Families Task 1.2 CWD

A Cost Model for Software System Families

Günter Böckle, Klaus Schmid

guenter.boeckle@siemens.com

klaus.schmid@iese.fraunhofer.de

This work is derived from the results of a working group at the Dagstuhl workshop 2003 with the participants Günter Böckle, Siemens AG; Paul Clements, SEI; John McGregor, Clemson University; Drk Muthig, Fraunhofer IESE; Klaus Schmid, Fraunhofer IESE

System Family Transition Economy

Next Close Window

1 2 3 4 5 6 7 8 9 10 11 12 13
Introduction & Problem Description

Problem:
- A manager of an organization shall decide about moving to system family engineering.
- How can the manager determine if such a move makes economical sense in the organization's current state?
- What kind of transition makes most sense?
- What is the most profitable solution?

Goal:
- Provide means to decide whether system family engineering is sufficiently profitable in the particular circumstances of an organization.
Relevance & Expected Benefits

- Many organizations made bad experience with opportunistic reuse: they require a profound economical case for system-family engineering!
- A transition to system-family engineering is even more far-reaching, with many financial and structural consequences!
- Therefore, the cost of a transition to system-family engineering must be determined before starting such a move!
- Using an economic model will provide a ballpark-number for the expected cost and thus save money by showing the right way to go!
- Varying parameters will provide the cost in certain circumstances and scenarios, thus suggesting the best alternative for maximum benefit!
Approach & Expected Results

- Identify the major scenarios that may occur when
 - switching to system-family engineering or
 - extending and evolving a system family or
 - merging system families

- Apply a divide-and-conquer algorithm to partition the model describing the cost into factors that can be easily derived from the organization’s experience and current data

- Determine for each scenario the constituent cost factors according to this algorithm and provide thus a cost model for each of these scenarios

- Provide an easy-to-understand example how to apply the formulas
Seven Concrete Scenarios

- Scenario 1: From s_1 stand-alone systems to 1 system family of s_1 members.
- Scenario 2: No products on the market yet. Compare the case of having one family of s_2 products versus s_2 single products.
- Scenario 3: Like scenario 3, but the organisation does not know the space of all products yet.
- Scenario 4: Merging two or more families.
- Scenario 5: New product – stand-alone or system family member?
- Scenario 6: New system family based on existing ones – how?
- Scenario 7: Cancelling a product.
Cost Model: Determine Cost for Developing n Applications with System-Family Engineering - Four Cost Constituents

1. Adapt the organisation: C_{org}

2. Build the core-asset base: C_{cab}

3. Build product-specific parts: C_{unique}

4. Re-use common parts: C_{reui}

Previous **Next** **Close Window**

1 2 3 4 5 6 7 8 9 10 11 12 13
Central Cost Model

The cost C for developing n applications with system-family engineering:

$$C_{\text{org}} + C_{\text{cab}} + \sum_{i=1}^{n} (C_{\text{unique}}(p_i) + C_{\text{reuse}}(p_i))$$

- C_{org}: Cost for the organisation, e.g. reorganization, process improvement, training
- C_{cab}: Cost for building the core asset base
- C_{unique}: Cost for specific development, without reuse
- C_{reuse}: Cost for reusing a core asset
Applying the Cost Model to the Scenarios

Scenario 1:
From s_1 stand-alone systems to 1 system family of s_1 members

$$C_{org} + C_{cab} + \sum_{i=1}^{s_1} C_{unique}(P_i) + \sum_{i=1}^{s_1} C_{reuse}(P_i)$$

Scenario 2:
Building k_1 systems as part of a family

$$C_{org} + C_{cab} + \sum_{i=1}^{k_1} C_{unique}(P_i) + \sum_{i=1}^{k_1} C_{reuse}(P_i)$$

Scenario 3:
Building k_1 systems plus k_2 new ones as part of a family

$$C_{org} + C_{cab} + \sum_{i=1}^{k_1+k_2} C_{unique}(P_i) + \sum_{i=1}^{k_1+k_2} C_{reuse}(P_i)$$
Applying the Cost Model to the Scenarios

Scenario 4:
Merging 2 families with n_1 and n_2 members, respectively

$$C_{org} + C_{cab} + \sum_{i=1}^{n_1+n_2} C_{unique}(p_i) + \sum_{i=1}^{n_1+n_2} C_{reuse}(p_i)$$

Scenario 5:
Building a product p as part of a system family

$$C_{org} + C_{cab} + C_{unique}(p) + C_{reuse}(p)$$

Scenario 6:
New system family based on n existing ones with n_f products, respectively

$$C_{org} + C_{cab} + \sum_{j=1}^{n} \left(\sum_{i=1}^{n_f} C_{unique}(p_{i,j}) + \sum_{i=1}^{n_f} C_{reuse}(p_{i,j}) \right)$$
Applying the Cost Model to the Scenarios

Scenario 7:
Cancelling a product in a family with sum products

\[
(C_{\text{cal}} + \sum_{i=1}^{\text{sum}} C_{\text{unique}}(p_i) + \sum_{i=1}^{\text{sum}} C_{\text{reuse}}(p_i)) - (C_{\text{cal}} + \sum_{i=1}^{\text{sum}-1} C_{\text{unique}}(p_i) + \sum_{i=1}^{\text{sum}-1} C_{\text{reuse}}(p_i))
\]
Conclusion

- The cost model allows fast, rule-of-thumb estimations of the cost for producing products in a system family
- All relevant system-family scenarios are captured
- The cost model can be used for decisions about switching to system family engineering and for many kinds of cost decisions about product development in system family engineering
- It has been used to determine the return on investment (ROI) for switching to system-family engineering
References