Tri-Service Assessment Initiative Phase 2 Systemic Analysis Results

Conference on the Acquisition of Software Intensive Systems January 28, 2003

> Dr. Robert Charette, ITABHI Corporation John J. McGarry, TACOM-ARDEC Kristen Baldwin, OUSD(AT&L) SIS

Presentation Objectives

- Convey what we have learned through a systemic "Cross Program" analysis of multiple DoD software intensive programs
- Describe and quantify the recurring issues that impact DoD software intensive program performance
- Characterize the identified DoD program performance issues in terms of cause and effect
- Initiate discussion on potential corrective action strategies

Phase 2 Overarching Conclusion

The analysis predicts an increasing gap between what is expected and what is capable of being achieved

Summary Findings

- Software intensive system development issues are still pervasive across DoD programs
- New emerging issues reflect complex, risk-prone acquisition trends. These include:
 - interoperability / family of systems
 - co-dependent systems development
 - "mission resilient", evolutionary system development
 - direct funding Congressional plus-ups
 - expanded contractor acquisition and program management responsibilities
 - acquisition policy easements

What You Need to Know

- The causes of program performance shortfalls are extremely complex - improvement strategies and associated action plans must address this complexity
- As an Enterprise we need to start by re-addressing the performance issues we thought we were already fixing
- The longer we wait the higher the risk

Tri Service Assessment Initiative

Enterprise Manager Insight

Both Activities are Based on an Integrated Assessment Architecture

Systemic Analysis Phases

Phase 1 - Complete July 2001

- Top down analysis approach
- Initial models proof of concepts
- Assessment architecture integration
- Initial data set 10 assessments

Phase 2 - Complete December 2002

- Bottom up analysis approach
- Based on quantification of recurring issues and sequences
- Information driven analysis objectives
- Systemic database
- Extended data set 23 assessments

Phase 3 - Began January 2003

- Predictive issue pattern analysis
- Quantification of projected issue impacts
- Architecture and analysis process improvements
- Comprehensive transition program

Assessment Distribution

Systemic Analysis Process

What Was Counted

- Identified Issues
 - single issues
 - composite issues
 - component issues
- Systemic Sequences
- Systemic Patterns
- Triggers and Symptoms

Systemic Issue Pattern

Basic Analysis

Critical program performance problems

Identified Issues	Relative Occurrence
Process Capability	91 %
Organizational Management	87 %
Requirements Management	87 %
Product Testing	83 %
Program Planning	74 %
Product Quality - Rework	70 %
System Engineering	61 %
Process Compliance	52 %
Program Schedule	48 %
Interoperability	43 %
Decision Making	43 %
Configuration Management	26%

Basic Analysis

Complex issues with multiple interactions across all levels of DoD management

Issue Migration

Sequence Starts - Start Responsibility by Next Responsibility

Basic Analysis

The primary <u>causative</u> performance issues are:

- Process capability shortfalls: the inability of the program team to design, integrate, and implement processes that adequately support the needs of the program
- Requirements development and management shortfalls
- Organizational management and communication
 limitations
- Stakeholder agendas and related program changes
- **Product architecture deficiencies**

Cause and Effect Impacts

- **Process Capability** problems result in:
 - Inadequate Testing
 - Poor Change Management
 - Poor Product Quality
 - Progress Shortfalls
- <u>Requirements Management</u> problems result in:
 - Poor Product Quality
 - Product Rework
 - Progress Shortfalls

• **Organizational and Program Management problems result in:**

- Inadequate Program Planning
- Responsibility Conflicts
- Poor Communications
- Product Rework
- Progress Shortfalls

Basic Analysis

Under pressure, Program Managers make trade-off decisions that impact, in order:

- Development progress
- Product technical performance
- Product quality and rework
- System usability
- Cost

Basic Analysis Summary

- The current DoD program issue profile shows little positive impact from past corrective actions, initiatives, and policy
- The Program Manager and the Development Team must address the majority of the program issues, even if they are caused by enterprise level decisions or behaviors
- Causative issues multiply downstream
- The Program Team creates many of their own performance
 problems
- There are no "single issue" program performance drivers

Directed Analysis

- Software Engineering Process
- Systems Engineering
- Software Testing
- Program Organization and Communication

Software Engineering Process

Analysis Results

- 91% of the assessments had process compliance issues (75% triggers)
- 52% of the assessments had process capability issues (63% triggers)
- Predominant deficiencies: requirements, risk / measurement, testing, systems engineering, change management

Implications

- The performance problem extends beyond developer software process compliance
- False assumption that organizational process compliance equates to required program process capability
- Compliant organizations still have significant performance shortfalls
- Key process concerns:
 - a. focus is too narrow in scope
 - b. impacts of program constraints
 - c. large program team process incompatibilities
 - d. program teams just not good enough

Systems Engineering

Analysis Results

- 61% of the assessments had systems engineering issues (23% triggers)
- 11 of the 16 programs that have requirements issues have SE issues
- 43% of the assessments have interoperability issues (50% triggers)
- Predominant deficiencies: Non-existent SE, lack of SE expertise, poor SE implementation, dispersion of SE responsibility and authority, existing SE inadequate for program requirements

Implications

- Cost overruns, schedule slips and rework will continue to plague programs
- The most technically complex systems have the most systems engineering issues
- Interoperability of systems is in doubt
- Rapid exploitation of new/innovative technology is difficult

Systems Engineering Findings

- DoD programs have significant shortfalls with respect to systems engineering yet this is where most of the identified program issues exist
- "Systems engineering by committee" is both common and ineffective
- Programs continuously face unfunded and unplanned mandates related to family of systems management and interoperability
- Trade off decisions are often extremely constrained

Systems engineering must take a primary and renewed role in today's DoD programs

Software Testing

Analysis Results

- 83% of the assessments had testing related issues (53% triggers)
- Predominant deficiencies: lack of test time, facilities, testing cutbacks, poor test procedures
- 73% of the programs with schedule problems had testing issues
- 80% of the programs with requirements problems had testing issues

Implications

- Overarching testing risk late discovery of defects (94%)
- Most testing issues result in quality shortfalls and rework
- Testing of complex systems is an emerging concern
- Primary causes of testing shortfalls:
 - a. requirements (71%)
 - b. test facilities (71%)
 - c. test process capability (65%)
 - d. schedule constraints (41%)

Program Organization and Communication

Analysis Results

- 87% of the assessments had communications issues (65% triggers)
- Every program with IPT related issues had communications issues
- Predominant deficiencies: unclear roles and responsibilities, delayed decision making, conflicting decisions, proprietary information (all exacerbated by widely dispersed organizational teams and complex organizational structures not suited for traditional management approaches)

Implications

- IPTs appear to create more management issues than they resolve
- Poor implementation of IPTs: proliferation, structure, membership, authority and decision responsibility issues

Systemic Analysis Model

ACQUISITION ENVIRONMENT (Threats, Economy, Technology)

New Solution Strategy Required?

- Past DoD acquisition solutions (strategies, policies, and initiatives) have had only limited success in reversing poor performance trends:
 - Single point solutions
 - Poorly evaluated
 - Focused on symptoms not causes
 - Lacking in implementation guidance
 - Conflicting
 - Volatile
 - Lack insight into solution effectiveness
 - Long lasting impacts and residuals

Key Considerations

- Need to establish performance parameters that can be implemented with success across the life of the program
 - Feasible plan
 - Understood constraints
 - Change tolerance
- Need to improve the capabilities of the development teams
 - Real systems engineering
 - Funded management and technical approaches critical to interoperability
 - Foundational processes

Key Considerations

- Need to ensure that all program stakeholders agree on an integrated strategy for attacking the high priority overarching program issues
 - Congress and enterprise
 - Program team
 - Education and technology infrastructures
- Need to augment recent acquisition policy changes
 with
 - A clear understanding of the complex interactions and constraints that programs are faced with
 - Adequate implementation guidance
 - Directed education

Assessment & Analysis Essentials

- Focus on performance improvement
- Enterprise performance is a composite of project performance
- Use a common architecture for project and systemic evaluation
- Address a wide scope of issues and issue sources
- Risk management and measurement processes are critical
- Flexibility is important typology not taxonomy
- Relate subjective and quantitative information
- Information needs drive the analysis process
- Frequency of occurrence counts are just the first step
- Data integrity data integrity data integrity
- Consistent terminology

Tri-Service Assessment Initiative[™]

Kristen Baldwin OUSD (AT&L) Software Intensive Systems (703) 602-0851 ext. 109 kristen.baldwin@osd.mil