
Sponsored by the U.S. Department of Defense
© 2003 by Carnegie Mellon University

Version 1.0 page 1

Pittsburgh, PA 15213-3890

Carnegie Mellon
Software Engineering Institute

Data Analysis Dynamics

Jeannine M. Siviy
William A. Florac
Software Engineering Institute

© 2003 by Carnegie Mellon University Version 1.0 page 2

Carnegie Mellon
Software Engineering Institute

Tutorial Outline

Section I – Understanding Data
• How to use data
• Understanding variation
• Requirements for success
• Common risks and pitfalls

Section II – Data Analysis Dynamics
• Learning from our experiences
• Useful tips for making measurement work
• Thread together methods, tools, processes

© 2003 by Carnegie Mellon University Version 1.0 page 3

Carnegie Mellon
Software Engineering Institute

Tutorial Outline

Section III – Case Study

Summary

Addenda
• Additional vignettes
• Tool tips

© 2003 by Carnegie Mellon University Version 1.0 page 4

Carnegie Mellon
Software Engineering Institute

Tutorial Focus

Tools, tips, and techniques your organization can use for
analyzing software data and taking action

Specifically we will focus on
• day-to-day practices
• activities that lead to breakthroughs
• why the problem, not management, should drive your

measurement program

Remember:
There is no “cookie-cutter” approach to doing good
measurement, but there are some best practices.

© 2003 by Carnegie Mellon University Version 1.0 page 5

Carnegie Mellon
Software Engineering Institute

Section I: Understanding Data

Data can help you
• Identify root causes of variability, off-target performance
• Better predict plans and commitments
• Make better decisions and take action
• Monitor activities to keep projects on cost, schedule

Data is the means to an end, not the end itself.

© 2003 by Carnegie Mellon University Version 1.0 page 6

Carnegie Mellon
Software Engineering Institute

Process Performance Data

Data allows you to access/analyze process performance.

Process performance is behavior that can be described or
measured using attributes of
• process operation or execution
• resultant products or services

Process performance measures answer the question:
“How is the process performing with respect to
 quality, quantity, effort (cost) and time?”

All process behavior is variable.

© 2003 by Carnegie Mellon University Version 1.0 page 7

Carnegie Mellon
Software Engineering Institute

Getting at the Cause of Variation
Shewhart divides variation into two types:

• Common Cause Variation

- variation in process performance due to normal or
inherent interaction among process components
(people, machines, material, environment, and
methods).

• Assignable Cause (Special Cause) Variation

- variation in process performance due to events
that are not part of the normal process.

- represents sudden or persistent abnormal changes
to one or more of the process components.

© 2003 by Carnegie Mellon University Version 1.0 page 8

Carnegie Mellon
Software Engineering Institute

Everything is a process.

All processes have inherent variability.

Data is used to understand variation and to drive
decisions to improve the processes.

Understanding Variation

[ASQ 00], [ASA 01]

Original Mean

New mean after change
(Spread due to common cause
variation will re-establish itself.)

Special Cause Variation

Data Spread due to
Common Cause Variation

© 2003 by Carnegie Mellon University Version 1.0 page 9

Carnegie Mellon
Software Engineering Institute

In Other Words…

Target

USLLSL

Center
Process

Reduce
Spread

Target

USLLSL

Process Off Target

Defects

Target

USLLSL

Excessive Variation

Defects

© 2003 by Carnegie Mellon University Version 1.0 page 10

Carnegie Mellon
Software Engineering Institute

Measurement Data Requires
Analysis and Interpretation

Data InterpretationAnalysis

Input Transformation Output

Separating signal from noise requires rigorous analysis
procedures.

This allows quantitatively based inferences to be drawn
to guide decisions and actions.

© 2003 by Carnegie Mellon University Version 1.0 page 11

Carnegie Mellon
Software Engineering Institute

Data Analysis Studies

Remember what you are trying to accomplish. There are
two approaches to data analysis to consider:

• Enumerative
• aim is descriptive
• determines “How many?” - not - “Why so many?”

• Analytic
• aim is to predict or improve product attributes and/or

the behavior of the process in the future

© 2003 by Carnegie Mellon University Version 1.0 page 12

Carnegie Mellon
Software Engineering Institute

Enumerative Studies

An enumerative study answers questions such as:

• How many defects were found inspecting product
code?

• How many problem reports have customers filed?
• What percent of staff have been trained in object-

oriented design methods?
• How large were the last five products we delivered?
• What were the average sizes of our code-inspection

teams last year?
• How many staff hours were spent on software rework

last month?

© 2003 by Carnegie Mellon University Version 1.0 page 13

Carnegie Mellon
Software Engineering Institute

Analytic Studies

Software engineering examples of analytical studies
include:

• measuring software product attributes for the purpose
of making changes to future products

• evaluating defect discovery profiles to identify focal
areas for process improvement

• predicting schedules, costs, or operational reliability

• evaluating/comparing software tools, technologies, or
methods—for the purpose of selecting among them for
future use

• stabilizing and improving software processes or to
assess process capability

© 2003 by Carnegie Mellon University Version 1.0 page 14

Carnegie Mellon
Software Engineering Institute

Enumerative vs. Analytic

Undertake an enumerative study if: action is to be taken
on the subject based on data that is already collected

Undertake an analytic study if: action is to be taken on the
process that produced the data

Analytic studies utilize statistical process
control tools to draw inferences about future

process performance.

© 2003 by Carnegie Mellon University Version 1.0 page 15

Carnegie Mellon
Software Engineering Institute

Basic Data Analysis Paradigm
Problem and goal statement (Y):
• maximum latent defects released
• minimum mean time between failure in the field
• time to market improvement (as function of test time, defect density)

Define ControlAnalyze ActMeasure

• Discovery: paretos, histograms, distributions, c&e
• Understanding: root cause, critical factors
• Improvement: adjust critical factors, redesign
• Performance: on target, with desired variation

Y = f(defect profile, yield)
= f(review rate, method, complexity……)

• Problem & goal
statements

• Define boundaries
• Process maps
• “Management by Fact”

© 2003 by Carnegie Mellon University Version 1.0 page 16

Carnegie Mellon
Software Engineering Institute

Tips for Good Measures

Measures used to characterize products or processes
• relate closely to the issue under study
• have high information content
• pass a reality and validity test
• permit easy and economical collection of data
• permit consistently collected, well-defined data
• show measurable variation as a set
• have diagnostic value

Define ControlAnalyze ActMeasure

[Wheeler 92]

© 2003 by Carnegie Mellon University Version 1.0 page 17

Carnegie Mellon
Software Engineering Institute

Tips for Better Data Analysis
Verified: accuracy of format, type, range, completeness,
and type

Valid and Reliable: clear, consistent definitions

Accurate and Precise: precise counting method

Based on operational definitions, you should know
• What does this measure mean?
• What are the rules for assigning values?
• What is the data recording procedure?

Define ControlAnalyze ActMeasure

© 2003 by Carnegie Mellon University Version 1.0 page 18

Carnegie Mellon
Software Engineering Institute

Tips for Operational Definitions 1
Three criteria for creating operational definitions

• Communication - will others know precisely what
was measured, how it was measured, and what was
included or excluded?

• Repeatability - could others, armed with the
definition, repeat the measurements and get
essentially the same results?

• Traceability - are the origins of the data identified in
terms of time, source, sequence, activity, product,
status, environment, tools used, and collector.

Define ControlAnalyze ActMeasure

[Deming]

© 2003 by Carnegie Mellon University Version 1.0 page 19

Carnegie Mellon
Software Engineering Institute

Tips for Operational Definitions 2
Operational definitions also help pinpoint training needs
for data collection.

The cost of data collection also bears on
• When the data will be collected
• Where the data will be collected
• Who will collect the data

Define ControlAnalyze ActMeasure

© 2003 by Carnegie Mellon University Version 1.0 page 20

Carnegie Mellon
Software Engineering Institute

Tips for Better Data Analysis

Why should we care about the data details?

Validity - apples to apples comparisons

Reliability - understand the impact of variation

Accuracy - knowing that there is a signal

Precision - level of certainty for responding to the signal

Define ControlAnalyze ActMeasure

© 2003 by Carnegie Mellon University Version 1.0 page 21

Carnegie Mellon
Software Engineering Institute

Tips for Analyzing Data
Critical inputs
• Knowledge of product or process being measured
• Driven by business/ technical issues or goals
• Quality of measurement data

Critical aspects of the analysis process
• Acknowledgement of and accounting for variation
• Appropriate use of analysis tools and techniques
• Resources and references (people, books)

Define ControlActMeasure Analyze

© 2003 by Carnegie Mellon University Version 1.0 page 22

Carnegie Mellon
Software Engineering Institute

Take the Data Deeper

To reduce variation pursue three investigative directions:

• Identify the assignable causes of instability and take
steps to prevent the causes from recurring.

• If the process is stable but not capable (not meeting
organizational or customer needs), then identify,
design, and implement necessary changes that will
make the process capable.

• Continually improve the process, so that variability is
reduced and quality, cost, or cycle time are improved.

Define ControlActMeasure Analyze

© 2003 by Carnegie Mellon University Version 1.0 page 23

Carnegie Mellon
Software Engineering Institute

Tips for Finding and Correcting
Assignable Causes
No formula or transformation algorithm is applicable. Just
like debugging software – it requires good detective work.

• thorough knowledge of the process
• sufficient contextual data
• re-check assumptions, interpretations, and data

accuracy
• pick up on clues provided by behavior patterns
• suspect everything
• relate chart signals to process events and activities
• check process compliance

Define ControlActMeasure Analyze

© 2003 by Carnegie Mellon University Version 1.0 page 24

Carnegie Mellon
Software Engineering Institute

Methods to Change the Process
Improving a stable process requires making changes to
common cause entities and variables. Selecting the right
change involves examination of:

• process decomposition and evaluation
• technology change
• cause and effect relationships
• products and by-products from other processes
• business strategies and management policies

These factors may well be the drivers for changing the
process!

Define ControlActMeasure Analyze

© 2003 by Carnegie Mellon University Version 1.0 page 25

Carnegie Mellon
Software Engineering Institute

Tips for Changing the Process
Agree on process performance issues.
• What needs improvement, why, and how much?

Select process performance variables, target means, and
variability.

Determine required changes to common cause entities
and variables.

Select pilot process.

Execute and measure the changed process.

Compare new process performance data to historical
baseline.

Make conclusions and recommendations.

Define ControlAnalyze ActMeasure

© 2003 by Carnegie Mellon University Version 1.0 page 26

Carnegie Mellon
Software Engineering Institute

Common Data Risks and Pitfalls

Analysis misses the “big picture”

Charts are colorful, but meaningless

Data set lacks robustness

No baseline for comparing current performance

Infrequent comprehensive rechecks of the data

Comparing or predicting process results without ensuring
stability of processes

© 2003 by Carnegie Mellon University Version 1.0 page 27

Carnegie Mellon
Software Engineering Institute

A Process Improvement Toolkit

Statistical
Controls:
• Control Charts
• Time Series
methods

Non-Statistical
Controls:
• Procedural
adherence
• Performance
Mgmt
• Preventive
activities

Design of
Experiments
Modeling

Tolerancing
Robust Design

Systems
Thinking
Decision &
Risk Analysis

7 Basic Tools
Cause & Effect
Diagrams, Matrix
Failure Modes &
Effects Analysis
Statistical
Inference
Reliability Analysis
Root Cause
Analysis
4 Whats
5 Whys
Hypothesis Test
ANOVA

Defect Metrics
Data Collection
Methods
Sampling
Techniques
Measurement
Sys. Evaluation
Quality of Data

Define
Benchmark
Baseline
Contract/Charter
Kano Model
Voice of the
Customer
Voice of the
Business
Quality Function
Deployment
Process Flow
Map
Project
Management
“Management by
Fact”

Measure Analyze Improve Control

© 2003 by Carnegie Mellon University Version 1.0 page 28

Carnegie Mellon
Software Engineering Institute

Section II: From Data to Decisions
This concludes our introduction to understanding data
and getting the most use out of your analyses.

In Section II: Data Analysis Dynamics we will
• share our experiences
• provide useful tips for how to make measurement work
• thread together methods, tools, processes
• provide a path for action

© 2003 by Carnegie Mellon University Version 1.0 page 29

Carnegie Mellon
Software Engineering Institute

Analysis Dynamics 1

Getting Started

• Identify the goals

• Black box process view

• Is the data right?

• Do I have the right data?

Decision point:
• If the data is not perfect,

do I move forward or
obtain better data?

typical
stumbling
point

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 30

Carnegie Mellon
Software Engineering Institute

Analysis Dynamics 2

Initial Evaluation
• What should the data

look like?
• What does the data

look like?
• Can I characterize the

process and problem?

Decision point:
• Can I address my goals

right now?
• Or is additional analysis

necessary? at the same or
deeper level of detail?

• Can I move forward?

typical
stumbling
point

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 31

Carnegie Mellon
Software Engineering Institute

Analysis Dynamics 3

Moving Forward
• Further evaluation
• Decompose the data
• Decompose the process

Decision point:
• Do I take action?
• What action do I take?

Repeat until
• root cause found
• at target with desired

variation

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 32

Carnegie Mellon
Software Engineering Institute

Identify the Goals 1
Goals should be continuously generated.

Without data, goals are stated at a conceptual level.

By quantifying performance
• problems are characterized
• true customer specifications are understood
• quantitative goals statements can be made

Typical problems
• goals do not exist or have not been explicitly stated
• goals at different levels are disconnected

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 33

Carnegie Mellon
Software Engineering Institute

Identify the Goals 2
Relevant tools and methods
• Voice of the Client
• Quality Function Deployment
• Management by Fact
• 4 Whats
• SMART goals
• FAST diagrams (Function Analysis Systems

Technique)

© 2003 by Carnegie Mellon University Version 1.0 page 34

Carnegie Mellon
Software Engineering Institute

Identify the Goals: Example
Customer
Satisfaction

Track/chart
field
defects

Track/chart
cost & schedule
deviation

Deliver high
quality product

• other factors
• survey or interview data

 Plot, plot, plot:
• trends
• distributions
• control charts (c-charts)
• scatter plots

 Plot, plot, plot:
• trends
• distributions
• control charts (x-bar, r; x, mr)
• scatter plots

other
factors

Success Indicators,
Management Indicators

Analysis Indicators,
Progress Indicators

Analysis Indicators,
Progress Indicators

SPI Task
Plans

Why?

How?

© 2003 by Carnegie Mellon University Version 1.0 page 35

Carnegie Mellon
Software Engineering Institute

What if there are no “Business
Goals”?
Without high-level business goals, data-driven
improvement efforts quickly become fragmented.

Articulate business goals by
• Brainstorming with leadership
• Organizing results into strategic, operational goals

- add in any tactics that emerged during brainstorming
• Performing hierarchical structure check

- “How?” answered top to bottom
- “Why?” answered bottom to top

Verify that tactics drive impact and success.

© 2003 by Carnegie Mellon University Version 1.0 page 36

Carnegie Mellon
Software Engineering Institute

Black Box Process View

What are the key inputs and outputs to your process?
What are key in-process variables over which you have
control?

Typical problems
• Omitting this step - avoids examination of your

assumptions and understanding of the process
• Selecting a view that matches the issue or study level
• Constructing a view that does not match reality

Relevant tools & methods
• Process Mapping
• Mental Model

© 2003 by Carnegie Mellon University Version 1.0 page 37

Carnegie Mellon
Software Engineering Institute

What is a Process?
• Any set of conditions or causes that work together to

produce a given result
• A system of causes which includes people, materials,

energy, equipment, and procedures necessary to produce
a product or service

Products &
Services

Requirements
Ideas
Time

People Material Energy Equipment Procedures

Work activities

© 2003 by Carnegie Mellon University Version 1.0 page 38

Carnegie Mellon
Software Engineering Institute

Problem Management Process

Open
PTR’s

Test Lab

Developer

Screen/
Resolve

Returned
 PTR’s

Closed
Canceled
PTR’s

More
Info

Review

Working
 PTR’s

Configuration
 Mgmt

Integrate
Build/Drop

Developer’s
Test Bed

Verify
PTR’s

Build
Regression
Test

Distribute

Test
Lab

Closed
Fixed
PTR’s

Test
Fixes

Development
Resolver

Closed

Invalid

PTRs

Repair rate

Test rate

Open rate

Valid rate

Queue size

ID, Desc

© 2003 by Carnegie Mellon University Version 1.0 page 39

Carnegie Mellon
Software Engineering Institute

Development Process Map

Code Compile Unit
TestDesign

 !!!! Requirements
 " Estimate
 !!!! Concept design

• Code
• Data: Defects,

Fix time, Defect
Injection Phase,
Phase duration

• Detailed Design
• Test cases
• Complexity
• Data: Design Review

defects, Fix time,
Phase duration

• Executable
Code

• Data: Defects,
Fix time, Defect
Injection Phase,
Phase duration

• Functional
Code

• Data: Defects,
Fix time, Defect
Injection Phase,
Phase duration

 !!!! Executable Code
 # Test Plan, Technique
 # Operational Profiles

!Resources
" Code Stds
" LOC counter
! Interruptions

 !!!! Code

Inspection

Rework

!!!! Critical Inputs
! Noise

" Standard Procedure
Control Knobs

© 2003 by Carnegie Mellon University Version 1.0 page 40

Carnegie Mellon
Software Engineering Institute

Is the Data Right ?
Understand the data source and the reliability of the
process that created it.

Typical problems
• wrong data
• missing data
• accuracy
• veracity
• credibility
• skewed

Data transformations
• ratios of bad data still equal bad data
• increasing the number of decimal places does not

improve the data

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 41

Carnegie Mellon
Software Engineering Institute

Is the data right? - Example

Which set of
data appears
to be more
credible?

Why?

of
People

Prepara

tion
Effort

Size
(SLOC)

5 3.7 2070
6 21.0 555
6 5.1 102
8 18.0 260
6 12.0 101
8 22.1 165
6 11.8 1764
8 9.2 348
5 7.3 76
8 16.5 1575
5 12.5 2441
6 18.3 126
5 6.5 88
6 7.1 383
8 10.2 111
8 11.5 192
6 5.2 212
7 9.3 401
7 8.8 815
5 31.0 551
5 4.9 429
8 12.7 883
9 30.3 1017
8 26.4 2116

 # of
People

Prepara

tion
Effort

Size
(SLOC)

4 2.0 350
3 1.5 210
3 2.0 333
3 2.0 430
3 2.0 400
1 2.5 400
4 3.0 440
3 2.5 450
3 3.5 440
3 3.0 255
3 2.8 470
4 2.8 500
3 1.5 253
2 0.7 78
4 7.0 900
3 3.5 400
3 4.8 1014
3 1.5 120
5 15.0 1495
4 4.0 200
4 4.0 200
4 4.0 200
3 4.5 200
4 4.0 200

Inspection Data Set 1 Inspection Data Set 2

© 2003 by Carnegie Mellon University Version 1.0 page 42

Carnegie Mellon
Software Engineering Institute

Do I Have the Right Data? 1
Analyses can get off on the wrong track if the data is
misunderstood, or implicit assumptions are made about it.

Analyst must ask questions:
• “Do I have measurements of all the significant and

relevant factors?
• “Does this data represent what I think it does?”

Typical examples
• total SLOC count in place of new/changed SLOC count
• date recorded is often not the same as date observed
• use of averages based on unstable processes (as in

normalization)

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 43

Carnegie Mellon
Software Engineering Institute

Do I Have the Right Data? 2
Frequently the answers to these questions can not be
answered by a simple “eyeball” test, then an initial
evaluation must be made using various tools and
methods.

Relevant tools & methods
• Process Mapping
• Goal-Driven Measurement templates
• Operational definitions
• Initial evaluation/exploration assessment using

statistical tools

© 2003 by Carnegie Mellon University Version 1.0 page 44

Carnegie Mellon
Software Engineering Institute

Initial Evaluation / Exploration 1
What should the data look like?
• first principles or relationships
• mental model of process (refer to that black box)
• what do we expect

What does the data look like?
• Magnitude, range, and frequency
• look at absolute and percentages
• the shape of the curve

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 45

Carnegie Mellon
Software Engineering Institute

Initial Evaluation / Exploration 2
Relevant tools & methods
• descriptive statistics
• run charts or SPC charts
• time series
• boxplots
• correlation plots – first scan of relationships

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 46

Carnegie Mellon
Software Engineering Institute

Is this the right data?
• unexpected high

inspection rate
• unusually large

SLOC per
inspection

• How many
inspectors
contributed to the
prep-hr effort?

Review
ID Defects SLOC

SLOC/
RevHr

Rev
PREP

Defect/
KSLOC

Defects
/hour

30 9 9,800 933.3 10.5 0.918 0.857
32 5 16,091 804.6 20 0.311 0.250
34 45 73,344 2,716.4 27 0.613 1.667
36 45 32,352 808.8 40 1.390 1.125
37 12 51,525 5,725.0 9 0.233 1.333
41 13 98,207 4,214.9 23.3 0.132 0.558
43 19 16,091 707.3 22.75 1.180 0.835
44 13 204,216 8,168.6 25 0.064 0.520
45 14 80,775 4,895.5 16.5 0.173 0.848
47 2 72,747 5,914.4 12.3 0.027 0.163
48 14 10,901 681.3 16 1.284 0.875
50 11 11,468 1,146.8 10 0.959 1.100
52 31 16,909 573.2 29.5 1.833 1.051
53 17 28,538 1,902.5 15 0.596 1.133
57 22 18,136 824.4 22 1.213 1.000

?
Exploration Example1

© 2003 by Carnegie Mellon University Version 1.0 page 47

Carnegie Mellon
Software Engineering Institute

Exploration Example2

0 20000 40000 60000 80000 100000
5

10

15

20

25

30

35

40

Y=19.06652+1.28868E-5 x

 B
 DATA1.B.LR

SLOC

Scatterplot of Review hours vs SLOC Reviewed

R
ev

ie
w

 H
ou

rs

R = 0.04549
R2 = 0.00207

Little to no
correlation
between
SLOC size
and
inspection
effort

© 2003 by Carnegie Mellon University Version 1.0 page 48

Carnegie Mellon
Software Engineering Institute

Evaluation Example3

Given there is no correlation between review time and the
amount of SLOC reviewed,

What questions can be raised about the
• SLOC count?
• review time?
• number of defect?
• defect density?
• defects discovered per review hour?

© 2003 by Carnegie Mellon University Version 1.0 page 49

Carnegie Mellon
Software Engineering Institute

Can I Move Forward?

Does the initial evaluation/exploration of data support the
critical assumptions?

What are your assumptions?
• are they explicitly articulated?
• for process, for data?

What are the risks you are taking if you move forward with
the assumptions you have made?

Is the variability or presence of process issues so
significant that they overshadow data issues?

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 50

Carnegie Mellon
Software Engineering Institute

Moving Forward 1
Moving forward is often a judgment call
• can proceed with further data and process analysis in

parallel with improving data
- it’s a tradeoff and a matter of balancing risks

• else get the “right” data before proceeding

Types of actions
• removing assignable causes
• reducing common cause variation
• testing hypotheses
• further decomposing data and process

typical
stumbling
point

© 2003 by Carnegie Mellon University Version 1.0 page 51

Carnegie Mellon
Software Engineering Institute

Moving Forward 2
This is the “heart” of the analysis
• Explore, establish/confirm cause-effect relationships
• Plot trends over time
• Look for and identify the “drivers” or dominant factors
• Gauge the variation of the variables
• Find assignable causes
• Determine stability and capability of processes
• Decompose to find root cause

Relevant tools & methods
• The “Basic Tools”

© 2003 by Carnegie Mellon University Version 1.0 page 52

Carnegie Mellon
Software Engineering Institute

Moving Forward- Basic Tools

Fundamental data plotting and diagramming tools
• Cause & Effect Diagram
• Histogram
• Scatter Plot
• Run Chart
• Box and Whisker Plots
• Pareto Chart
• Control chart

The list varies with source. Alternatives include
• Bar charts
• Flow Charts
• Descriptive Statistics (mean, median and so on)
• Check Sheets

© 2003 by Carnegie Mellon University Version 1.0 page 53

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Establish Relationships

0 200 400 600 800

0

20

40

60

80

100

120

 C
 DATA1.C.LR

New/changed SLOC Reviewed

Review Hours vs
New/Changed SLOC

R
ev

ie
w

 H
ou

rs

R = 0.83569
R2 = 0.69838

0 1000 2000 3000 4000 5000

0

20

40

60

80

100

120

 C
 DATA1.C.LR

Total SLOC

Review Hours vs
Total SLOC

R
ev

ie
w

 h
ou

rs

R = 0.19244
R2 = 0.03703

© 2003 by Carnegie Mellon University Version 1.0 page 54

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Identify Dominant Factors

Profile of Defects Found in Product XYZ

0

15

30

45

Syntax Error Ambiguous
Requirements

Interface Error Missing Function Memory

Defect Type

N
um

be
r

of
 D

ef
ec

ts

0%

25%

50%

75%

100%

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Number of Defects

Cumulative Percentage

© 2003 by Carnegie Mellon University Version 1.0 page 55

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Determine Extent of Variability 1

34 36 38 40 42 44 46 48 50 52 54 56
0
2
4
6
8

10
12
14
16
18
20

N
um

be
r

of
 D

ay
s

Product-Service Staff Hou Time to fix a defect found after development

 Number
of defects

Look for multimodal distributions.
They point to multiple processes.

Basic Histogram shows
distribution, spread.

© 2003 by Carnegie Mellon University Version 1.0 page 56

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Determine Extent of Variability 2

36 38 40 42 44 46 48 50 52 54
0

2

4

6

Product Service Staff-Hours

F
re

qu
en

cy
 C

ou
nt

LCL= 36.08 UCL=54.04CL= 45.06

Voice of the Process

Add control
limits to reflect
process
capability

© 2003 by Carnegie Mellon University Version 1.0 page 57

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Determine Extent of Variability 3

25 30 35 40 45 50 55
0

2

4

6

Product Service Staff-Hours

F
re

qu
en

cy
 C

ou
nt

LCL= 36.08 UCL=54.04CL= 45.06

LSL= 30 USL= 50Target = 40

Voice of the customer

Voice of the Process

Add
specification
limits:

Process
Capability

vs.

Capable
Process

© 2003 by Carnegie Mellon University Version 1.0 page 58

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Find Assignable Causes

.

0 20 40 60 80 100

0

100

200

300

400

LCL=0

CL=104

UCL=292

Wait time-days

2nd Qtr and 3rd Qtr Problem Closures

P
ro

b
le

m
 W

ai
t

ti
m

e-
d

ay
s

Problem Closure Sequence

Problem Repair-
Wait time
• Issue: Delays in
repairing software
test sets

• Control chart
indicates process
unpredictable

• Pattern suggests
mixture of cause
systems

© 2003 by Carnegie Mellon University Version 1.0 page 59

Carnegie Mellon
Software Engineering Institute

2nd Qtr and 3rd Qtr Problem
Closures Wait time

0 100 200 300 400
0

5

10

Wait time-Days

F
re

q
u

en
cy

 C
o

u
n

t

Problem Repair- Wait time

Histogram indicates data
includes possible mixture of
cause systems

• One process for problems
up to 150 wait days

• A second process involving
more than 150 wait days

Moving Forward-
Finding Assignable Causes

© 2003 by Carnegie Mellon University Version 1.0 page 60

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Find Assignable Causes

Problem repair Wait time < 150 days

0 10 20 30 40 50 60 70 80

0

20

40

60

80

100

120

140

160

LCL= 0

CL=67.29

UCL=161.3

P
ro

b
le

m
 w

ai
t

ti
m

e-
d

ay
s

Problem Closure Sequence

One process with 67-
day average wait time
• Near stable
•Investigate cause
system for driving
factors
§ nature of defect
§ staffing
§ equipment
§ test set type

© 2003 by Carnegie Mellon University Version 1.0 page 61

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Find Assignable Causes

Another process
with average wait
time of 246 days

0 5 10 15 20

100

150

200

250

300

350

400

LCL=86.82

CL=246

UCL=405.2

Problem Repair Wait time > 150 days

P
ro

b
le

m
 w

ai
t

ti
m

e-
d

ay
s

Problem Closure Sequence.

© 2003 by Carnegie Mellon University Version 1.0 page 62

Carnegie Mellon
Software Engineering Institute

Moving Forward-
Find Assignable Causes
Problem Repair-Wait time
• Determined that there were two processes in operation

• Since both were (near) stable, necessary to examine
cause systems for components that may be the driving
contributors to wide variation and make appropriate
changes to each process

• Activities undertaken:
- Classification of problems (defects) reported and found
- Classification of test sets
- Evaluation of test equipment availability
- Availability of necessary skills

© 2003 by Carnegie Mellon University Version 1.0 page 63

Carnegie Mellon
Software Engineering Institute

Decomposition

Decomposition is separating the process into its
component parts or data by one or more of its attributes

• Makes sources of variation visible

• Provides opportunity for process improvement

This approach is useful
• when process is stable and process change is needed

to reduce variation
• for highlighting unusual data attributes that may be the

source of variation

© 2003 by Carnegie Mellon University Version 1.0 page 64

Carnegie Mellon
Software Engineering Institute

Decompose Data

D
ef

ec
ts

0

5

10

15

2001 2002

yr

All Pairs

Tukey-Kramer

 0.05

•Defect data
decomposed by
year

•May also
decompose by
project type,
organizational
slices, and so on

•Means comparison test determines if data groupings
are statistically different. These groups are not different.

•Values and sample size are accounted for in the test.

© 2003 by Carnegie Mellon University Version 1.0 page 65

Carnegie Mellon
Software Engineering Institute

Decompose Process Data 1
Twenty one components from same product, same team
• approximately same size
• approximately same complexity

Defects found in design inspection are:

Component 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 Totals
Defects 12 16 18 32 22 16 23 35 15 27 16 25 20 26 20 23 23 36 22 27 17 471

Defect Type Number of Defects per Type per Component
Function 3 5 4 4 4 3 3 20 4 11 2 3 3 5 3 7 4 5 5 15 2 115
Interface 2 2 4 4 3 4 2 3 3 4 2 3 5 3 3 3 2 16 6 2 4 80
Timing 1 1 0 1 1 0 2 1 0 0 2 0 1 1 1 1 1 0 1 0 0 15

Algorithm 0 0 1 14 2 0 0 0 0 0 0 1 5 2 7 6 5 1 2 0 1 47
Checking 1 1 5 1 7 1 1 2 0 1 6 3 1 12 1 0 2 4 3 5 2 59

Assignment 0 2 0 4 1 2 1 3 2 3 2 8 1 0 2 1 2 1 0 1 1 37
Build/Pkg. 3 1 1 2 1 0 0 4 3 6 1 0 2 1 1 1 3 2 2 2 1 37
Document 2 4 3 2 3 6 14 2 3 2 1 7 2 2 2 4 4 7 3 2 6 81

© 2003 by Carnegie Mellon University Version 1.0 page 66

Carnegie Mellon
Software Engineering Institute

Decompose Process Data 2

0 5 10 15 20

25

0
5
10
15
20

30
35
40
45

LCL = -0.0448

CL = 22.4

UCL = 44.9

M
ov

in
g

R
an

ge
T

ot
al

 D
ef

ec
ts

Component Number

0 5 10 15 20
0

5

10

15

20

25

30

CL = 8.45

UCL = 27.6

Apparent stable process
behavior

•But, defect rate too high
and too much variation

•Explore examination of
defects by type

© 2003 by Carnegie Mellon University Version 1.0 page 67

Carnegie Mellon
Software Engineering Institute

Decompose
Process Data 3

Establish process stability
by defect type

X’s mark assignable
causes by defect type

Elimination of assignable
causes will reduce variation

0

1

2

3

4

5

6

0 5 10 15 20

Defect Type = BLD/PKG
X

0 5 10 15 20
0
2
4
6
8

10
12
14
16

Defect Type = Documentation
X

0 5 10 15 20

Defect Type = Algorithm

X

X
XX

X

0
2
4
6
8
10
12
14
16

0 5 10 15 20
-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5

Defect Type = Timing

0 5 10 15 20
0

2

4

6

8
Defect Type = Assignment

0 5 10 15 20
0

2

4

6

8

10

12
Defect Type = Checking

0 5 10 15 20
0
2
4
6
8
10
12
14
16
18 Defect Type = Interface

X

0 5 10 15 20
0

5

10

15

20

.

Defect Type = Function

© 2003 by Carnegie Mellon University Version 1.0 page 68

Carnegie Mellon
Software Engineering Institute

Potential Process Improvement

0 5 10 15 20 0 5 10 15 20
0

5

10

15

20

25

30

35

40

LCL=6.63

CL=22.43

UCL=44.9

Before Improvement

In
di

vi
du

al
s

CL=15.81

UCL=24.9

LCL= 0

After Improvement

Control chart on right reflects potential improvement
if all assignable causes removed

© 2003 by Carnegie Mellon University Version 1.0 page 69

Carnegie Mellon
Software Engineering Institute

Repeat until…..

Root cause(s) found

The process is at target, with desired variability

Other process performance data has not suffered
• I.e. the process has not been suboptimized

Relevant tools & methods
• Management by Fact
• 5 Whys
• Dashboard

© 2003 by Carnegie Mellon University Version 1.0 page 70

Carnegie Mellon
Software Engineering Institute

Number-Crunching Tools

• Higher learning curve than others
• Best for those doing data-driven improvement
as large part of their workload

 Statistical Package

• May be better suited for charts which an
organization is routinely monitoring than for
exploration

 Standalone SPC
Package

• Many new add-ins available
• Enables a wider variety of charts

 Excel Addin

• Most people have a copy
• OK for some basic charts
• Nice for presentations
• Otherwise quite limited

 Spreadsheet (Excel)
 Comment Analysis done in….

© 2003 by Carnegie Mellon University Version 1.0 page 71

Carnegie Mellon
Software Engineering Institute

Section III: Case Study

This concludes our introduction to analysis dynamics.

In Section III we will showcase these dynamics through a
case study.

Context:
• organization project portfolio includes both new

development and maintenance
• project size and complexity varies significantlly
• project schedules vary from <1 month to >18 months

© 2003 by Carnegie Mellon University Version 1.0 page 72

Carnegie Mellon
Software Engineering Institute

Case Study Overview

This case study features the following:
• pursuit of customer satisfaction

- via proxies of defects and effort & schedule variance
• initial data evaluation and exploration
• initial data and process decomposition
• separation of goals into “monitor” and “improvement”
• first iteration of root cause analysis for improvement

goals

Along the way, we will use this stop sign
• to pause and generalize,
• to ask probing questions,
• to extend the topic

© 2003 by Carnegie Mellon University Version 1.0 page 73

Carnegie Mellon
Software Engineering Institute

Analysis Dynamics 1

Getting Started

• Identify the goals

• Black box process view

• Is the data right?

• Do I have the right data?

Decision point:
• If the data is not perfect,

do I move forward or
obtain better data?

“We didn’t stumble here–there were
goals from the beginning–but it took
time to clarify them, to make them
quantitative, and to separate
monitoring from improvement.”

“We had a lot of missing data. We
conducted “data archaeology” as
much as possible to backfill the data
set. Learnings were used to improve
the automation of data collection.”

“Our data wasn’t perfect, but no
matter how we sliced it, there were
clear improvements to pursue.”

Sound bytes

© 2003 by Carnegie Mellon University Version 1.0 page 74

Carnegie Mellon
Software Engineering Institute

Analysis Dynamics 2

Initial Evaluation
• What should the data

look like?
• What does the data

look like?
• Can I characterize the

process and problem?

Decision point:
• Can I address my goals

right now?
• Or is additional analysis

necessary? at the same or
deeper level of detail?

• Can I move forward

“For earned value data, we found
the process to be consistently “out of
spec,” yet the external customers
seemed satisfied. Reconciling the
‘voices’ of the process, external
customers and internal management
is part of the process.”

Sound bytes

“We were able to identify many of
the “data rightness” issues without
exploring the data. But, in some
cases, it was necessary to dive into
the data to identify the issues.”

© 2003 by Carnegie Mellon University Version 1.0 page 75

Carnegie Mellon
Software Engineering Institute

Analysis Dynamics 3

Moving Forward
• Further evaluation
• Decompose the data
• Decompose the process

Decision point:
• Do I take action?
• What action do I take?

Repeat until
• root cause found
• at target with desired

variation

“Initial iterations of decomposition will
be shown. Because of risks
associated with imperfect data, each
conclusion needs to be carefully
weighed against the need for
additional verifying data.”

Sound bytes

© 2003 by Carnegie Mellon University Version 1.0 page 76

Carnegie Mellon
Software Engineering Institute

Business Objectives
Customer
Satisfaction

Track/chart
field
defects

Track/chart
cost & schedule
deviation

Deliver high
quality product

• other factors
• survey or interview data

 Plot, plot, plot:
• trends
• distributions
• control charts (c-charts)
• scatter plots

 Plot, plot, plot:
• trends
• distributions
• control charts (x-bar, r; x, mr)
• scatter plots

other
factors

Success Indicators,
Management Indicators

Analysis Indicators,
Progress Indicators

Analysis Indicators,
Progress Indicators

SPI Task
Plans

Goals from the
beginning of

effort

Project: What are leading
in-process indicators of
success? Where are
improvements needed?

© 2003 by Carnegie Mellon University Version 1.0 page 77

Carnegie Mellon
Software Engineering Institute

Customer Data

• What data are readily available data?
-post-project surveys

• Data archeology
-What has been communicated via emails, phone
calls

• Is the data “perfect”? NO
-few responses
-qualitative responses

• New data collection needed:
-updated, routine customer survey

By the way, is data
ever perfect? Can
you afford to wait for
perfect data?

© 2003 by Carnegie Mellon University Version 1.0 page 78

Carnegie Mellon
Software Engineering Institute

Customer Data - Sample
Qualitative comments, all positive:
• Pleasure to work with!
• Outstanding in all aspects!!
• If this team had been on this project from the start a lot of

things may have gone smoother.
• Really good to work with. Have been working with them 2-

3 years now. They do a good job and we get along well.

Quantitative comments
• Finished testing without having to create any additional

builds.
• We were able to save three flights.

© 2003 by Carnegie Mellon University Version 1.0 page 79

Carnegie Mellon
Software Engineering Institute

Defect Data
• What data are readily available data?

-peer review inspection data
• Data archeology

-field defects and confirmation of in-process defects
• Is the data “perfect”? NO

-missing data
-defect data skewed toward low priority defects
-variations in operational definitions
-feedback loops at group level, not org level

• New data collection needed:
-confirmed operational definitions
-improved automation of data collection process

© 2003 by Carnegie Mellon University Version 1.0 page 80

Carnegie Mellon
Software Engineering Institute

Field Defect Data Baseline
Organizational goal: 0 field defects

Field defects

In-process defect detection
• # of defects vs. development life cycle

0
100
200

300
400
500
600

700
800
900

1000

1100
1200
1300

S
um

(d
ef

ec
ts

)

1-
P

ro
jP

la
n

2-
R

eq
t

3-
D

es
ig

n

4-
C

od
e

6-
D

oc

7-
F

in
al

 T
es

t

phase id

0

100

200

300

400

500

600

700

800

900

1000

S
um

(d
ef

ec
ts

)

1-
P

ro
jP

la
n

2-
R

eq
t

3-
D

es
ig

n

4-
C

od
e

6-
D

oc

7-
F

in
al

 T
es

t

phase id

FY01 FY02

Field Defects
FY 01 4
FY 02 4 When your “count for

the year” is 4, how
useful are control
charts?

And, if your counts
are higher?

Leading in-process
indicators are what
you should consider
for control charting.

© 2003 by Carnegie Mellon University Version 1.0 page 81

Carnegie Mellon
Software Engineering Institute

Earned Value Data
Readily available data
• monthly process effort, cost, schedule
• compared to specification

- with text entry for out of spec causes

Data “archaeology”:
• completed project data

- final vs. original with differences categorized

Is the data “perfect”? NO
• losing track of replanning impact on performance
• monthly data uses non-homogeneous sample
• sparse data – some parts of organization better represented
• not sure if “extreme” outliers can be excluded

© 2003 by Carnegie Mellon University Version 1.0 page 82

Carnegie Mellon
Software Engineering Institute

Completed Project Data Baseline

This represents (initial plan – final actual)
• negative numbers are overruns
• schedule is in terms of calendar days

It is the total cumulative variance
• customer-requested/approved changes are included
• one way or another, this is what the customer sees

% effort variance % sched variance
average -66.1% -15.0%
standard deviation 415.9% 38.3%
median 0.9% -8.1%
min to max -2689.9% to 50.1% -99.8% to 128.0%
n 42 42
capability notes
(spec = +/- 20%)

45.2%
outside spec

40.4%
outside spec

-30

-25

-20

-15

-10

-5

0

5

LSL

USL

Target

-1

-0.5

0

0.5

1

1.5

LSL

USLTarget

© 2003 by Carnegie Mellon University Version 1.0 page 83

Carnegie Mellon
Software Engineering Institute

internal/external
categories

median
contribution toward

total effort (cost)
variance

of
projects
reporting

median
contribution toward

total schedule
variance

of
projects
reporting

internal project -30.83% 7 -34.32% 4

internal organization,
outside project -1.25% 5 -73.77% 3
external, reqt -22.48% 10 -20.20% 10
external, sched 0.00% 15 -98.36% 17

Completed Project Data - Decomposed

Contribution to total variance, by internal/external categories

“Internal” and “external” taxonomy selected based on
“sphere of influence and control”

Risk: while “internal causes” seem to be a significant
opportunity, a small number of projects reported such causes

© 2003 by Carnegie Mellon University Version 1.0 page 84

Carnegie Mellon
Software Engineering Institute

Explore, Evaluate (Plot, Plot, Plot) 1

-1

-0.5

0

0.5

LSL

USL
Target

-0.5

0

0.5

1

1.5

LSL

USLTarget

% effort variance % sched variance
avg -2% 13%
std dev 33% 36%
median 2% 7%
min to max -95% to 50% -128% to 71%
capability notes
(spec = +/- 20%)

43.8%
outside spec

39%
outside spec

When flyers are removed
•Averages closer to target, spread narrowed
•Medians minimally affected
•Still nearly as many outside specs
•Small “second peak” more visible

• What are guidelines
for removing flyers?

• Average vs. median

© 2003 by Carnegie Mellon University Version 1.0 page 85

Carnegie Mellon
Software Engineering Institute

Explore, Evaluate (Plot, Plot, Plot) 2
Schedule Variance Distribution to Time Series

same

data -150

-100

-50

0

50

100

150

200

P
er

ce
nt

 S
ch

ed
ul

e
V

ar
ia

nc
e

0 10 20 30 40 50

Rows-100

-50

0

50

100

150

LSL

USLTarget

Time series plot shows
• where in time the contributions to
overall high variability occur

• possible change in variability over time
• where in time the points of the possible
“second population” occur

Why not a
control chart?

© 2003 by Carnegie Mellon University Version 1.0 page 86

Carnegie Mellon
Software Engineering Institute

Explore, Evaluate (Plot, Plot, Plot) 3
Schedule Variance Time Series to Control Chart

same

data-150

-100

-50

0

50

100

150

200

P
er

ce
nt

 S
ch

ed
ul

e
V

ar
ia

nc
e

0 10 20 30 40 50

Rows

-150

-100

-50

0

50

100

150

200

P
er

ce
nt

 S
ch

ed
ul

e
V

ar
ia

nc
e

C
B
A

C
B

A

4 8 12 16 20 24 28 32 36 40 44

Avg=-14.97

LCL=-114.28

UCL=84.34

0

50

100

150

200

P
er

ce
nt

 S
ch

ed
ul

e
V

ar
ia

nc
e

4 8 12 16 20 24 28 32 36 40 44

Avg=37.35

LCL

UCL=122.02

UCL 84.3%

Avg –15%

LCL –114.3%

Control charts also show
• possible second “population”
• wide variability

But,
• process may just not be stat. control

(if 2 populations, assumption violated)

• wide limits have limited practical value
 (use for off-line analysis only at this stage)
•control charts geared for monitoring sustainment not improvement

© 2003 by Carnegie Mellon University Version 1.0 page 87

Carnegie Mellon
Software Engineering Institute

In-Process Cost/Schedule Data Baseline

Organizational goal (specification): +/-20%

In process effort/cost data
• all life cycle phases, all projects, Oct – June (770+ pts)

In process schedule data
• all life cycle phases, all projects, Oct – June (770+ pts)

mean +/- 3 standard deviations
-7.2654498 +/- 19.23 or
-64.96 to 50.43

capability notes
spec = +/- 20% 17% of values outside spec

all data extreme values excluded

mean +/- 3 standard deviations
-32 +/- 3*423 or
-1301 to 1237

-2 +/- 3*25 or
-77 to 73

schedule capability
spec = +/- 20% 18% of values outside spec 17% of values outside spec

© 2003 by Carnegie Mellon University Version 1.0 page 88

Carnegie Mellon
Software Engineering Institute

%
S

ch
. V

ar
.

-100

-80

-60

-40

-20

0

20

40

60

80

100

1: oct-01 2: nov-01 3: dec-01 4: jan-02 5: feb-02 6: mar-02

month label

In-Process Schedule Variance Boxplot

x

90th percentile
75th percentile
median: 50th percentile
25th percentile
10th percentile

mean

Data reported monthly for all projects, cycle phases

Conclusion: need to address variability

Why a boxplot
and not an SPC
chart?

© 2003 by Carnegie Mellon University Version 1.0 page 89

Carnegie Mellon
Software Engineering Institute

Are There Group Differences?

Schedule Variance, all projects, Oct 01 to Jun 02

Boxes influenced by quantity of data, and numbers themselves

Are there statistically significant group to group differences: NO

%
sc

h
va

r

-100

0

100

A B B F K N T

branch

All Pairs

Tukey-Kramer
 0.05groups within organization

test for
significant
difference

© 2003 by Carnegie Mellon University Version 1.0 page 90

Carnegie Mellon
Software Engineering Institute

Are There Project Differences?
%

sc
h

va
r

-50

-40

-30

-20

-10

0

10

20

30

40

AAR-44 MIP 01-0122

AAR-44A BC3

AAR-47 Missile Warning Receiver BC1

ALE-47 BC1

ALE-47 BC1.1

ALIC FMS R 3.4.2

ALIC MDT BC 6

ALIC MDT Urgent Change

ALIC T5 Bad Az Fix

ALIC T5 Urgent Change

ALM-233 ASE Tools

ALM-233 Pod Test (ASE 2001)

ALM-233 Self Test (ASE 2000)

ALQ-131 ILSE BC3

ALQ-131 ILSE BC4

ALQ-131 MDG BC2

ALQ-131 OFP BC 0.1 Urgent

ALQ-131 POD OFP BC 0.1

ALQ-131 POD OFP BC 0.1 - Urgent

ALQ-131 POD OFP BC 1.5A

ALQ-135 CFG Update

ALQ-135 Urgent Change

ALQ-155/SI OFP BC4

ALQ-155/SI OFP BC5

ALQ-161 ERS 6.5

ALQ-161 PFS 4.06

ALQ-161 PFS 4.20

ALQ-161 PFS Block E

ALQ-161 RSST V2

ALQ-161 RSST V2.0

ALQ-161 RSST Version 2.0

ALQ-162 1553B Comm. Phase II

ALQ-172 AFSOC V1/V3 BC1

ALQ-172 ECM1 BC4

ALQ-172 O-Level TPS Urgent Change

ALQ-172(DBM)

ALQ-172(V) FFSD/ED Re-Host

ALQ-184 BC3

ALQ-184 Flight Recorder

ALQ-196 MDG

ALQ-196 OFP

ALQ-196 OFP BC3

ALQ-196 OFP BC3/MDG BC2

ALQ-196 Q196-00082-01 Urgent Change

ALQ-213 SWV010F

ALQ-213 SWV020A

ALQ-213 WinMDT

ALR-56M C-130J (2040)

ALR-56M V004Y/V004Z

ALR-69 ACVR BC1201

ALR-69 BC14/15

ALR-69 SWV 1004

ALR-69 SWV 1004/10

ALR-69 SWV 1305

EJTAT Urgent Cha

HARM PNU MPT

IEWS BC2

MERITS

MH-53M AI

MH-53M

TEWS

USM-4

USM-

USM
Project Name

Each box represents the timeline of an individual project

Are there statistically significant project to project differences: YES,
in some cases (Tukey-Kramer test not shown)

Conclusion: Non-homogeneous sample (data from all points along
“project timeline”) was a major contributor to the “significant
differences” and to the overall variability

Schedule Variance, all projects Oct 01 to Jun 02

© 2003 by Carnegie Mellon University Version 1.0 page 91

Carnegie Mellon
Software Engineering Institute

Improving Sampling & Analysis

Overall rollup:
• group the data by project milestones

Within project:
• identify different control limits for each development

phase
• compare each project’s phase against the history of

similar projects in that same phase
• robust sample for limit calculations is critical

A L Q 1 8 4 p r o je c t c o s t in d

-1 0

-5

0

5

1 0

1 3 5 7 9

11 13 15

M o n t h

 project cost index

wider limits
for projects
in planning
phase

narrower limits
for projects in
execution phase

© 2003 by Carnegie Mellon University Version 1.0 page 92

Carnegie Mellon
Software Engineering Institute

Our Improvement Focus

Two performance improvement priorities, for two different
portions of the organization
• effort variation reduction
• schedule variation reduction

Additionally, a specific improvement effort to efficiently
gather more complete, more consistent data
• needed to more fully understand the magnitude of

variability
• needed to set exact (SMART) improvement goals

(Specific, Measurable, Agreed upon, Realistic, Timely)

© 2003 by Carnegie Mellon University Version 1.0 page 93

Carnegie Mellon
Software Engineering Institute

Can We Address the Goals?

This is a decision point in the analysis dynamics.

Do we have enough understanding of our data and
process? NO

Key questions at this stage
• What are the root sources of the variability?
• How does the in-process variability provide an early

view of the end-of-project result?

© 2003 by Carnegie Mellon University Version 1.0 page 94

Carnegie Mellon
Software Engineering Institute

Data and Process Decomposition

Brainstormed root causes of variance

Decomposed process into 4 main subprocesses
• mapped cause codes to process
• identified cause codes that are resolved in-process

Data archaeology
• evaluated cause codes using historical data

risks of data
archaeology vs.
starting anew

© 2003 by Carnegie Mellon University Version 1.0 page 95

Carnegie Mellon
Software Engineering Institute

Transformed original brainstorm list
• initial experiential assessment of frequency, impact of each

cause code
• refined “operational definitions” and regrouped brainstorm list
• tagged causes to historical data
• refined again

Final list included such things as
• Missed requirements
• Underestimated task
• Over commitment of personnel
• Skills mismatch
• Tools unavailable
• EV Method problem
• Planned work not performed
• External
• Other

Cause Codes

Direct Cause vs.
Root Cause

Causes resolved in-
process vs. causes
that affect final
performance

© 2003 by Carnegie Mellon University Version 1.0 page 96

Carnegie Mellon
Software Engineering Institute

Four High-Level Processes that
Influence Final Performance

 Technical Processes
-Design
-Implement
-Formal Test
-Release

 Project Monitoring and Control
-Measurement
-Quality Assurance
-Peer Review

Organizational Management
-Workload Agreements
-Resource Allocation
-Funding
-Training

 Project Management
-Workload Proposal
-Planning
-Requirements Management
-Configuration Management
-Decision Analysis and Resolution
-Training

Cause Codes were mapped to these processes

© 2003 by Carnegie Mellon University Version 1.0 page 97

Carnegie Mellon
Software Engineering Institute

Prioritizing the Causes
External

Underestimated TasksTools

EV Method

Algorithms and Assumptions
• frequency & impact of
occurrences – and which
occurrences?

Cause Codes
• Which are resolved in
process?

Sphere of Influence
• internal vs. external
• degree of “process
understanding”
• degree of “process control”

• Pie Chart vs. Pareto?
• Does everyone understand

where the data came from?
• Are the algorithms and

assumptions valid?
• What are the risks?

© 2003 by Carnegie Mellon University Version 1.0 page 98

Carnegie Mellon
Software Engineering Institute

Data Treatments
Project Month Cause Code Variance Repeat?

A 1 4 4
A 2 4 3 Y
A 3 5 7
B 1 2 2
B 2
B 3 4 4
C 1 5 8
C 2
C 3

Cause Code frequency
impact

(average)
frequency x

impact (or sum)
2 1 2 2
4 2 4 8
5 2 7.5 15

Cause Code data may
be summarized by
frequency (f), impact (i),
or f x i.

Usage of the latter
resembles methods
used to evaluate,
mitigate risk

frequency impact
H H
M M
L L

Risk Mitigation Analogy

Might also use median

© 2003 by Carnegie Mellon University Version 1.0 page 99

Carnegie Mellon
Software Engineering Institute

Co-Optimizing Across the
Organization – Internal Causes

EV ProblemsUnexpected
departure

Planned work
not
performed

Asset
availability

Under
estimated
task

Skills
Mismatch

5

Unexpected
departure of
personnel

Missed
Requirements

EV ProblemsUnder
planned
rework

Planned
work not
performed

Missed
requirements

4

Missed
requirements

Under
estimated
Task

Missed
requirements

Missed
requirements

Under
planned
rework

EV Problems3

Under
estimated
Task

Skills
mismatch

Under
planned
rework

EV ProblemsAssets not
available

Tools2

ToolsToolsUnder
estimated
Task

Under
estimated
Task

ToolsUnder
estimated
Task

1

Organization
Slice 2 Effort

Organization
Slice 2

Schedule

Organization
Slice 1 Effort

Organization
Slice 1

Schedule

EffortScheduleImpact
(from
Pareto)

© 2003 by Carnegie Mellon University Version 1.0 page 100

Carnegie Mellon
Software Engineering Institute

In-process data as leading indicator

In-process data

freq impact f x i

Join the views of completed project performance
and in-process performance.

Since “cause categories” differ between the data
sets, the first iteration is not trivial

internal/external
categories

median
contribution toward
total effort (cost)

variance

of
projects
reporting

median
contribution toward

total schedule
variance

of
projects
reporting

internal project -30.83% 7 -34.32% 4

internal organization,
outside project -1.25% 5 -73.77% 3
external, reqt -22.48% 10 -20.20% 10
external, sched 0.00% 15 -98.36% 17

© 2003 by Carnegie Mellon University Version 1.0 page 101

Carnegie Mellon
Software Engineering Institute

SMART Schedule Variance Goal

Reduce the total variance by decreasing the variance of
the top 3 internal causes by 50% in 1 year

Reduce the impact of external causes by 50%

Indicators:
• Trend for each cause independently
• Trend for total variance

Will focus on these causes
give us bottom line results?

© 2003 by Carnegie Mellon University Version 1.0 page 102

Carnegie Mellon
Software Engineering Institute

Schedule Variance Root Cause 1
Cause Code: Underestimated tasks

Process: Project Management

Subprocesses: Planning
• Establish requirements
• Define project process
• Perform detailed planning

Requirements Management

As subprocesses are explored, process mapping techniques
may be used with (or based on) ETVX diagrams

© 2003 by Carnegie Mellon University Version 1.0 page 103

Carnegie Mellon
Software Engineering Institute

Schedule Variance Root Cause 2
Root Causes of Common Cause Variation
• Inexperience in Estimation process
• Flawed resource allocation.
• Inexperience in product (system) for

estimator
• Requirements not understood

Root causes of Special Cause Variation
• Too much multitasking
• Budget issues

A list of possible countermeasures was
developed

Pros/Cons of doing
this retrospectively
vs. real time

What is needed
before executing the
countermeasures?

Could the “special
causes” also be
“common causes”?

© 2003 by Carnegie Mellon University Version 1.0 page 104

Carnegie Mellon
Software Engineering Institute

Putting it all Together

Dashboard to monitor “the whole picture”
• customer satisfaction
• defects
• effort and schedule variance

Management by Fact* to monitor improvement efforts
• effort variance reduction
• schedule variance reduction
• measurement quality improvement

Reference process documentation
and project management principles
 in use.

*Tooltip for Management by Fact (MBF) in the Addendum

Who uses the
dashboards
and MBFs?

© 2003 by Carnegie Mellon University Version 1.0 page 105

Carnegie Mellon
Software Engineering Institute

Notional Management by Fact (MBF)
Reduce the total schedule variance by decreasing the
variance of the top 3 internal causes by 50% in 1 year.

Total variance w/
mean comparison

Variance for top 3 causes:
• Underestimated Tasks
• EV Method Problem
• Missed Requirements

Prioritization &
Root Cause

• Inexperience
• Resource Allocation
• Requirements not

understood
• ….

Counter Measures

First: Gather realtime data and
verify “data archaeology”
Then:
•….
•…

Impact, Capability

In total, these
countermeasures will
remove 15% of typical
variance.
(as possible, list impact of
each countermeasure)

0

5

10

15

20

25

30

1 2 3 4 5Month

P
er

ce
nt

 S
ch

ed
ul

e
V

ar
ia

nc
e

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5Month

P
er

ce
n

t
S

ch
ed

u
le

 V
ar

ia
n

ce

Cause 1
Cause 2
Cause 3

Still needed: Relate in process and completed project data

© 2003 by Carnegie Mellon University Version 1.0 page 106

Carnegie Mellon
Software Engineering Institute

Notional Dashboard
Earned Value Data
In-process data:
• monthly schedule index,
cost index by project
milestones

%
 c

os
t

va
r

-100

-75

-50

-25

0

25

50

75

100

125

150

1: oct-01 2: nov-01 3: dec-01 4: jan-02 5: feb-02 6: mar-027: apr-028: may-029: jun-02

month label

Defect Data: Tally of Field Defects

Customer
Satisfaction

Return on
Investment

Completed projects data:
• control chart
• % outside spec
• contribution of internal
causes to completed project
variance

Measurement
Quality

ROI

Effort

Completeness
Accuracy
Procedural Adherence

Other possible inclusions:
• Engineering process procedural adherence (as a leading
indicator for EV, defect and measurement quality performance)

0 5 1 0 1 5 2 0 2 5 3 0 3 5

-1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

.

L CL = -9 3.86

C L = -3 .74 6

U CL = 8 6.3 7

M
o

vi
n

g
R

an
ge

P er ce nt va ria n ce --E f fo rt (O ct 93 thru M a r02)
Co m plete d P rojec ts

In
di

vi
du

al
s

S ub grou p N o .
0 5 1 0 1 5 2 0 2 5 3 0 3 5

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

C L =3 3 .8 8

U C L = 1 1 0 .7

0 5 1 0 1 5 2 0 2 5 3 0 3 5

-1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

0 5 1 0 1 5 2 0 2 5 3 0 3 5

-1 0 0

- 8 0

- 6 0

- 4 0

- 2 0

0

2 0

4 0

6 0

8 0

.

L CL = -9 3.86

C L = -3 .74 6

U CL = 8 6.3 7

M
o

vi
n

g
R

an
ge

P er ce nt va ria n ce --E f fo rt (O ct 93 thru M a r02)
Co m plete d P rojec ts

In
di

vi
du

al
s

S ub grou p N o .
.

L CL = -9 3.86

C L = -3 .74 6

U CL = 8 6.3 7

M
o

vi
n

g
R

an
ge

P er ce nt va ria n ce --E f fo rt (O ct 93 thru M a r02)
Co m plete d P rojec ts

In
di

vi
du

al
s

S ub grou p N o .
0 5 1 0 1 5 2 0 2 5 3 0 3 5

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

C L =3 3 .8 8

U C L = 1 1 0 .7

“return” = variance
reduction translated into $$

Note: In-process profiles to be shown on “group level”
dashboards

© 2003 by Carnegie Mellon University Version 1.0 page 107

Carnegie Mellon
Software Engineering Institute

Organization Specific Process

Select
Business Goal

(Customer
Satisfaction)

Gather
Data

Analyze Data
Prioritize

Issues

Identify
Possible
Causes

(Brainstorm)

Perform Causal
Analysis (OPP)

Prioritize
Actual
Causes

Identify
Potential
Solutions

Develop
Action Plan

Implement
Improvement

Identified
Thresholds

Business Objective
Specs
Performance Thresholds

•Project Performance
•Measures Quality
•SPI Implementation

•Snapshot (1st Iteration Baseline)
•Issues (Validity of data, Quality of
Data, Variance (performance)

No “Issues”Establish capability, models, etc.

Start subprocess
selection

Draft Improvement
Goal (SMART) or
Identify focus area

Improvements

Gather Data/Analyze Data

Goal Refinement
1st Iteration Final Goal

© 2003 by Carnegie Mellon University Version 1.0 page 108

Carnegie Mellon
Software Engineering Institute

Case Study Summary 1
• Goal: Customer satisfaction via effort, schedule, field defects
• Black Box Process: not explicitly dealt with until root cause
• Right Data:

- in-process data available
- needed to “data mine” for completed data
- some “new data needs” identified

• Data is Right
- multiple iterations to correct some data (is this in slides?)

• Explore/Evaluate
- key to determining need for “data archaeology”
- put field defects into “monitor” mode
- focus on improving effort, schedule variability (or change

specs)
- focus on improving measurement quality
- focus on improving sampling schemes

iterative,
the

“dynamics”
overlap

goals get
SMARTer,

more
quantitative

© 2003 by Carnegie Mellon University Version 1.0 page 109

Carnegie Mellon
Software Engineering Institute

Case Study Summary 2
• Explore/Evaluate continued

- extent of variability characterized
- some decomposition conducted to distinguish

overall variability vs. multiple populations
• Data & Process Decomposition

- Sub processes of interest selected based on pareto
analysis of “cause codes

• Root Cause Analysis:
- many direct causes identified
- separating common and special causes of variability
- we’re getting there….

decomposition
starts in “initial
exploration”

© 2003 by Carnegie Mellon University Version 1.0 page 110

Carnegie Mellon
Software Engineering Institute

Case Study Summary - Tools Used

Statistical
Controls:
• Control Charts
• Time Series
methods

Non-Statistical
Controls:
• Procedural
adherence
• Performance
Mgmt
• Preventive
activities

Design of
Experiments
Modeling

Tolerancing
Robust Design

Systems
Thinking
Decision &
Risk Analysis

7 Basic Tools
Cause & Effect
Diagrams,
Matrix
Failure Modes &
Effects Analysis
Statistical
Inference
Reliability Analysis
Root Cause
Analysis
4 Whats
5 Whys
Hypothesis Test
ANOVA

Defect
Metrics
Data
Collection
Methods
Sampling
Techniques
Measurement
Sys. Evaluation
Quality of
Data

Define
Benchmark
Baseline
Contract/Charter
Kano Model
Voice of the
Customer
Voice of the
Business
Quality Function
Deployment
Process Flow
Map
Project
Management
“Management
by Fact”

Measure Analyze Improve Control

adapted
technique for

impact
evaluation

bold = tool used

anticipate future
use for these
improvement

efforts

control charts for limited analysis NOT as control mech.

© 2003 by Carnegie Mellon University Version 1.0 page 111

Carnegie Mellon
Software Engineering Institute

Summary – Key Points
Show me the data! Follow the data!

Couple data analysis with your knowledge of the process.

If your number-crunching is not adding value, then STOP!
• Have a goal: a monitoring goal, an improvement goal

This isn’t that hard.
• Slow down, think about your process and proceed

methodically

But it isn’t that easy either. (If it were, we’d all be out of a job).
• Don’t be afraid to explore your data, to pursue your ideas.

Use your goals and your data as your guides.

You can get yourself into a chicken-and-egg argument with data.
• Sometimes, you need to just dive in with what you have.

© 2003 by Carnegie Mellon University Version 1.0 page 112

Carnegie Mellon
Software Engineering Institute

Contact Information
Bill Florac
Software Engineering Institute
Software Engineering Measurement and Analysis
Email: waf@sei.cmu.edu
434-978-7780

Jeannine Siviy
Software Engineering Institute
Measurement & Analysis Initiative
Email: jmsiviy@sei.cmu.edu
412-268-7994

Contact us for a copy of the slides.
Or, leave a business card with Jeannine or Bill.
Also, they will be posted on the SEMA web pages
http://www.sei.cmu.edu/sema

© 2003 by Carnegie Mellon University Version 1.0 page 113

Carnegie Mellon
Software Engineering Institute

References
Note: URL’s subject to change without notice

[ASA 01] American Statistical Association, Quality & Productivity Section, Enabling Broad
Application of Statistical Thinking, http://web.utk.edu/~asaqp/thinking.html, 2001

[ASQ 00] ASQ Statistics Division, Improving Performance Through Statistical Thinking,
Milwaukee: ASQ Quality Press, 2000. H1060

[Deming] Deming, W. Edwards, Out of the Crisis. Cambridge, Mass.: Massachusetts Institute of
Technology, Center for Advanced Engineering, 1986

[Wheeler 92] Wheeler, Donald, and David S. Chambers, Understanding Statistical Process Control,
SPC Press, 1992

© 2003 by Carnegie Mellon University Version 1.0 page 114

Carnegie Mellon
Software Engineering Institute

Additional Reading
References on statistics and analytical tools (URL’s subject to change without notice)

General Statistics and Tools

Davis, Wallace III, Using Corrective Action to Make Matters Worse, Quality Progress, October
2000

Gonick, Larry and Smith, Woollcott, The Cartoon Guide to Statistics, HarperPerennial,1993

The Memory Jogger, Goal/QPC, http://www.goalqpc.com

Wheeler, Donald, J. Understanding Variation – The Key to Managing Chaos, SPC Press, 1993

Statistical Process Control

AT&T / Western Electric Co., Statistical Quality Control Handbook, Delmar Printing Company

Chrysler, Ford, General Motors Corp., Statistical Process Control – SPC, A.I.A.G. 1995

Florac, William A., and Anita D. Carleton, Measuring the Software Process, Addison-Wesley,
1999

Wheeler, Donald, and David S. Chambers, Understanding Statistical Process Control, SPC Press,
1992

Wheeler, Donald and Polling, Sheila, Building Continual Improvement, SPC Press, 1998

Bayesian Modeling:

Fenton, Norman and Martin Neil, Software Metrics: Roadmap, International Conference on
Software Engineering, 2000, available at http://www.softwaresystems.org/future.html

© 2003 by Carnegie Mellon University Version 1.0 page 115

Carnegie Mellon
Software Engineering Institute

Addenda
Additional vignettes

Tool tips

© 2003 by Carnegie Mellon University Version 1.0 page 116

Carnegie Mellon
Software Engineering Institute

Example of an Aid
for Operational
Definitions using
Orthogonal
Classification

P ro b le m S ta tu s In c lu d e E x c lu d e V a lu e C o u n t A r ra y C o u n t

O p e n ✔ ✔

R e c o g n iz e d ✔

E v a lu a te d ✔

R e s o lv e d ✔

C lo s e d ✔ ✔

P ro b le m T y p e In c lu d e E x c lu d e V a lu e C o u n t A rr a y C o u n t

S o f tw a re d e fe c t
R e q u ire m e n ts d e fe c t ✔ ✔

D e s ig n d e fe c t ✔ ✔

C o d e d e fe c t ✔ ✔

O p e ra tio n a l d o c u m e n t d e fe c t ✔ ✔

T e s t c a s e d e fe c t ✔

O th e r w o rk p ro d u c t d e fe c t ✔

O th e r p ro b le m s
H a rd w a re p ro b le m ✔

O p e ra tin g s ys te m p ro b le m ✔

U s e r m is ta k e ✔

O p e ra tio n s m is ta k e ✔

N e w re q u ire m e n t /e n h a n c e m e n t ✔

U n d e te rm in e d
N o t re p e a ta b le /C a u s e u n k n o w n ✔

V a lu e n o t id e n t if ie d ✔

U n iq u e n e s s In c lu d e E x c lu d e V a lu e C o u n t A rr a y C o u n t

O r ig in a l ✔

D u p lic a te ✔ ✔

V a lu e n o t id e n t if ie d ✔

C r it ic a l ity In c lu d e E x c lu d e V a lu e C o u n t A rr a y C o u n t

1 s t le v e l (m o s t c r it ic a l) ✔ ✔

2 n d le v e l ✔ ✔

3 rd le v e l ✔ ✔

4 th le v e l ✔ ✔

5 th le v e l ✔ ✔

V a lu e n o t id e n t if ie d ✔

U rg e n c y In c lu d e E x c lu d e V a lu e C o u n t A rr a y C o u n t

1 s t (m o s t u rg e n t) ✔

2 n d ✔

3 rd ✔

4 th ✔

V a lu e n o t id e n t if ie d ✔

Reference
Page 33

© 2003 by Carnegie Mellon University Version 1.0 page 117

Carnegie Mellon
Software Engineering Institute

Compliance
Issues

May be basis for
assignable causes

Compliance Issues Things to Examine When Seeking
Reasons for Noncompliance

Adherence to the process awareness and understanding of the
process

existence of explicit standards

adequate and effective training

appropriate and adequate tools

conflicting or excessively aggressive
goals or schedules

Fitness and use of
people, tools, technology,
and procedures

availability of qualified people, tools,
and technology

experience

education

training

assimilation

Fitness and use of
support systems

availability

capacity

responsiveness

reliability

Organizational factors lack of management support

personnel turnover

organizational changes

relocation

downsizing

disruptive personnel

morale problems

© 2003 by Carnegie Mellon University Version 1.0 page 118

Carnegie Mellon
Software Engineering Institute

Initial Control Chart of Inspection
Package Review Rate (SLOC/Prep-Hr)

Assignable
causes due to:

• Erroneous and
Missing Data

• Multiple Cause
Systems (six
components
each with own
development
team)

0

500

1000

1500

2000

2500

0 5 10 15 20 25

.

LCL=-437.7

CL=119.2

UCL=676.1

M
ov

in
g

R
an

ge
 S

LO
C

/ P
re

p-
H

r

Inspection Sequence Number

0

500

1000

1500

2000

0 5 10 15 20 25

CL=209.4

UCL=684.1

Inspection Package Review Rate
All Product Components

© 2003 by Carnegie Mellon University Version 1.0 page 119

Carnegie Mellon
Software Engineering Institute

Inspection Package Review Rate
for Component A

0 5 10 15 20 25

0

100

200

300

400

.

LCL= 0

CL=47.3

UCL=170.5

M
ov

in
g

R
an

ge
S

LO
C

/P
re

p-
H

ou
r

Inspection Sequence Number.

0 5 10 15 20 25
0

100

200

300

400

CL=46.33

UCL=151.4

Component A

Inspection Package Review Rate
Re-analyzed data

• Data errors
eliminated
• Consider single
major cause system
at a time
• Control chart for
one component
• Several assignable
causes apparent

© 2003 by Carnegie Mellon University Version 1.0 page 120

Carnegie Mellon
Software Engineering Institute

Component A Review Rate

S
L

O
C

/In
sp

ec
ti

o
n

-H
r

Investigation resulted
in removal of separate
cause systems included
in inspection packages:

• data tables
• lists
• arrays
• different review
process

0 5 10 15 20 25

0

100

200

300

400

LCL= 0

CL=47.3

UCL=168.2

Inspection Sequence Number

X

X

X

X
X

X

Inspection Package Review Rate
Component A

© 2003 by Carnegie Mellon University Version 1.0 page 121

Carnegie Mellon
Software Engineering Institute

Component A Revision

0 5 10 15 20

0

20

40

60

80

100

LCL= 0

CL=26.31

UCL=66.69

Inspection Sequence Number.

 S
LO

C
/ I

ns
pe

ct
io

n-
H

r

Component A

Process Instability:
Apparent shift of
process performance
after #15

Leads to investigation
of changes in process
cause systems

© 2003 by Carnegie Mellon University Version 1.0 page 122

Carnegie Mellon
Software Engineering Institute

Cause-and-Effect Relationships

0 200 400 600 800 1000

0

100

200

300

400

Y=14.68315+0.22702 x

 CORRELATION
 LINEAR 0.77
 EXPONENTIAL (2) 0.86
 EXPONENTIAL (3) 0.86

ModSloc

S
lo

c
p

er
 P

re
p

H
r(

n
)

Inspection review rate with increase in SLOC

© 2003 by Carnegie Mellon University Version 1.0 page 123

Carnegie Mellon
Software Engineering Institute

Component A Review Rate

Inspection Package Size (New and Changed SLOC)

In
sp

ec
tio

n
R

ev
ie

w
 R

at
e

(S
LO

C
/ In

sp
ec

t io
n-

H
r)

0

10

20

30

40

50

60

70

80

90

100

3 4 6 7

14 14 15 15 17 17 20 22 24 51 58 75 86 86 90 13
0

18
5

18
8

Amount of SLOC in review package is key driver of review time spent

Distribution of review rates by SLOC size

© 2003 by Carnegie Mellon University Version 1.0 page 124

Carnegie Mellon
Software Engineering Institute

Component A Review Rate

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
LCL= 0

CL=61.9

UCL=154.5

Component A: Package Size > 60 SLOC

 S
LO

C
/In

sp
ec

tio
n-

H
r

7

LCL= 0

CL=10.7

UCL=29.5

Component A: Package Size < 60 SLOC

0
5

10
15
20
25

 S
LO

C
/ I

ns
pe

ct
io

n-
H

r

2 4 6 8 10 12 14 16

Inspection Sequence Number

Inspection Sequence Number

Replot data using two
charts:
• Rates for Inspection
<60 SLOC
• Rates for Inspection
>60 SLOC

Indicates two processes
in operation depending
on size of Inspection
package

Establish Trial Limits for
each subprocess

© 2003 by Carnegie Mellon University Version 1.0 page 125

Carnegie Mellon
Software Engineering Institute

0

10

20

30

40

50

0 5 10 15 20 25 30
LCL = 0

CL=10.71

UCL=29.48

 S
LO

C
/ I

ns
pe

ct
io

n-
H

r

Component A: Package Size < 60 SLOC

Inspection Sequence Number.

Inspection Sequence Number.
0 2 4 6 8 10 12 14 16 18

0

100

200

300

400

500

LCL= 0
CL=61.95

UCL=154.5

Component A: Package Size > 60 SLOC

 S
LO

C
/ I

ns
pe

ct
io

n-
H

r
Component A Review Rate

Additional observations
identify more assignable
causes

Investigation determines
that assignable cause
observations from
re-inspection process

© 2003 by Carnegie Mellon University Version 1.0 page 126

Carnegie Mellon
Software Engineering Institute

X

X

X
X

X X
X

X

X X

X

XX

0

10

20

30

40

50

0 5 10 15 20 25 30
LCL = 0

CL=10.71

UCL=29.48

 S
LO

C
/ I

ns
pe

ct
io

n-
H

r

Component A: Package Size < 60 SLOC

Inspection Sequence Number.

Inspection Sequence Number.
0 2 4 6 8 10 12 14 16 18

0

100

200

300

400

500

LCL= 0
CL=61.95

UCL=154.5

Component A: Package Size > 60 SLOC

 S
LO

C
/ I

ns
pe

ct
io

n-
H

r
Component A Review Rate

All re-inspection
data identified and
removed from
control chart since
they represent a
different process
(different cause
system)

© 2003 by Carnegie Mellon University Version 1.0 page 127

Carnegie Mellon
Software Engineering Institute

Component A Review Rate

0 5 10 15 20 25
0
5

10
15
20
25

LCL=0

CL=10.71

UCL=29.48

Component A: Package Size < 60 SLOC

 S
LO

C
/ P

re
p-

H
r

Inspection Sequence Number.

Component A: Package Size > 60 SLOC

0
20
40
60
80

100
120
140

0 1 2 3 4 5 6 7 8 9 10
LCL= 0

CL=61.95

UCL=154.5

 S
LO

C
/ P

re
p-

H
r

Inspection Sequence Number.

Charts plotted
with remaining
data (single cause
system)

Additional data
points reinforce
trial limits
hypothesis

© 2003 by Carnegie Mellon University Version 1.0 page 128

Carnegie Mellon
Software Engineering Institute

Component A Review Rate
Analysis summary:
• Inspection process consists of several (3)
undocumented subprocesses
• Review rate appears to be stable within two categories
(< and > 60 SLOC)
• Inspection packages of 60 SLOC or more reviewed
about 6X faster than those with <60 SLOC

Key questions requiring more study:
• Why difference in review rates?
• Is there a difference in effectiveness (rate of escaped
defects)?
• Do other components behave similarly?
• How do rates compare from release to release?

© 2003 by Carnegie Mellon University Version 1.0 page 129

Carnegie Mellon
Software Engineering Institute

Tool Tips Part 1: The Basic Tools

Overview (description, procedure, tips, examples) for
• run charts
• spc charts
• boxplots

- including pareto boxes
• scatter plots
• histograms, distributions and capability

- twist: rayleigh, weibull distributions
• bar charts
• pareto charts
• cause&effect diagram

- including cause & effect matrix

© 2003 by Carnegie Mellon University Version 1.0 page 130

Carnegie Mellon
Software Engineering Institute

Tooltip: 7 Basic Tools

Description
• Fundamental data plotting and diagramming tools

- Cause & Effect Diagram
- Histogram
- Scatter Plot
- Run Chart
- Flow Chart
- Brainstorming
- Pareto Chart

• The list varies with source. Alternatives include
- Statistical Process Control Charts
- Descriptive Statistics (mean, median and so on)
- Check Sheets

© 2003 by Carnegie Mellon University Version 1.0 page 131

Carnegie Mellon
Software Engineering Institute

7 Basic Tools: Usage

Plot trends over time

Examine relationships among measures

Explore cause-effect relationships

Prioritize issues

Determine stability and capability of processes

© 2003 by Carnegie Mellon University Version 1.0 page 132

Carnegie Mellon
Software Engineering Institute

7 Basic Tools: Chart Examples 1
Defects Removed By Type

0
10
20
30
40
50
60
70
80
90

20 40 80 50 10 100 30 60 70 90

Defect Type Codes

Q
u

an
ti

ty

Mean Time To Repair

0.00

20.00

40.00

60.00

80.00

100.00

1 2 3 4 5 6 7 8 9 10

Product

T
im

e
(m

in
u

te
s)

Removed in test

Injected in Design

Pareto Chart

Run Chart

© 2003 by Carnegie Mellon University Version 1.0 page 133

Carnegie Mellon
Software Engineering Institute

7 Basic Tools: Chart Examples 2

Scatter Plot

Histogram

34 36 38 40 42 44 46 48 50 52 54 56
0
2
4
6
8

10
12
14
16
18
20

N
um

be
r

of
 D

ay
s

Product-Service Staff Hours

Development Effort (person
months) vs. Size (KSLOC)

0

100

200

300

400

500

0 10 20 30 40 50 60 70

Size (thousands of executable source lines)

E
ff

o
rt

 (
p

er
so

n
 m

o
n

th
s)

© 2003 by Carnegie Mellon University Version 1.0 page 134

Carnegie Mellon
Software Engineering Institute

Software
not
required
reliability

 Methods Environment

 Management People
Minimum

application
experience

No test specialists

No formal inspection
process

No formal defect
tracking mechanism

Test beds to not match
user configuration

No risk management

Inadequate test
resources

Unrealistic
completion date

7 Basic Tools: Cause & Effect

[Westfall]

Traditional diagram

Variation

Problem Process

Subcause A1 Cause A

 Process

Cause C

Cau
se

 B

Cau
se

 D

Subcause B1

Subcause C1

Subcause C2

Subcause D1

Subcause D2

Sub
su

bc
au

se

 A
1.

1

Sub
su

bc
au

se
 D

2.
1

© 2003 by Carnegie Mellon University Version 1.0 page 135

Carnegie Mellon
Software Engineering Institute

7 Basic Tools: Chart Variations

Box & Whisker Plot
for assessment data

CMMI BENCHMARK
SEI Level 3

0

10

20

30

40

50

60

70

80

90

100

R
eq

ui
re

m
en

ts

D
ev

el
op

m
en

t

Te
ch

ni
ca

l

S
ol

ut
io

n

P
ro

du
ct

In
te

gr
at

io
n

V
er

ifi
ca

tio
n

V
al

id
at

io
n

O
rg

an
iz

at
io

n

P
ro

ce
ss

F
oc

us

O
rg

an
iz

at
io

na
l

P
ro

ce
ss

D
ef

in
iti

on

O
rg

an
iz

at
io

na
l

T
ra

in
in

g

In
te

gr
at

ed

P
ro

je
ct

M
an

ag
em

en
t

R
is

k

M
an

ag
em

en
t

D
ec

is
io

n

A
na

ly
si

s
&

R
es

ol
ut

io
n

x

90th percentile
75th percentile
median: 50th percentile
25th percentile
10th percentile

mean

© 2003 by Carnegie Mellon University Version 1.0 page 136

Carnegie Mellon
Software Engineering Institute

7 Basic Tools: Chart Variations

Boxplot variations:
• cost and schedule variance over time to show

organizational average and also variability
• prioritized features for a new process technology rollout:

a combination “pareto-boxplot”

1

2

3

4

5

potential (specific) process features

N
ee

d
s

ra
ti

n
g

© 2003 by Carnegie Mellon University Version 1.0 page 137

Carnegie Mellon
Software Engineering Institute

Tool Tip: Run Charts

Description
• Time series plot that can be used to examine data

quickly and informally for trends or other patterns that
occur over time.

Tips
• Run charts are not control charts - don’t over-interpret

them.
• If observations are not all similarly spaced in time,

there may be more than one process influencing what
appears to be a single run.

© 2003 by Carnegie Mellon University Version 1.0 page 138

Carnegie Mellon
Software Engineering Institute

Assumptions
• ordered by time
• single underlying process
• consistent operational definitions

Run Charts: Example

Observation Number

0 2 4 6 8 10 12 14 16
-4
0
4
8
12
16

Observed
Value

Time

© 2003 by Carnegie Mellon University Version 1.0 page 139

Carnegie Mellon
Software Engineering Institute

Tool Tip: Statistical Process
Control (SPC) Charts
Description
• run chart with statistical limits

Usage
• let you know what your processes can do, so that you can

set achievable goals.
• provide the evidence of stability that justifies predicting

process performance.
• separate signal from noise, so that you can recognize a

process change when it occurs.
• distinguishes common cause variation from special cause

variation
• point you to fixable problems and to potential process

improvements

© 2003 by Carnegie Mellon University Version 1.0 page 140

Carnegie Mellon
Software Engineering Institute

Control Chart Basics

Lower Control Limit
(LCL)

Upper Control Limit
(UCL)

Specification
Limits

Limits
Control Limits Determined by Process Performance Measurements

(Voice of the process)

Specification Limits Set by customer, engineer, etc.
(Voice of the customer)

Event Time or Sequence

Mean or Center Line (CL)

CL + 3σσσσ

CL - 3σσσσ

© 2003 by Carnegie Mellon University Version 1.0 page 141

Carnegie Mellon
Software Engineering Institute

SPC: Tips
Reacting to Common Cause Variation as if it were Special Cause
Variation cannot improve the process and will result in increased
variability.

Check your data distributions!
• Defect counts are never negative and may not be normally

distributed.

Set specification limits based on statistics, engineering
knowledge and risk of escaping defects.

Implement charts “in the field” only when you have corrective
action guidelines. Otherwise, work the charts offline.

Always look at the average (or individual) and range charts!

© 2003 by Carnegie Mellon University Version 1.0 page 142

Carnegie Mellon
Software Engineering Institute

SPC: Example

0 5 10 15 20 25 30
8

12

16

20

24

28

32

LCL = 8.49

CL = 20.04

UCL = 31.6

Week of System Test

0 5 10 15 20 25 30
0
2

4
6
8
10
12

14

CL = 4.35

UCL = 14.2

Moving
Range

Number of
Unresolved

Problem
Reports

© 2003 by Carnegie Mellon University Version 1.0 page 143

Carnegie Mellon
Software Engineering Institute

SPC: Rules for Detecting
Process Instabilities

TEST 3:
4 out of 5
signals in
zone B

TEST 1:
Single point outside of zone C

TEST 2:
2 out of three beyond zone B

TEST 4:
8 successive
points on
same side of
centerline

0 5 10 15 20 25

-20

-10

0

10

20

30

40

50

60

.

LCL

CL

UCL

In
di

vi
du

al
s

Subgroup No.

Zone A

Zone A

Zone B

Zone C

Zone B

Zone C

© 2003 by Carnegie Mellon University Version 1.0 page 144

Carnegie Mellon
Software Engineering Institute

SPC: Anomalous Patterns
Rapid Shift in Level

Unstable Mixture

Stratification Trends

Cycles Pattern Bunching or Grouping

© 2003 by Carnegie Mellon University Version 1.0 page 145

Carnegie Mellon
Software Engineering Institute

Tooltip: Scatter Plots

Description
• Display empirically observed relationships between

two measures.

Usage
• A pattern in the plotted points may suggest that the

two measures are associated.
• When the conditions warrant, scatter diagrams are

natural precursors to regression analyses.
• Scatter diagrams are rarely used as the only means of

characterizing the relationship between two
measures.

• Does not predict cause and effect relationships

© 2003 by Carnegie Mellon University Version 1.0 page 146

Carnegie Mellon
Software Engineering Institute

Scatter Plot: Example with Line

Y=2.08112+0.00435 x

0 200 400 600 800 1000 1200 1400 1600

0

2

4

6

8

10

12

14

16

sloc

Inspection Effort versus Inspected Sloc
ef

fo
rt

R = 0.45031

R-Squared = 0.20278

R = Correlation Coefficient

R-Squared = Fraction of variability explained by the model

© 2003 by Carnegie Mellon University Version 1.0 page 147

Carnegie Mellon
Software Engineering Institute

Tooltip: Histograms

Description:
• Display the empirically observed distribution for

values of a measure.
• Show the frequency of each value and the range of

values observed.

Usage:
• Inappropriate unless the measure can be treated as a

continuous scale.

© 2003 by Carnegie Mellon University Version 1.0 page 148

Carnegie Mellon
Software Engineering Institute

Histograms - Examples

34 36 38 40 42 44 46 48 50 52 54 56
0
2
4
6
8

10
12
14
16
18
20

N
um

be
r

of
 D

ay
s

Product-Service Staff Hours

Time to fix a defect found after development

 Number
of defects

Look for multimodal
distributions

May point to
multiple processes

© 2003 by Carnegie Mellon University Version 1.0 page 149

Carnegie Mellon
Software Engineering Institute

Tooltip: Bar Charts

Description

Usage
• Similar in many ways to histograms
• Do not require that the measure be treated as a

continuous variable.
• Bar charts are much more frequently used than

histograms.

© 2003 by Carnegie Mellon University Version 1.0 page 150

Carnegie Mellon
Software Engineering Institute

Bar Charts: Example

Defect Analysis

0

5

10

15

20

25

30

35

40

45

req’ts
analysis

 design code unit
test

 component
test

 system
test

 customer
use

Software Activity

P
er

ce
nt

 D
ef

ec
ts Injected

Found

Escaped

© 2003 by Carnegie Mellon University Version 1.0 page 151

Carnegie Mellon
Software Engineering Institute

Bar Charts: A Word of Caution

Because they are so flexible, it is easy to get carried
away with bar charts.

Defect Counts by Project and Type

0

5

10

15

20

25

A B C D E F

Project Identifier

N
um

be
r o

f D
ef

ec
ts

Syntax Error

Ambiguous Requirements

Interface Error

Missing Function

Memory

© 2003 by Carnegie Mellon University Version 1.0 page 152

Carnegie Mellon
Software Engineering Institute

Tooltip: Pareto Charts
Description:
• Special form of a bar chart that ranks categories of data in

terms of their amounts, frequency of occurrence, or
economic consequences.

Usage:
• Ranking of problems, causes, or actions, etc., must be

orthogonal
• Interpretation based on the “80/20 rule”

If the 80/20 rule does not apply
• Consider counting a different attribute, while maintaining the

same stratification.
• Consider re-stratifying - use a different classification

scheme.
• Consider a different attribute of the process under study.

© 2003 by Carnegie Mellon University Version 1.0 page 153

Carnegie Mellon
Software Engineering Institute

Pareto Charts: Example
Profile of Defects Found in Product XYZ

0

15

30

45

Syntax Error Ambiguous
Requirements

Interface Error Missing Function Memory

Defect Type

N
um

be
r

of
 D

ef
ec

ts

0%

25%

50%

75%

100%

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

Number of Defects

Cumulative Percentage

© 2003 by Carnegie Mellon University Version 1.0 page 154

Carnegie Mellon
Software Engineering Institute

Tooltip: Cause & Effect Diagrams

Description
*Also called “Fishbone” or “Ishikawa” diagrams)

Usage
• Allow you to probe for, map, and prioritize a set of

factors that are thought to affect a particular process,
problem, or outcome.

• Help elicit and organize information from people who
work within a process and know what might be
causing it to perform the way it does.

© 2003 by Carnegie Mellon University Version 1.0 page 155

Carnegie Mellon
Software Engineering Institute

Cause & Effect Diagram: Tips

You can spend a lot of time discussing what the principal
causes should be (the main branches) if you are not
careful.
• May need to work on the categorization of causes in

advance
• May want to just use generic cause categories like;

Materials, Equipment, Operators, Procedures and
Environment.

© 2003 by Carnegie Mellon University Version 1.0 page 156

Carnegie Mellon
Software Engineering Institute

Cause & Effect Diagram: Example

It takes too
long to
process our
software
change
requests

Resolution ClosureCollection Evaluation

problem reports
not logged in properly

information missing
from problem reports

cannot determine
what needs to be done
to fix the problem

cannot replicate
problem

cannot isolate software
artifact(s) containing
the problem

change control board meets
only once a week

changes decisions
not released in a
timely manner

delays in approving
changes

delays in shipping
changes and releases

must reconfigure
baselines

takes time to
make changes

delays enroute

© 2003 by Carnegie Mellon University Version 1.0 page 157

Carnegie Mellon
Software Engineering Institute

Software
not
required
reliability

 Methods Environment

 Management People
Minimum

application
experience

No test specialists

No formal inspection
process

No formal defect
tracking mechanism

Test beds to not match
user configuration

No risk management

Inadequate test
resources

Unrealistic
completion date

 Basic Tools: Cause & Effect

[Westfall]

Traditional diagram

Variation

Problem Process

Subcause A1 Cause A

 Process

Cause C

Cau
se

 B

Cau
se

 D

Subcause B1

Subcause C1

Subcause C2

Subcause D1

Subcause D2

Sub
su

bc
au

se

 A
1.

1

Sub
su

bc
au

se
 D

2.
1

© 2003 by Carnegie Mellon University Version 1.0 page 158

Carnegie Mellon
Software Engineering Institute

Tool Tip: Cause & Effect Matrix

Description
• method to determine possible causes of variation in the

process and to feed future experimental designs

Purpose
• to organize problem-solving efforts when there are

multiple responses involved
• to prioritize the number of factors to study
• to build team consensus about what is to be studied

[Hexsab 02]

© 2003 by Carnegie Mellon University Version 1.0 page 159

Carnegie Mellon
Software Engineering Institute

Cause & Effect Matrix: Usage

When to use:
• team is overwhelmed with the number of variables affecting

process
• not possible to experiment with all of the variables – need to

narrow down the list
• team is struggling with which factors may have the biggest

impact
• it is not clear how each factor impacts customer requirements

Feeds other tools:
• Failure Mode and Effects Analysis
• Data collection plans
• Experimentation
• Control plans

[Hexsab 02]

© 2003 by Carnegie Mellon University Version 1.0 page 160

Carnegie Mellon
Software Engineering Institute

Cause & Effect Matrix: Terms
Process: The combination of people, equipment, materials, methods
and environment that produce output (product or service). It is a
repeatable sequence of activities with measurable inputs and outputs.

Parameter: A measurable characteristic of a product or process.

Process Parameter: A measurable characteristic of a process that may
impact product performance but may not be measured on the product.
(The “x.”)

End-Product Parameter: A parameter that characterizes the product at
the finished product stage. (The “Big Y.”)

In-Process Product Parameter: A parameter that characterizes the
product prior to the finished product stage. It is measured on the product
upstream and is the result of a process step. (The “little y.”)

Input Variable: An output from other processes. (Neither x’s or y’s.)

[Hexsab 02]

© 2003 by Carnegie Mellon University Version 1.0 page 161

Carnegie Mellon
Software Engineering Institute

Cause & Effect Matrix: Procedure
Identify the y’s from process map.

Rate the y’s on a scale from 1-10.
• Involve the “customers” to determine the ratings.
• Ratings are relative.

List the process steps and all of the x’s from the process map.

Rate the relationship of each x to each y on a 0, 1, 3, 9 scale.
0 = No relationship between x and y
1 = Remote relationship between x and y
3 = Moderate relationship between x and y
9 = Strong relationship between x and y

For each x
• Multiply each relationship rating by the corresponding y rating
• Sum the products

Use the summations to rank and select x’s for future experiments or
focused efforts
[Hexsab 02]

© 2003 by Carnegie Mellon University Version 1.0 page 162

Carnegie Mellon
Software Engineering Institute

Cause & Effect Matrix: Format

Process steps X's X relationship to Y Sum

Y's:

Y ratings:

[Hexsab 02]

© 2003 by Carnegie Mellon University Version 1.0 page 163

Carnegie Mellon
Software Engineering Institute

Tool Tips Part 2: Beyond Basics

Overview (description, procedure, tips, examples) for
• capability
• voice of the customer
• management by fact
• process mapping

© 2003 by Carnegie Mellon University Version 1.0 page 164

Carnegie Mellon
Software Engineering Institute

Tooltip: Process Capability
Description
• When a process is in statistical control with respect to

a given set of attributes, we have a valid basis for
predicting, within limits, how the process will perform
in the future.

Usage
• Addresses predictable performance of a process

under statistical control.
• For a process to be capable, it must meet two criteria:

- The process must be brought into a state of
statistical control for a period of time sufficient to
detect any unusual behavior.

- The capability of the process must meet or exceed
the specifications that have to be satisfied to meet
business or customer requirements.

© 2003 by Carnegie Mellon University Version 1.0 page 165

Carnegie Mellon
Software Engineering Institute

Histogram Reflecting Process
Capability

36 38 40 42 44 46 48 50 52 54
0

2

4

6

Product Service Staff-Hours

F
re

qu
en

cy
 C

ou
nt

LCL= 36.08 UCL=54.04CL= 45.06

Voice of the Process

© 2003 by Carnegie Mellon University Version 1.0 page 166

Carnegie Mellon
Software Engineering Institute

Process Capability vs. Capable
Process

25 30 35 40 45 50 55
0

2

4

6

Product Service Staff-Hours

F
re

qu
en

cy
 C

ou
nt

LCL= 36.08 UCL=54.04CL= 45.06

LSL= 30 USL= 50Target = 40

Voice of the customer

Voice of the Process

© 2003 by Carnegie Mellon University Version 1.0 page 167

Carnegie Mellon
Software Engineering Institute

Tool Tip: Voice of the Client (VOC)

Description
• a method to describe the stated and unstated needs or

requirements of the customer
• can captured in a variety of ways: direct discussion or

interviews, surveys, focus groups, customer
specifications, observation, warranty data, field reports,
complaint logs, etc.

[isixsigma]

© 2003 by Carnegie Mellon University Version 1.0 page 168

Carnegie Mellon
Software Engineering Institute

VOC: Usage
Feeds Quality Function Deployment (QFD)

Risks
• anecdotal, not quantitative
• difficult to get “the right answer”
• humans are PERFECT FILTERS!
• it is very easy to induce bias in VOC

Tips
• use existing information with care – it may be biased or too

narrowly focused
• always use more than one source
• customer visits allow direct discussion and observation
• customer visits allow immediate follow-up questions and

unexpected lines of inquiry

© 2003 by Carnegie Mellon University Version 1.0 page 169

Carnegie Mellon
Software Engineering Institute

VOC Interviews: Procedure 1
• Define the customer

• Select customers to interview

- Always interview more than one

• Plan interview

- Develop a checklist/guideline

- Teams of 3: “Moderator,” “Scribe,” “Observer”

• Conduct interviews

- Customer statements & observations need to be
recorded VERBATIM

- Keep asking “why”

© 2003 by Carnegie Mellon University Version 1.0 page 170

Carnegie Mellon
Software Engineering Institute

VOC Interviews: Procedure 2
Create VOC table.
• Interpret verbatim statements into new meanings.
• Document source of VOC or re-worked VOC.

- “I” if internally changed or generated (by team)
- “E” if externally generated (by customer) or not

changed by team
• Classify each statement as:

- a real need Ł feeds QFD
- a technical solution
- a feature requirement Ł feeds QFD
- not a true need (e.g., cost issue, complaint,

technology, hopes dreams, etc.)
• Quantify, Analyze, Prioritize

© 2003 by Carnegie Mellon University Version 1.0 page 171

Carnegie Mellon
Software Engineering Institute

VOC: Example Table
New process initiative under consideration
• interview statements recorded verbatim and classified
• column added for keyword sorting

Further development
• “interpreted” comments about the organization’s true

goals, the overlap of initiatives (and so on)
• evaluation for common themes
• additional data collection may be needed

Customer comment Interpreted, reworded I/E pe
rc

ep
tio

n,

ex
pe

rie
nc

e,
 c

on
te

xt

ba
rr

ie
r

ro
ot

 is
su

e?

re
su

lts
, s

uc
ce

ss

ne
ed

so
lu

tio
ns

Keyword
for sorting

We are already at maturity level
x, so why do more? E $$$$ $$$$

competing
initiatives

Classification

© 2003 by Carnegie Mellon University Version 1.0 page 172

Carnegie Mellon
Software Engineering Institute

VOC: Analysis

Prioritization
Method

Customer
Time

Preparation
Complexity

Analysis
Complexity

Quality of
Resulting

Prioritization

Number of
customers

needed

Number of
Needs to
Prioritize Recommend

Frequency of
Response short low low low large large NO

Constant Sum medium medium medium medium medium small Yes
Rating short low low medium medium med-large Yes
Simple
Ranking medium low low medium medium small-med Yes
Q-Sort short low low medium medium large Yes
Paired
Comparison long medium high high large small Yes
Regression short medium high high large small-med Yes

© 2003 by Carnegie Mellon University Version 1.0 page 173

Carnegie Mellon
Software Engineering Institute

Tool Tip: Management by Fact (MBF)

Description
• a concise summary of quantified problem statement,

performance history, prioritized root causes and
corresponding countermeasures for the purpose of
data-driven project and process management

Management by Fact
• uses the facts
• eliminates bias
• tightly couples resources and effort to problem-solving

© 2003 by Carnegie Mellon University Version 1.0 page 174

Carnegie Mellon
Software Engineering Institute

MBF: Procedure
Identify and select problem
• use “4 Whats” to help quantify the problem statement
• quantify gap between actual and desired performance

Determine root cause
• separate beliefs from facts
• use “7 Basic Tools”
• use “5 Whys”

Generate potential solutions and select action plan
• Must be measurable/sustainable
• Specific/assignable ownership
• Understand expected results from each action

Implement solutions and evaluate
• Compare data before and after solution
• Document actuals and side effects
• Compare with desired benchmark

© 2003 by Carnegie Mellon University Version 1.0 page 175

Carnegie Mellon
Software Engineering Institute

MBF: 4 Whats
Customer satisfaction scores are too low.
• What is too low?

Compared to best-in-class benchmark of 81%, we are at 63%.
• What is the impact of this gap?

It represents lost revenue and earnings potential?
• What is the correlation between customer satisfaction and

revenue?
Each percent of customer satisfaction translates to 0.25 percent
of market share which equals $100M US revenue.
• What is the lost potential?

Final problem statement:

Customer satisfaction is 18% lower than best-in-class benchmark,
which corresponds to a potential lost revenue of $1.8B US.

© 2003 by Carnegie Mellon University Version 1.0 page 176

Carnegie Mellon
Software Engineering Institute

MBF: 5 Whys
The marble in the Jefferson Memorial was deteriorating.
Why?
The deterioration was due to frequent cleanings with detergent.
 Why?
The detergent was used to clean bird droppings from local
sparrows.
 Why?
The sparrows were attracted by spiders.
 Why?
The spiders were attracted by midges.
 Why?
The midges were attracted by the lights.

Solution: Delay turning on the lights until later at dusk.

© 2003 by Carnegie Mellon University Version 1.0 page 177

Carnegie Mellon
Software Engineering Institute

MBF: Format
FACTUAL STATEMENT OF PROBLEM, PERFORMANCE
TRENDS & OBJECTIVES

Graph of
performance over time

Graph of supportive
or more detailed information

Prioritization &
Root Cause

List of gaps in
performance and true
root cause

Counter Measures &
Activities

List of specific actions, who
has ownership and due date

Impact, Capability

List of expected
benefits and impact of
each countermeasure

© 2003 by Carnegie Mellon University Version 1.0 page 178

Carnegie Mellon
Software Engineering Institute

MBF: Example
Problem Statement

Prioritization & Root Cause Counter Measures & Activities Who When
Expected

Benefit/Impact
Large Quantity of Syntax & Similar defects Clarify type definitions jms $4/30/2001
that are repaired in <10 minutes on avg Improve subcategory data collection jms $4/30/2001
Goal is 50% reduction in time, relative to
historical data

Build a cause & effect diagram to be used for next round of
analysis, improvement planning jms
Increase correction efficiency by seeking all occurrences of
a defect upon the detection of the first occurrence jms $4/30/2001
Increase and log (new) usage of off-line programs to test
small pieces of functionality jms
Create & Use a syntax checklist jms $4/30/2001

"Big Hitter" (>10 minutes) defects involve Time breaks: phase completion & every hour jms $4/30/2001
a variety of errors that escape to testing. Conduct a phase check prior to moving on jms $4/30/2001
Design-injected and Test-removed errors
fall into this category

Increase and log (new) usage of off-line programs to test
small pieces of functionality jms $4/30/2001

Goal is 25% reduction in time, relative to
historical data

Improve subcategory data collection to use for developing a
more directed design review jms $4/30/2001
Build a cause & effect diagram to be used for next round of
analysis, improvement planning jms

Productivity

0

10

20

30

1 2 3 4 5 6 7 8 9 1

Program Number

LO
C

/H
ou

r

Customers A, B and C, representing x% of market share, are facing budget/cost constraints and require a 10% cost reduction in our product line XYZ in
order to continue doing business with us. Baseline data shows that 33% of software development time is spent detecting and correcting defects.

Goal: 21 LOC/hr

About 1/2 of goal.
In normalized
terms, ~1 LOC/hr
increase

About 1/2 of goal.
In normalized
terms, ~1 LOC/hr
increase.

Defect Density

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6 7 8 9 10

Program

D
ef

ec
ts

/K
LO

C

Change in Defect Density

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0
200.0

R- D
es

 R
vw

R- C
od

e

R- C
od

e R
vw

R-
Com

pil
e

R-
Tes

t
Inj

- d
es

ign
Inj

- C
od

e
In

j- T
es

t

D
ef

ec
ts

/K
L

O
C

Pre-
Improve
ment

Post-
Improve
ment

Trend of fix time /
total time has
similar pattern

© 2003 by Carnegie Mellon University Version 1.0 page 179

Carnegie Mellon
Software Engineering Institute

Tool Tip: Process Mapping

Description
• representation of major activities/tasks, subprocesses,

process boundaries, key process inputs, and outputs

INPUTS
(Sources of
Variation)

OUTPUTS
(Measures of
Performance)

• Perform a service
• Produce a Product
• Complete a Task

PROCESS STEP

A blending of
inputs to achieve

the desired
outputs

• People
• Material
• Equipment
• Policies
• Procedures
• Methods
• Environment
• Information

© 2003 by Carnegie Mellon University Version 1.0 page 180

Carnegie Mellon
Software Engineering Institute

Mapping: Usage
Feeds other tools
• Cause and Effects Matrix
• Failure Modes and Effects Analysis (FMEA)
• Control Plan Summary
• Design of Experiments (DOE) planning

Tips for mapping current processes
• Go to the actual place where the process is performed.
• Talk to the actual people involved in the process and get the

real facts.
• Observe and chart the actual process.
• Consider creating “as is” and then “to be” maps.

Reality is invariably different from perception - few processes
work the way we think they do!

© 2003 by Carnegie Mellon University Version 1.0 page 181

Carnegie Mellon
Software Engineering Institute

Process Mapping: Basic Procedure
List inputs and outputs

Identify all steps in the process: value-added and non-
value-added

Show key outputs at each step (process and product)

List key inputs and classify process inputs

Add the operating specifications and process targets
for the controllable and critical inputs

© 2003 by Carnegie Mellon University Version 1.0 page 182

Carnegie Mellon
Software Engineering Institute

Process Mapping: Example

Detect
Defects

Correct
DefectsPlan Trouble-

shoot
!!!! Artifacts to
inspect
#, ! Artifact size
Reviewers
" Data repository

• Defect Log
• Record of plan

• Direct Cause
• Root Cause

• Corrective
Action

!!!! Review Rate
!!!! , " Checklists
#, " Inspection
method, procedure
! Proficiency
! Taxonomy
interpretations

What would you
list?
!!!!Defect attributes
Proficiency
Effort
Tools

What would
you list?
!!!! Correction
action
" Config control
 #, Effort

Inspection

Rework

!!!! Critical Inputs
! Noise

" Standard Procedure
Control Knobs

Inspection process from earlier illustration

© 2003 by Carnegie Mellon University Version 1.0 page 183

Carnegie Mellon
Software Engineering Institute

Process Mapping: Value Map
Identify the process to map

Identify the boundaries

Create input-process-output for the critical processes

Create the process map

Color code each step identifying value
- green = value added
- red = non value added
- yellow = non value added but necessary

• Identify hand-off points, queues, storage, and rework loops
in the process

• Quantitatively measure the map (throughput, cycle time, and
cost)

• Validate map with process owners

© 2003 by Carnegie Mellon University Version 1.0 page 184

Carnegie Mellon
Software Engineering Institute

Value Mapping: Change Request

Request
(Need Identified)

Select
Method/Path

Provide
Additional
Guidance

Gather More
Information

Feedback
Preliminary

Request
Accepted?

Additional
Guidance
Needed?

Yes

No

No

No

Yes
Yes

Initial
Assessment*

Right
Decision?

Forward to
Board

Yes

No

5% Rework

 *Initial Assessment will:
• Determine Impact Assessment
• Identify Stakeholder
• Coordinate with Product/Process Owner
• Perform Impact Analysis

Assessment
Coordination

Validate

non value added
non value added but required
value added

Request
Validated

?

	Data Analysis Dynamics
	Tutorial Outline
	Tutorial Focus
	Section I: Understanding Data
	Process Performance Data
	Getting at the Cause of Variation
	Understanding Variation
	In Other Words…(chart)
	Measurement Data Requires Analysis and Interpretation
	Data Analysis Studies
	Enumerative Studies
	Analytic Studies
	Enumerative vs. Analytic
	Basic Data Analysis Paradigm
	Tips for Good Measures
	Tips for Better Data Analysis
	Tips for Operational Definitions
	Tips for Better Data Analysis
	Tips for Analyzing Data
	Take the Data Deeper
	Tips for Finding and Correcting Assignable Causes
	Methods to Change the Process
	Tips for Changing the Process
	Common Data Risks and Pitfalls
	A Process Improvement Toolkit

	Section II: From Data to Decisions
	Analysis Dynamics
	Identify the Goals
	Identify the Goals: Example
	What if there are no “Business Goals”?
	Black Box Process View
	What is a Process?
	Problem Management Process
	Development Process Map
	Is the Data Right ?
	Is the data right? - Example
	Do I Have the Right Data?
	Initial Evaluation / Exploration
	Exploration Example
	Can I Move Forward?
	Moving Forward
	Moving Forward- Basic Tools
	Moving Forward- Establish Relationships
	Moving Forward- Identify Dominant Factors
	Moving Forward- Determine Extent of Variability
	Moving Forward- Find Assignable Causes
	Moving Forward- Finding Assignable Causes
	Decomposition
	Decompose Data
	Decompose Process Data
	Potential Process Improvement
	Repeat until…..
	Number- Crunching Tools

	Section III: Case Study
	Case Study Overview
	Analysis Dynamics
	Business Objectives (chart)
	Customer Data
	Customer Data - Sample
	Defect Data
	Field Defect Data Baseline
	Earned Value Data
	Completed Project Data Baseline
	Completed Project Data - Decomposed
	Explore, Evaluate (Plot, Plot, Plot)
	In- Process Cost/ Schedule Data Baseline
	In- Process Schedule Variance Boxplot
	Are There Group Differences?
	Are There Project Differences?
	Improving Sampling & Analysis
	Our Improvement Focus
	Can We Address the Goals?
	Data and Process Decomposition
	Cause Codes
	Four High- Level Processes that Influence Final Performance
	Prioritizing the Causes
	Data Treatments
	Co- Optimizing Across the Organization – Internal Causes
	In- process data as leading indicator
	SMART Schedule Variance Goal
	Schedule Variance Root Cause
	Putting it all Together
	Notional Management by Fact (MBF)
	Notional Dashboard
	Organization Specific Process
	Case Study Summary
	Case Study Summary - Tools Used
	Summary – Key Points
	Contact Information
	References
	Additional Reading

	Addenda
	Additional Vignettes
	Compliance Issues
	Initial Control Chart of Inspection Package Review Rate (SLOC/ Prep- Hr)
	Inspection Package Review Rate for Component A
	Component A Review Rate
	Component A Revision
	Cause- and- Effect Relationships
	Component A Review Rate

	Tool Tips Part 1: The Basic Tools
	Tooltip: 7 Basic Tools
	7 Basic Tools: Usage
	7 Basic Tools: Chart Examples
	7 Basic Tools: Cause & Effect
	7 Basic Tools: Chart Variations
	Tool Tip: Run Charts
	Run Charts: Example
	Tool Tip: Statistical Process Control (SPC) Charts
	Control Chart Basics
	SPC: Tips
	SPC: Example
	SPC: Rules for Detecting Process Instabilities
	SPC: Anomalous Patterns
	Initial Control Chart of Inspection Package Review Rate (SLOC/ Prep- Hr)
	Inspection Package Review Rate for Component A
	Control Chart Basics
	Tooltip: Scatter Plots
	Scatter Plot: Example with Line
	Tooltip: Histograms
	Histograms - Examples
	Tooltip: Bar Charts
	Bar Charts: Example
	Bar Charts: A Word of Caution
	Tooltip: Pareto Charts
	Pareto Charts: Example
	Tooltip: Cause & Effect Diagrams
	Cause & Effect Diagram: Tips
	Cause & Effect Diagram: Example
	Basic Tools: Cause & Effect
	Tool Tip: Cause & Effect Matrix
	Cause & Effect Matrix: Usage
	Cause & Effect Matrix: Terms
	Cause & Effect Matrix: Procedure
	Cause & Effect Matrix: Format

	Tool Tips Part 2: Beyond Basics
	Tooltip: Process Capability
	Histogram Reflecting Process Capability
	Process Capability vs. Capable Process
	Tool Tip: Voice of the Client (VOC)
	VOC: Usage
	VOC Interviews: Procedure
	VOC: Example Table
	VOC: Analysis
	Tool Tip: Management by Fact (MBF)
	MBF: Procedure
	MBF: 4 Whats
	MBF: 5 Whys
	MBF: Format
	MBF: Example
	Tool Tip: Process Mapping
	Mapping: Usage
	Process Mapping: Basic Procedure
	Process Mapping: Example
	Process Mapping: Value Map
	Value Mapping: Change Request

