall be easy to use.
The system shall be safe to use.

Goals are typically not verifiable.
Goals may not be feasible.

Engineering Safety-Related Requirements for Software-Intensive Systems 9

Usage Scenarios

A usage scenario is a specific functionally cohesive
sequence of interactions between user(s), the system, and
potentially other actors that provides value to a stakeholder.

Usage scenarios:
Are instances of use cases.
Can be either “sunny day” or “rainy day” scenarios.
Have preconditions, triggers, and postconditions.
Are typically documented in an Operational Concept Document
(OCD).
Drive the analysis and formal specification of the [primarily functional]
requirements.
Often include potential design information.
Can be written in either list or paragraph form.

Engineering Safety-Related Requirements for Software-Intensive Systems 10

Requirements

A (product) requirement is a mandatory characteristic
(behavior or attribute) of a product (e.g., system,
subsystem, software application, or component).

Requirements are documented in requirements
specifications.
Requirements are driven by goals.
Requirements are analyzed using scenarios.
Requirements must have certain characteristics
(e.g., verifiable and feasible).

Engineering Safety-Related Requirements for Software-Intensive Systems 11

Characteristics of Good Requirements

Mandatory
Correct
Cohesive
Feasible
Relevant
Unique
Unambiguous
Validatable
Verifiable
What or How Well,
not How

Complete

Consistent

Usable by Stakeholders

Uniquely Identified
Traced
Externally Observable
Stakeholder-Centric
Properly Specified
Prioritized
Scheduled
Managed
Controlled

http://www.jot.fm/issues/issue_2003_07/column7

Engineering Safety-Related Requirements for Software-Intensive Systems 12

Some Problems due to Poor Requirements

Ambiguous Requirements:
Developers misinterpret Subject Matter Expert (SME)
intentions.
“The system shall be safe.”
How safe? Safe in what way?

Incomplete Requirements:
Developers must guess SME intentions.
The system shall do X.”
Under what conditions? When in what state? When
triggered by what event? How often? How fast? For
whom? With what result?

Engineering Safety-Related Requirements for Software-Intensive Systems 13

More Problems

Missing Requirements:
What shall the system do if it can’t do X?
Unusual combinations of conditions often result in
accidents.
What shall the system do if event X occurs when the
system is simultaneously in states Y and Z?

Unnecessary Constraints:
Inappropriate architecture and design constraints
unnecessarily specified as requirements such as:

User ID and password for identification and authentication.

Engineering Safety-Related Requirements for Software-Intensive Systems 14

Types of Requirements

Product
Requirements

Functional
Requirements

Non-Functional
Requirements

ConstraintsData
Requirements

Interface
Requirements

Quality
Requirements

Requirements

Process
Requirements

System/
Subsystem

Requirements

Software
Requirements

Hardware
Requirements

Main Mission
Requirements

Specialty Engineering
Subsystem

Requirements

Stakeholder
(Business)

Requirements

Engineering Safety-Related Requirements for Software-Intensive Systems 15

Product Requirements

A product requirement is a requirement for a product
(e.g., system, subsystem, software application, or
component).

A functional requirement is a product requirement than specifies
a mandatory function (i.e., behavior) of the product.
A data requirement is a product requirement that specifies
mandatory [types of] data that must be manipulated by the product.
An interface requirement is a product requirement that specifies a
mandatory interface with (or within) the product.
A quality requirement is a product requirement that specifies a
mandatory amount of a type of product quality.
A constraint is a property of the product (e.g., design decision) that
is ordinarily not a requirement but which is being mandated as if it
were a normal requirement

Engineering Safety-Related Requirements for Software-Intensive Systems 16

Quality Requirements

A quality requirement is a product requirement that
specifies a mandatory amount of a type of product quality.

Scalar (How Well or How Much?)
Based on Quality Model
Should be specified in requirements specifications.
Critically important drivers of the architecture

Engineering Safety-Related Requirements for Software-Intensive Systems 17

Quality Model

A Quality Model is a hierarchical model (i.e., a collection
of related abstractions or simplifications) for formalizing
the concept of the quality of a system in terms of its
quality factors, quality subfactors, and quality measures.

Quality Measure
(Measurement Scale)

Quality Subfactor
is measured

using a

defines
a type of the
quality of the

Quality Factor

Quality Model

System

defines the meaning of quality for the

defines a part of
a type of the
quality of the

1..* 1..* 1..*

1..*

0..*

1..*

1

Engineering Safety-Related Requirements for Software-Intensive Systems 18

Many Different Quality Factors

Quality Factor

Development-Oriented
Quality Factor

Usage-Oriented
Quality Factor

Safety

Security

Survivability

Dependability

Defensibility Soundness

Correctness

Operational
Availability

Predictability

Reliability

Robustness

ConfigurabilityCapacity Efficiency Interoperability

Stability

Quality Subfactor

Quality Model

Quality Measure
(Measurement Scale)

is measured
using a

Performance Utility

Engineering Safety-Related Requirements for Software-Intensive Systems 19

Components of a Quality Requirement

Engineering Safety-Related Requirements for Software-Intensive Systems 20

Example Quality Requirement

Hazard Prevention Safety Requirement:
“Under normal operating conditions, a subway shall not
move when one or more of it’s doors are open more often
than an average of once every 10,000 trips.”

Component Parts:
Condition:
“Under normal operating conditions”
(e.g., neither during maintenance nor fire)

Mandatory System-Specific Quality Criterion:
“the subway shall move when one or more of it’s doors are open
(must define “move,” “doors,” and “open” somewhere)

Measurement Threshold:
“not more often than an average of once every 10,000 trip.”
(A trip is defined as an intentional move from one station to the next station)

Engineering Safety-Related Requirements for Software-Intensive Systems 21

Importance of Measurement Threshold

Measurement Threshold is:
Critical
Difficult (but not impossible) to determine
Often left out of quality requirements
Needed to avoid ambiguity

States how much quality is necessary (adequate)

Enables architect to:
Determine if architecture is adequate
Make engineering trade-offs between competing
quality factors

Enables tester to determine test completion criteria

Engineering Safety-Related Requirements for Software-Intensive Systems 22

Safety Engineering Overview

Safety engineering is the engineering discipline within
systems engineering that lowers the risk of accidental harm
to valuable assets to an acceptable level to legitimate
stakeholders.

Note:
Engineering Discipline
Systems Engineering (not just software)
Risk
Accidental Harm
Harm to Valuable Assets
Acceptable Level of Risk
Legitimate Stakeholders

Engineering Safety-Related Requirements for Software-Intensive Systems 23

Basic Safety Concepts

Safety as a Quality Factor of a Quality Model

Safety Quality Subfactors

Valuable Assets

Accidental Harm to Valuable Assets

Safety Events (Accidents, Incidents, and Hazardous Events)

Hazards

Safety Risks

Goals, Policies, and Requirements

Safeguards (Safety Mechanisms)

Engineering Safety-Related Requirements for Software-Intensive Systems 24

Safety as a Quality Factor

Safety is the quality factor capturing the degree
to which:

Accidental harm to valuable assets is eliminated or
mitigated
Safety Events (Accidents, Incidents, and Hazardous
Events) are eliminated or their negative
consequence mitigated
Hazards are eliminated or mitigated
Safety risks are kept acceptably low
The preceding problems are prevented, detected,
reacted to, and possibly adapted to

Engineering Safety-Related Requirements for Software-Intensive Systems 25

Corresponding Safety Subfactors

Safety SubfactorSafety

Safety
Problem Type

Safety
Solution Type

Safety Event

Hazard

Safety Risk

Accidental Harm Prevention

Detection

Reaction

Adaptation

Quality Measure
(Measurement Scale)

Quality
SubfactorQuality Factor

is measured
using a

Quality Model

Engineering Safety-Related Requirements for Software-Intensive Systems 26

Valuable Assets

A valuable asset is anything of significant value to a
legitimate stakeholder that should be protected from
accidental (or malicious) harm by the system.

Engineering Safety-Related Requirements for Software-Intensive Systems 27

Accidental Harm

Harm is any
significant negative
consequence to a
valuable asset

Accidental harm is
any unauthorized
unintentional (i.e., non-
malicious) harm (i.e.,
due to an accident)

Engineering Safety-Related Requirements for Software-Intensive Systems 28

Harm Severity

Harm severity is an appropriate categorization of the
amount of harm.

Harm severity categories can be standardized (ISO,
military, industry-wide) or endeavor-specific.

Harm severity categories need to be:
Clearly identified.
Appropriately and unambiguously defined.

Engineering Safety-Related Requirements for Software-Intensive Systems 29

Example Harm Severity Categories

Example from the commercial aviation standard, Software Considerations in
Airborne Systems and Equipment Certification (RTCA/DO 178B: 1992):

Catastrophic:
Failure conditions, which prevent the continued safe flight and landing of the
aircraft

Severe-Major:
Failure conditions, which reduce the capability of the aircraft or the ability of the
crew to cope with adverse operation conditions
Serious or potentially fatal injuries to some passengers

Major:
Failure conditions, which reduce the capability of the aircraft or the ability of the
crew to cope with adverse operating conditions
Discomfort and possible injury to the passengers

Minor:
Failure conditions, which do not cause a significant reduction in aircraft safety

No-Effect:
Failure conditions, which do not effect the operational capability of the aircraft or
increase the crew’s workload

Engineering Safety-Related Requirements for Software-Intensive Systems 30

Safety-Related Events

A safety event is any event with significant safety
ramifications:

A accident trigger is a safety-related event that directly causes an
accident.
A harm event is a safety-related event that causes significant harm.
A hazardous event is a safety-related event that causes the
existence of a hazard (i.e., hazardous conditions).

A network of safety events is any cohesive set of
safety events:

An accident is a series of one or more related safety events
causing actual non-malicious (i.e., accidental) harm to valuable
assets.
A safety incident (a.k.a., close call, near miss) is a series of
one or more related hazardous events that only by luck did not
cause non-malicious actual harm.

Engineering Safety-Related Requirements for Software-Intensive Systems 31

Safety-Related Events and their Relationships

Engineering Safety-Related Requirements for Software-Intensive Systems 32

Importance of Accidents

Accidents can have expensive and potentially fatal
repercussions:

Ariane 5 Maiden Launch
Reuse of Ariane 4 software not matching Ariane 5 specification

Mars Climate Orbiter ($125 million)
English vs. Metric units mismatch

Mars Polar Lander
Missing requirement concerning touchdown sensor behavior

Therac–25 Radiation Therapy Machine
Patriot Missile Battery Misses SCUD

Missing availability (uptime) requirement

Engineering Safety-Related Requirements for Software-Intensive Systems 33

Poor Requirements Cause Accidents - 1

“The majority of software-related accidents are caused by
requirements errors.”

“Software-related accidents are usually caused by flawed
requirements. Incomplete or wrong assumptions about the
operation of the controlled system can cause software related
accidents, as can incomplete or wrong assumptions about the
required operation of the computer. Frequently, omitted
requirements leave unhandled controlled-system states and
environmental conditions.”

Nancy G. Leveson, 2003
<http://www.safeware-eng.com/index.php/white-papers/accidents>

Engineering Safety-Related Requirements for Software-Intensive Systems 34

Poor Requirements Cause Accidents - 2

Large percentage of accidents are caused by poor
requirements:

“For the 34 (safety) incidents analyzed, 44% had
inadequate specification as their primary cause.”

Health and Safety Executive (HSE), Out of Control: Why Control Systems Go Wrong
and How to Prevent Failure (2nd Edition), 1995

“Almost all accidents related to software components in
the past 20 years can be traced to flaws in the
requirements specifications, such as unhandled cases.”

Safeware Engineering, “Safety-Critical Requirements Specification and Analysis
using SpecTRM”, 2002

Engineering Safety-Related Requirements for Software-Intensive Systems 35

Safety Event Likelihood Categories

Safety Event Likelihood Categorization is an appropriate
categorization of the probability that a safety event occurs.

Safety event likelihood categories:
Can be standardized (ISO, military, industry-wide) or endeavor-
specific.
Need to be identified and defined.

Example safety event likelihood categories include:
Frequent
Probable
Occasional
Remote
Implausible

Safety event likelihood categories need to be carefully and
unambiguously defined.

Engineering Safety-Related Requirements for Software-Intensive Systems 36

Safety Hazards

Danger (Defensibility) is one or more conditions,
situations, or states of a system that in
conjunction with condition(s) in the environment
of the system can cause or contribute to the
occurrence of a defense-related event:

Hazard (Safety) is a danger that can cause or
contribute to the occurrence of an safety event.
Threat (Security and Survivability) is a danger that
can cause or contribute to the occurrence of a
security or survivability event (e.g., a security
vulnerability combined with an attacker with means,
motive, and opportunity).

Engineering Safety-Related Requirements for Software-Intensive Systems 37

Hazards and their Relationships

Engineering Safety-Related Requirements for Software-Intensive Systems 38

Example Hazard, Events, Harm, and Asset

Door Not Closed (condition)
Elevator Moving (condition)

Time

Moving Elevator with Door not Closed (hazard)

Passenger
Falls Out

(accident trigger)Door Unexpectedly
Starts Opening

(hazardous event)Elevator Starts
Moving

(normal event)

Passenger
lands and is killed

(harm event)

Passenger Falling (condition)

Engineering Safety-Related Requirements for Software-Intensive Systems 39

Hazard Analysis

Hazard analysis usually implies the analysis of
assets, harm, incidents, hazards, and risks.

Hazard analysis often occurs multiple times before
various milestones:

Preliminary Hazard Analysis
System Hazard Analysis

Hazard analysis should probably be continuous.

Fault Trees, Event Trees, and Cause/Effect
Graphs can be used to determine potential causes
and consequences of potential accidents and
hazards.

Engineering Safety-Related Requirements for Software-Intensive Systems 40

Example Fault Tree (Cause of Failure)

Engineering Safety-Related Requirements for Software-Intensive Systems 41

Example Cause/Effect Graph

Engineering Safety-Related Requirements for Software-Intensive Systems 42

Defensibility Risks including Safety Risks

Risk is the combination of the
severity of harm to a valuable
asset with either the likelihood
that the harm will occur or else
the level of software control.

Harm severity is usually set
conservatively to the maximum
credible category of harm.

The likelihood of harm is the
likelihood of danger multiplied
by either the likelihood that the
danger results in a harm-
causing event (e.g.,
accident or attack).

Engineering Safety-Related Requirements for Software-Intensive Systems 43

Safety Integrity Levels (SILs)

Safety integrity levels (SILs) are categories of
requirements based on their associated safety risk
level.

SILs can be determined for:
Individual requirements.
Groups of related requirements
(e.g., features or functions).

SILs should be appropriately, clearly, and
unambiguously defined.

Engineering Safety-Related Requirements for Software-Intensive Systems 44

Example Safety Integrity Levels (SILs)

Intolerable:
The risk associated with the requirement(s) is totally unacceptable to
the major stakeholders. The requirement(s) must therefore be deleted
or modified to lower the associated risk.

Undesirable:
The risk associated with the requirement(s) is so high that major (e.g.,
architecture, design, implementation, and testing) steps should be
taken to lower the risk (e.g., risk mitigation and risk transfer) to lower
the risk.

As Low As Reasonably Practical (ALARP):
Reasonable practical steps should be taken to lower the risk
associated with the requirement(s).

Acceptable:
The risk associated with the requirement(s) is acceptable to the major
stakeholders and no additional effort must be taken to lower it.

Engineering Safety-Related Requirements for Software-Intensive Systems 45

Example Safety Risk Matrix

Safety Risk Matrix defines safety risk (and SIL) as
a function of:

Harm severity
Accident/hazard frequency of occurrence.

Engineering Safety-Related Requirements for Software-Intensive Systems 46

Safety Goals

Safety Goals are high-level stakeholder desires regarding
safety:

“The system must be safe.”
“There can be no serious accidents.”
“The system will never kill or injure its users.”

Goals are typically unrealistic and unverifiable
(i.e. impossible to guarantee 100% safety).

Goals are not requirements.

A major problem is safety goals that are specified as if they
were verifiable requirements.

Engineering Safety-Related Requirements for Software-Intensive Systems 47

Safety Policies

Policy – a strategic process decision that establishes a
desired goal.

Safety policy – a policy that enables the achievement of
one or more safety goals:

“The overall responsibility for safety must be identified and
communicated to all stakeholders.”
“A hazard analysis shall be performed during early in the project.”
“All users will have safety training.”

Safety policies are collected into safety policy documents.

In practice, safety policies are confused with safety
requirements, and conversely policy documents may
sometimes include safety requirements.

Engineering Safety-Related Requirements for Software-Intensive Systems 48

Safety-Related Requirements

A safety-related requirement is
a product requirement that has
significant safety ramifications.

Safety-related requirements
include:

Safety Requirements
Safety-Significant
Requirements
Safety Subsystem
Requirements
Safety Constraints

Engineering Safety-Related Requirements for Software-Intensive Systems 49

Safeguards (Safety Control, Safety Mechanism)

A safeguard is a kind of
defense that helps fulfill a
safety-related requirement
and thereby eliminates or
reduces the impact of a
safety vulnerability.

A safeguard is a part of the
system (e.g., component,
procedure, training)

Only relevant to
requirements if specified
as safety constraints.

Defense

Safeguard Countermeasure

Defensibility
Requirement

Vulnerability

fulfills

Safety Security

eliminates
or reduces

Survivability

Engineering Safety-Related Requirements for Software-Intensive Systems 50

Safety-Related Requirements

Safety Requirements

Safety-Significant Requirements

Safety Subsystem Requirements

Safety Constraints

Engineering Safety-Related Requirements for Software-Intensive Systems 51

Safety-Related Requirement Definitions

Safety-Related Requirements are any system
requirements having significant safety ramifications:

Safety Requirements are requirements that specify
mandatory minimum safety levels in terms of pairs of
subfactors of the safety quality factor.
Safety-Significant Requirements are non-safety primary
mission requirements with significant safety ramifications.
Safety Subsystem Requirements are requirements for
safety subsystems (as opposed to primary mission
requirements).
Safety Constraints are constraints intended to ensure a
minimum level of safety.

Engineering Safety-Related Requirements for Software-Intensive Systems 52

Types of Requirements

Product
Requirements

Functional
Requirements

Non-Functional
Requirements

ConstraintsData
Requirements

Interface
Requirements

Quality
Requirements

Requirements

Process
Requirements

Defensibility
Requirements

Safety
Requirements

Security
Requirements

Survivability
Requirements

Main Mission
Requirements

Safety
Subsystem

Requirements

Security
Subsystem

Requirements

Safety
Constraints

System/
Subsystem

Requirements

Software
Requirements

Hardware
Requirements

Stakeholder
(Business)

Requirements

Engineering Safety-Related Requirements for Software-Intensive Systems 53

Safety-Related Requirements

Engineering Safety-Related Requirements for Software-Intensive Systems 54

[Pure] Safety Requirements

A safety requirement is a kind of quality (defensibility)
requirement because safety is a kind of defensibility.
(Safety requirements are like security requirements.)

Safety requirements specify minimum required amounts of:
Safety
Two quality subfactors of safety:

Defensibility Problem Type:
Accidental Harm, Safety Event, Hazard, Safety Risk
Defensibility Solution Type:
Prevention, Detection, Reaction, Adaptation

Engineering Safety-Related Requirements for Software-Intensive Systems 55

Quality Requirements

A quality requirement is composed of conditions, a
system-specific criterion, and a required measurement
threshold.

Engineering Safety-Related Requirements for Software-Intensive Systems 56

Safety Requirements

Safety Requirements are a kind of quality requirement.

Condition System-Specific
Criterion

Safety Requirement

Measurement
Threshold

must meet
or exceed

Quality Measure
(Measurement Scale)

is
measured

against

restricts
applicability of

1..* 1..* 1..*

Safety Subfactor

provides
evidence of
existence of

Safety

Quality Model

System

describes aspect of safety of

is measured
using a

defines the meaning of quality for the

specifies a minimum
level of safety of the

Engineering Safety-Related Requirements for Software-Intensive Systems 57

Based on Safety Subfactors

Safety SubfactorSafety

Safety
Problem Type

Safety
Solution Type

Safety Event

Hazard

Safety Risk

Accidental Harm Prevention

Detection

Reaction

Adaptation

Quality Measure
(Measurement Scale)

Quality
SubfactorQuality Factor

is measured
using a

Quality Model

Engineering Safety-Related Requirements for Software-Intensive Systems 58

Sixteen Types of Safety Requirements

Adapt due to
existence of
safety risk

Adapt due to
existence of
hazard

Adapt due to
safety
event

Adapt due to
accidental
harm

Adaptation

React to
existence of
safety risk

React to
existence of
hazard

React to
safety
event

React to
accidental
harm

Reaction

Detect
existence of
safety risk

Detect
existence of
hazard

Detect
safety
event

Detect
accidental
harm

Detection

Prevent
existence of
safety risk

Prevent
existence of
hazard

Prevent
safety
event

Prevent
accidental
harm

Prevention

Safety
RiskHazard

Safety
Event

Accidental
Harm

Engineering Safety-Related Requirements for Software-Intensive Systems 59

Example Safety Requirements

“With 99% confidence, the system shall not cause more than X amount
of accidental harm per year.”

“With 99% confidence, the system shall not cause more than X safety
incidents (accidents, near misses) per passenger mile traveled.”

“With 99% confidence, the system shall not under normal conditions
cause hazard X to exist more than Y percent of the time.”

“The system shall not allow a safety risk level of X to exist.”

“The system shall detect accidents of type X at least Y percent of the
time.”

“Upon detecting an accident of type X, the system shall react by
performing Y at least Z percent of the time.”

Engineering Safety-Related Requirements for Software-Intensive Systems 60

Safety-Significant Requirements

Are identified based on safety (hazard) analysis

Subset of non-safety requirements:
Functional Requirements
Data Requirements
Interface Requirements
Non-safety Quality Requirements
Constraints

Safety Integrity Level (SIL) is not 0:
May have minor safety ramifications
May be safety-critical
May have intolerable safety risk

Engineering Safety-Related Requirements for Software-Intensive Systems 61

Safety-Related Requirements

Engineering Safety-Related Requirements for Software-Intensive Systems 62

SILs and SEALs

Safety Integrity Level (SIL) – a category of required
safety for safety-significant requirements.

Safety Evidence Assurance Level (SEAL) – a category
of required evidence needed to assure stakeholders (e.g.,
safety certifiers) that the system is sufficiently safe (i.e.,
that it has achieved its required SIL).

SILs are for requirements

SEALs are for components that collaborate to fulfill
requirements (e.g., architecture, design, coding, testing)

SILs do not map 1-1 to SEALS.

Engineering Safety-Related Requirements for Software-Intensive Systems 63

Safety-Significant Requirements (cont)

Require enhanced Safety Evidence Assurance Levels
(SEALs) including more rigorous development process
(including better requirements engineering):

Formal specification of requirements
Fagan inspections of requirements

Too often SEALs only apply to design, coding, and
testing:

Safe subset of programming language
Design inspections
Extra testing

Engineering Safety-Related Requirements for Software-Intensive Systems 64

Example Safety-Significant Requirements

Requirements for controlling subway doors:
Keep doors closed when moving
Not crush passengers

Requirements for firing missiles from military aircraft:
When to arm missile
Controlling doors providing stealth capabilities
Detecting weight-on-wheels

Requirements for chemical plant:
Mixing and heating chemicals
Detecting temperature and pressure

Engineering Safety-Related Requirements for Software-Intensive Systems 65

Safety Subsystem Requirements

Safety Subsystem Requirements are requirements for
safety subsystems (as opposed to primary mission
requirements).

Subsystems or components strictly added for safety:
Aircraft Safety Subsystems:

Collision Avoidance System
Engine Fire Detection and Suppression
Ground Proximity Warning System (GPWS)
Minimum Safe Altitude Warning (MSAW)
Wind Shear Alert

Nuclear Power Plant:
Emergency Core Coolant System

All requirements for such systems are safety-related.

Engineering Safety-Related Requirements for Software-Intensive Systems 66

Example Safety Subsystem Requirements

“Except when the weapons bay doors are open or have
been open within the previous 30 seconds, the weapons
bay cooling subsystem shall maintain the temperature of
the weapons bay below X° C.”

“The Fire Detection and Suppression Subsystem (FDSS)
shall detect smoke above X ppm in the weapons bay within
2 seconds at least 99.9% of the time.”

“The FDSS shall detect temperatures above X° C in the
weapons bay within 2 seconds at least 99% of the time.”

“Upon detection of smoke or excess temperature, the
FDSS shall begin fire suppression within 1 second at least
99.9% of the time.”

Engineering Safety-Related Requirements for Software-Intensive Systems 67

Safety Constraints

A constraint is any engineering decision that has been
chosen to be mandated as a requirement. For example:

Architecture constraints
Design constraints
Implementation constraints
(e.g., coding standards or safe language subset)
Testing constraints

A safety constraint is any constraint primarily intended to
ensure a minimum level of safety
(e.g., a mandated safeguard).

Safety standards often mandate best practices as safety
constraints.

Engineering Safety-Related Requirements for Software-Intensive Systems 68

Example Safety Constraints

“When the vehicle is stopped in a station with the doors
open for boarding, the horizontal gap between the station
platform and the vehicle door threshold shall be no greater
than 25 mm (1.0 in.) and the height of the vehicle floor
shall be within plus/minus 12 mm (0.5 in.) of the platform
height under all normal static load conditions…”
Automated People Mover Standards – Part 2: Vehicles,
Propulsion, and Braking (ASCE 21-98)

“Oils and hydraulic fluids shall be flame retardant, except
as required for normal lubrication.”

Engineering Safety-Related Requirements for Software-Intensive Systems 69

Recommended Combined Method

How should safety-related requirements be engineered?

Need to combine (include) tasks, teams, and work
products from:

Requirements Engineering
Safety Engineering

What is appropriate?
What tasks need to be performed?
Who should perform them?
What collaboration is appropriate/necessary?
What work products should be produced?
Where do requirements work products fit in?

Engineering Safety-Related Requirements for Software-Intensive Systems 70

Basic Safety Engineering Tasks

Six basic safety engineering tasks.

Not all directly related to engineering safety-related
requirements.

Some tasks are:
Up front
Ongoing
Event driven

Safety
Program
Planning

Safety
Analysis

Safety
Monitoring

Safety Event
Investigation

Safety
Compliance
Assessment

Safety
Certification

Engineering Safety-Related Requirements for Software-Intensive Systems 71

Overlap between RE and SE

Requirements Engineering includes:
Requirements Identification
Requirements Analysis
Requirements Specification

Safety Engineering includes Safety Analysis.

Requirements
Engineering

Requirements
Identification

Safety
Engineering

Requirements
Analysis

Requirements
Specification

Safety
Analysis

X

X

X

Engineering Safety-Related Requirements for Software-Intensive Systems 72

Safety & Requirements Engineering Interface
Set

Safety
Goals

Safety
Program

Plan
Safety Team

Safety
Goals

Application
Vision

Statement
(ConOps)

Safety
Program
Planning

Requirements
Identification

Application
Visioning

Requirements
Team

Safety
Significance

Analysis

Safety-Related
Requirements

Safety-
Significant

Requirements

System
Requirements
Specification

Safety
Analysis

Safety
Requirements

Safety
Constraints

Safety
Subsystem

Requirements

Requirements
Specification

System
Requirements

are categorized during

Safety
Control
Analysis

Requirements
Analysis

Engineering Safety-Related Requirements for Software-Intensive Systems 73

Safety Program Planning

Engineering Safety-Related Requirements for Software-Intensive Systems 74

Safety Analysis Yields Safety-Related Rqmts

Engineering Safety-Related Requirements for Software-Intensive Systems 75

Safety Analysis Requires Collaboration

Engineering Safety-Related Requirements for Software-Intensive Systems 76

Asset Analysis

Engineering Safety-Related Requirements for Software-Intensive Systems 77

Safety Event Analysis

Engineering Safety-Related Requirements for Software-Intensive Systems 78

Hazard Analysis

Engineering Safety-Related Requirements for Software-Intensive Systems 79

Safety Risk Analysis

Engineering Safety-Related Requirements for Software-Intensive Systems 80

Safety-Significance Analysis

Engineering Safety-Related Requirements for Software-Intensive Systems 81

Safety Control Analysis

Engineering Safety-Related Requirements for Software-Intensive Systems 82

Conclusion

Engineering safety-significant requirements requires
appropriate:

Concepts
Methods
Techniques
Tools
Expertise

These must come from both:
Requirements Engineering
Safety Engineering

Engineering Safety-Related Requirements for Software-Intensive Systems 83

Conclusion (2)

There are four types of safety-related requirements:
Safety Requirements
Safety-Significant Requirements
Safety Subsystem Requirements
Safety Constraints

They have different forms (structures, contents).

They need to be identified, analyzed, and specified
differently.

Engineering Safety-Related Requirements for Software-Intensive Systems 84

Conclusion (3)

The requirements engineering and safety engineering
processes need to be:

Properly interwoven.
Consistent with each other.
Performed collaboratively and in parallel (i.e.,
overlapping in time).

Engineering Safety-Related Requirements for Software-Intensive Systems 85

Final Thoughts

Full day tutorial with examples and student exercises to be
given at ICSE’06 in Shanghai (22 May 2006).

Look for my upcoming book by the same title.

For more information, check out this repository of over
1,100 free open-source reusable method components
including many on safety at www.opfro.org.

	Engineering Safety- Related Requirements for Software- Intensive Systems
	The Challenge
	Requirements Engineering Overview for Safety Team
	Requirements Engineering Overview
	Requirements Engineering
	Importance of Requirements
	Difficulty of Requirements
	Goals
	Usage Scenarios
	Requirements
	Characteristics of Good Requirements
	Some Problems due to Poor Requirements
	More Problems
	Types of Requirements
	Product Requirements
	Quality Requirements
	Quality Model
	Many Different Quality Factors
	Components of a Quality Requirement
	Example Quality Requirement
	Importance of Measurement Threshold
	Safety Engineering Overview
	Basic Safety Concepts
	Safety as a Quality Factor
	Corresponding Safety Subfactors
	Valuable Assets
	Accidental Harm
	Harm Severity
	Example Harm Severity Categories
	Safety- Related Events
	Safety- Related Events and their Relationships
	Importance of Accidents
	Poor Requirements Cause Accidents - 1
	Poor Requirements Cause Accidents - 2
	Safety Event Likelihood Categories
	Safety Hazards
	Hazards and their Relationships
	Example Hazard, Events, Harm, and Asset
	Hazard Analysis
	Example Fault Tree (Cause of Failure)
	Example Cause/ Effect Graph
	Defensibility Risks including Safety Risks
	Safety Integrity Levels (SILs)
	Example Safety Integrity Levels (SILs)
	Example Safety Risk Matrix
	Safety Goals
	Safety Policies
	Safety- Related Requirements
	Safeguards (Safety Control, Safety Mechanism)
	Safety- Related Requirements
	Safety- Related Requirement Definitions
	Types of Requirements
	Safety- Related Requirements
	[Pure] Safety Requirements
	Quality Requirements
	Safety Requirements
	Based on Safety Subfactors
	Sixteen Types of Safety Requirements
	Example Safety Requirements
	Safety- Significant Requirements
	Safety- Related Requirements
	SILs and SEALs
	Safety- Significant Requirements (cont)
	Example Safety- Significant Requirements
	Safety Subsystem Requirements
	Example Safety Subsystem Requirements
	Safety Constraints
	Example Safety Constraints
	Recommended Combined Method
	Basic Safety Engineering Tasks
	Overlap between RE and SE
	Safety & Requirements Engineering Interface
	Safety Program Planning
	Safety Analysis Yields Safety- Related Rqmts
	Safety Analysis Requires Collaboration
	Asset Analysis
	Safety Event Analysis
	Hazard Analysis
	Safety Risk Analysis
	Safety- Significance Analysis
	Safety Control Analysis
	Conclusion
	Conclusion (2)
	Conclusion (3)
	Final Thoughts

