

Pittsburgh, PA 15213-3890

Advanced Engineering Environments for Small Manufacturing Enterprises

Joseph P. Elm

Sponsored by the U.S. Department of Defense © 2003 by Carnegie Mellon University

page 1

The future of manufacturing includes supply chain integration.

Advanced Engineering Environments (AEEs) will play a pivotal role in this integration.

Integration of Small Manufacturing Enterprises (SMEs) into the supply chain is a significant challenge.

• SMEs face unique challenges in adopting AEEs

Agenda

Context of Research

Small Manufacturing Enterprises (SMEs)

Advanced Engineering Environments (AEEs)

AEE Adoption Benefits

AEE Adoption Challenges

Summary

Agenda

Context of Research

Small Manufacturing Enterprises (SMEs)

Advanced Engineering Environments (AEEs)

AEE Adoption Benefits

AEE Adoption Challenges

Summary

Context of Research

Sponsor

Technology Insertion, Demonstration, and Evaluation (**TIDE**) Program

Objective

"... <u>demonstrate</u> the <u>cost savings and efficiency benefits</u> of applying <u>commercially available software and information</u> <u>technology</u> to the manufacturing lines of small defense firms." *DEPARTMENT OF DEFENSE APPROPRIATIONS ACT, 2000*

Participants

•Software Engineering Institute, Carnegie Mellon University

- •NIST Manufacturing Engineering Laboratory
- Oversight by DoD ManTech

TIDE - risk reduction, proof of feasibility for SMEs

© 2003 by Carnegie Mellon University

TIDE Overview/Strategy

Small Manufacturing Enterprises

Who are they?

- •<750 employees
- Not software centric

Why focus on SMEs?

Critical to the US economy

- Manufacturing comprises 14% of the US GDP -That's \$1.4 TRILLION BEA, US Dept. of Commerce
- 98% of US manufacturing firms are SMEs employing 41% of the manufacturing workforce U.S. Small Business Administration

Most <250 employees

Short term focus

Critical to US Defense

- Primes concentrating on core <u>VALUE ADDED</u> activities

- -PM, System Engineering, System Integration
- >80% of production of some weapons system is outsourced

OPPORTUNITY CHALLENGE FOR SMALL MANUFACTURERS !!!

SME Community Stress Factors

- Increasing global competition
- Aging workforce and ownership
- Expanding technology options
- **Changing Needs of the DoD**
 - Dual use components and systems
 - Increasing supply chain integration
 - Rate transparent production
 - Surge production capacity
 - Rapid product realization

SME Community Stress Factors

Increasing global competition

Aging workforce and ownership

Expanding technology options

Changing Needs of the DoD

- Dual use components and systems
- Increasing supply chain integration
- Rate transparent production
- Surge production capacity
- Rapid product realization

Potential to drive many SMEs out of business

What Does this Mean for SMEs?

SMEs are more tightly integrated with the Primes

- <u>Not</u> just component build-to-print
- Participate in Product Development, Inventory Management, Quality Improvement, and Life Cycle Cost Reduction

New demands upon the SME

- Expanded design and engineering capabilities
- Improved technical and project data communication
- Enhanced process management and control

What Does this Mean for SMEs?

SMEs are more tightly integrated with the Primes

- <u>Not</u> just component build-to-print
- Participate in Product Development, Inventory Management, Quality Improvement, and Life Cycle Cost Reduction

New demands upon the SME

- Expanded design and engineering capabilities
- Improved technical and project data communication
- Enhanced process management and control

AEEs can help

Advanced Engineering Environments

AEEs are ...

"... computational and communications systems that can create virtual and/or distributed environments functioning to link researchers, technologists, designers, manufacturers, suppliers, and customers." [NRC 99]

AEEs consist of

- Design tools
 - computer-aided design (CAD)
 - computer-aided engineering (CAE)
- Production tools
 - computer-aided manufacturing (CAM)
- Project management tools
- •Data repositories
 - product data management (PDM)
- •Networks
- •and more

M) CAE EDA PDM MES CASE MRP ERP

A Wide Domain for AEEs ...

High Level Business Function

© 2003 by Carnegie Mellon University

Notional Example – Robotic Arm

Notional Example – Robotic Arm

© 2003 by Carnegie Mellon University

© 2003 by Carnegie Mellon University

© 2003 by Carnegie Mellon University

The Problem: AEEs @ SMEs

One Approach

SMEs need to adopt AEEs...

- ... to perform the more technical design work outsourced by the Primes
- ... to meet the communication and collaboration demands of the Primes
- ... to meet the cost and schedule pressures induced by intense global
 - competition

AEEs
Tailored
for SMEsmental
AEE
AdoptionAEEs are difficult for SMEs
to adopt

Incre-

- Technology challenges
- Skills Challenges

 (\mathbf{O})

• Financial Challenges

Comprehensive AEE

A suite of fully interoperable, integrated tools operating upon a common database of information accessible to all relevant design and analysis tools.

- Vision for the future
- Not fully realized today.
- Some tool integration from major vendors

© 2003 by Carnegie Mellon University

Intermediate AEE

A suite of interfaced and interoperable tools (e.g. CAD, CAE, CAM, PDM) sharing compatible data.

- Partially available today Standard interfaces (STEP)
- Some tool integration from major vendors

page 26

Basic AEE

A CAD system and compatible CAE systems

Readily available today
Within reach of SMEs

Operational Benefits of AEEs 1

Product Development and Production Time

- Provide accurate and rapid response to RFQs
- Minimize duplicated and repetitive work
- Reduce design iterations needed for successful design
- Maximize reuse of designs and design elements
- Improve interdisciplinary communication and collaboration

Cost in Product Development and Manufacturing

- Design Optimization
- Risk Reduction through Design Experiments
- Manufacturing Optimization through Simulation .

Operational Benefits of AEEs 2

Product Quality

- Enhanced Depth of Performance Analysis
- Optimization of Final Design
- Improved Collaboration in Early Design Stages
- Expanded Reuse of Proven Designs
- Enhanced Methods of Quality Evaluation

External Benefits of AEEs

Coping with Global Enterprises and Markets

- Improved flexibility
- Faster response to market demands

Improved Communication with Customers & Suppliers

- Access to supplier e-Catalogs
- Accurate data exchange with suppliers
- Accurate data exchange with customer
- Improved capability for collaboration with customer

Barriers for SMEs

Smaller manufacturers are not embracing many of the latest, best software tools. WHY?

- Lack of awareness
- Financial & Business Issues
- Technology Issues

- Organizational / Cultural roadblocks
- Vendor Issues

Lack of Awareness

SMEs lack awareness of available COTS technologies and the potential benefits they can provide

Challenges

- Lack of IT skills
- Unbiased consultants familiar with the domain <u>and</u> the technology are rare

- Create a technology strategy
- Assign employees to study technologies
- Self-assessment tools [Ref 4, Ref 5]

Financial / Business Issues

The risks & benefits must be evident for an SME to consider investing in software technology

Challenges

- Absence of Business Cases
- Identifying costs and benefits
- Competition with nonsoftware investment options

Keys to Success

- Provide examples
- Identify costs and benefits for technologies [Ref 1, Ref 2]

Technology must be clearly tied to an SME's business objectives for measurable impact

Challenges

- Absence of technology adoption planning
- SME focus on short term benefits

- Integrate technology into business planning
- Educate owners/CEOs on the role of technology

Technology Issues

Technology management is not an SME CORE COMPETENCY

Challenges

- Legacy systems & data
- Resources for IT support

Keys to Success

- Attention to interoperability
- A selection PROCESS [Ref 3]
- A support plan

Incompatible technology demands from multiple customers

Challenges

- Multiple system compatibility Attention to interoperability
 - Translation products and services

Organizational / Cultural Issues

Insufficient definition and understanding of the As-Is business processes is the standard among SMEs

Challenges

- Tribal knowledge
- Pride in flexible processes
- Culture of informal teamwork

Keys to Success

- Document the As-Is process
- Use appropriate level of detail

SMEs believe they are too busy and do not have time to do effective technology planning activities

Challenges

- Small size of organization
- Flat management structure
- Culture focus on short term benefits

- Highlight cost of not planning
- Break up planning activities
- Constantly communicate benefits

Vendor Issues

Vendors do not target, and may specifically avoid, marketing to SMEs

Challenges

- focus on sales per sales call
- perception that SMEs require more support

Keys to Success

- Awareness: SMEs are a growth market
- Consider an ASP model

There is a training gap between COTS training providers and SMEs

Challenges

- Vendors provide general product training
- training needed to apply the product to their SME's needs

- Vendor consulting services
 - Bridge the training gap
 - Mentor to support risk management

Key Areas to Address - Education

... for SMEs

- AEE Concepts
- Benefits of AEEs
- Technology Adoption Processes
- Workforce Development

... for Tool Vendors

Awareness / Appreciation of SME market niche

... for Tool Developers

- AEE Concepts
- Interoperability Standards
- SME needs and capabilities

References

- 1. S. Fenves, R. Sriram, Y. Choi, J. Elm, J. Robert Advanced Engineering Environments for Small Manufacturing Enterprises: Volumes I and II
- 2. J. Elm, J. Robert Integration of Computer-Aided Design and Finite Element Analysis Tools in a Small Manufacturing Enterprise
- 3. W. Anderson, L. Estrin Advanced Software Technology Selection in Two Small Manufacturing Enterprises
- 4. S. Fenves, J. Elm, J. Robert Self Assessment Tool for Engineering Environments (SAT-EE)
- 5. S. Fenves, J. Elm, J. Robert Self Assessment Tool for Engineering Capabilities (SAT-ETC)

References are available via:

http://www.sei.cmu.edu/tide/publications/abstracts.html

Contact Information

If you would like more information about the TIDE Program, please contact:

Joseph Elm Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213-3890

Telephone: 412-268-9132 Email: jelm@sei.cmu.edu Web site: www.sei.cmu.edu/tide/

