
© 2007 Carnegie Mellon University

Software Architecture Design
with ArchE

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Author Felix Bachmann, Len Bass,
Phil Bianco

Date 03/26/07

2
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Software Engineering Institute

Federally funded Research and
Development Center

Created in 1984

Under contract to
Carnegie Mellon University

Mission: Improve the practice
of software engineering

3
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Introduction

The goal of our work in software architectures is to understand the
mechanics behind creating good architectures and make this
knowledge public.

In collaboration with the Bosch Research and Technology Center in
Pittsburgh (Bosch-RTC) we addressed the question:

Is it possible to codify architectural knowledge in a tool that provides the
right information at the right time to the architect?

The answer is …

4
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Contents

The Architecture Design Problem

• Managing the Universe - Dealing with an infinite number of alternatives

The Architecture Design Solution

• Managing the Imagination - Defining The Requirements

• Managing the Reality - Creating Quality Attribute Models

• Managing the Alternatives - Closing in on the Solution

Improving the Architecture Design Solution

• Managing the Future - Increasing available and codified knowledge

5
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Managing the Universe:
Dealing with an infinite? number of
alternatives

6
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

The Architecture Design Process

An architecture design follows (should, really!) this process:

1. Create a measurable specification of quality attribute requirements that
need to be supported by the architecture

2. Evaluate if the current architecture you have fulfills those requirements

3. If not, make some changes to the architecture to improve and repeat
step 2

4. If yes, Lucky you! You are done.

As simple as this may sound, it creates a huge problem …

7
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

The Dilemma of the Architect – 1

A view of possible architectures

Architecture

Decision

Initial architecture
may look like this

There are many
possibilities to

make the
architecture better

Such as this one
…

or this one …

Architect decides

8
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

The Dilemma of the Architect – 2

A view of possible architectures

And the process
repeats …

Until (hopefully) a
solution is found

Unacceptable Architecture

Acceptable Architecture

Solution!

Decision

9
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

… but there are many
more architectures
that have not been

explored!

The Dilemma of the Architect – 3

A view of possible architectures

Unacceptable Architecture

Acceptable Architecture

Solution!

Decision

… or the project
runs out of time!

… and the perfect
solution might be

there

10
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

The Dilemma of the Architect – 4

The space of possible architectures for even a simple example is huge

It is like finding the needle in a haystack

11
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Approach to the Problem

Designing an architecture efficiently means to quickly navigate through
the vast space of possible architectures.

Some strategies can be used to make it more feasible to actually find a
good solution:

• Reduce the number of possible solutions

• Avoid dead ends, paths that do not lead to a solution

• Use tools to point you in the right direction

12
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Reducing the Possibilities

The quality attributes an architecture has to support determine the
architectural elements with their properties, the connections between
them with their properties.

The functional requirements determine the responsibilities of the
architecture elements and their concrete interfaces

Software architectures mainly depend on
quality attribute requirements

It is sufficient to focus on quality attributes
when searching for a good software

architecture

This greatly reduces the space in which to look for an appropriate
software architecture.

13
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Don’t Be Fooled By “Good Looking” Solutions

class LocalizeCB

Modules::AB

Modules::ACA

Modules::D

(I) EA

(from Use Case Model)

Modifiability 1

(from Use Case Model)

Modifiability 2

(from Use Case Model)

Modifiability 3

EncapsulationEA-
ACB::ACB

(I) ACB

Modules::AAA

Modules::EBA -
remaining

Modules::New
Name 1

(I) New Name 1

LocalizationEA-
ACB-E::EA -
remaining

Modules::AAB

EncapsulateEBB-
rem::EBB -
remaining

(I) EBB - remaining

C - remaining

B - remaining

New Name

(I) New Name

class InitialDesign

AB

ACA

C B

D

EBB

ACB

EBA

EA

Modifiability 1

Modifiability 2

Modifiability 3

AAB

AAA

Which design is the better one?

Design A Design B

Intuition is not
always correct

May lead architect
away from a solution

Good
Solutions

are complex

14
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Pointing in the Right Direction

More architecture alternatives can be explored if

• Evaluation of possible architectures is faster

• recognition and elimination of conflicts between quality attributes
requirements are done as soon as they appear – to not end up in a
dead end

Tool support can help here:

ArchE explored 7 (simple!) architectures in 2 sec Improvement
Neutral

Deterioration

Architecture alternatives

15
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Who is ArchE?

Requirements
in various
forms

Available
knowledge

Designer Architecture

System

Your friendly guide
helping you navigate
through the space of

architectures

16
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

What does ArchE do?

ArchE is a tool designed to provide useful information about a current
architecture to the architect to find a good solution for a given problem.

Such a tool needs to:

• Understand the design process

• Understand quality attributes and their connection to software architectures

The architect provides the domain knowledge.

Don’t be fooled by this nice presentation! ArchE is still a prototype, sorry.

17
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Assigned to

The Principles of Architecture Design

Quality
Attribute

Requirements

Functional
Requirements

Reasoning
Frameworks, like

Performance,
Modifiability, etc.

Architecture n + 1Architecture n

Interpretation

Evaluation

Tactic # 7

Assigned to

Satisfied

Repeat until satisfied

18
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

The Principles of Architecture Design – 2

What to do? – Get your requirements ready:

• The functional requirements

• The dependencies between them

• The quality attribute requirements

• The initial design (can be a design containing just one element, the system)

How do I know my design is good? – Produce quality attribute models that
provide you with information about quality attributes.

• Extract required model information from the design (Interpretation)

• Run the model to calculate the values for the quality attribute requirements
(Evaluation)

How to improve? – Have a set of tactics that improve the architecture

• Interpret the model to determine plausible tactics

• Apply the tactics to the design by changing elements, relations and their
properties

19
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Managing the Imagination:
Defining The Requirements

20
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Requirements

To design a system we need:

• The functional requirements

• The dependencies between them

• The quality attribute requirements

Let us talk a little bit about quality attribute requirements …

21
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Quality Attribute Scenarios

Quality attributes have to be specified precisely using quality attribute
scenarios.

A fully specified quality attribute scenario consists of six parts:

• Stimulus – event that is effecting the system

• Response – activity as a result of the stimulus

• Source of stimulus – The entity that generated the stimulus

• Environment – the condition under which the stimulus occurred

• Artifact stimulated – the artifact that was stimulated

• Response measure – the measure by which the system’s response will
be evaluated

22
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Quality Attribute Scenarios

Example Availability Scenario:

An unanticipated external message is received by a process during
normal operation. The process informs the operator of the receipt of
the message and the system continues to operate with no down time.

Environment:

For more information:
Software Architecture in

Practice, 2nd Edition

23
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example

Throughout this tutorial we use the following example to illustrate the
architecture design.

The Clemson Transit Assistant System (CTAS)

• Itinerary planning system

• Plan routes and modes of transportation

• PDA based

24
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example – Performance Scenarios

An external devices (e.g. GPS) is connected and the system has to
operate the device under normal load in under 5 seconds response
time.

A user selects a view and this view becomes available and displays
the correct data in under 1 second.

The user modifies his/her profile under normal conditions and the
profile is modified in under 5 seconds.

The user requests an itinerary under normal conditions and the
itinerary is shown in under 5 seconds.

The user saves the current data on the screen under normal conditions
and the data is saved in under 10 seconds.

25
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example – Modifiability scenarios

A new feature requiring a change to the storage format is added. The
implementation of the new format has to be done within 3.5 days

A new variable to the user profile is added by an experienced
developer within 5 days of effort

The driver for a new external device (e.g. GPS) has to be added by a
developer within 10 days

26
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Functional Requirements

Functional requirements become responsibilities that are assigned to
elements in the architecture design.

As a starting point all functional requirements are translated one-by-
one into responsibilities.

During the design process responsibilities may be refined or split into
several responsibilities.

Functional requirements also have dependencies between them, which
translates into dependencies between responsibilities.

27
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Responsibilities and their dependencies

Example – Responsibilities with Dependencies

Responsibility
uses

Responsibility
is used by

Dependency Structure
Matrix (DSM) showing the
initial responsibilities with
their dependencies

28
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Relating Functional and Quality Attribute
Requirements

Functional requirements in any system never come without (sometimes
implicit) quality attribute requirements.

No quality attribute requirement can exist without a function it is
attached to.

Requires the definition of a relationship between functional and quality
attribute requirements.

29
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Scenario – Responsibility Mapping

X

X

X

D

X• Modifiability Scenario 5

X• Modifiability Scenario 4

XX• Modifiability Scenario 3

• Modifiability Scenario 2

X• Modifiability Scenario 1

XX• Performance Scenario 4

X• Performance Scenario 3

X• Performance Scenario 2

• Performance Scenario 1

E

X

CBA

X

Responsibility

Scenario

Specify what responsibilities are affected by what scenario.

30
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Requirements Input

ArchE

Designer specifies the
functional requirements

At the end, ArchE knows
the functional
requirements with their
relationships.

Designer specifies
dependencies between
responsibilities

ArchE translates them into
responsibilities

Every time this guy shows
up we will talk specifically
about what ArchE does

31
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Responsibility Entry

32
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Responsibility relationship

33
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Requirements Input

ArchE

Designer specifies
quality attribute
scenarios and relates
them to responsibilities

At the end, ArchE knows
the quality attribute
requirements for the
system being designed.

Designer provides more
input for each scenario

ArchE checks the scenarios
and may ask for more input

34
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Scenario Entry

35
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Initial Design

Example – Initial Design

Notation: UML

class Initial Design

(M) Show
Itinerary

(M) Attach to
Model

(M) Register
Views

(M) Handle user
Interactions

(M) Manage
External
Dev ices

(M) Save Data

(M) Query for
Data

(M) Locate
Serv ice

(M) Manage
Itinerary

(M) Create user
Profile

(M) Modify user
Profile

UML Class Diagram
when assigning each
responsibility to its own
module (class)

That is what ArchE
does if designer did not
specify anything
different

36
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Scenario responsibility mapping

37
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Assigned to

The Principles of Architecture Design

Quality
Attribute

Requirements

Functional
Requirements

Reasoning
Frameworks, like

Performance,
Modifiability, etc.

Architecture n + 1Architecture n

Interpretation

Evaluation

Tactic # 7

Assigned to

Satisfied

Repeat until satisfied

38
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Managing the Reality:
Reasoning Frameworks Part 1:
Creating Quality Attribute Models

39
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

ArchE Supports Multiple Quality Attributes

Allows for extension of quality attribute knowledge within ArchE by
plugging in a new reasoning framework

Reduces interactions (dependencies) among quality attributes.

One of the research questions is the extent to which interaction among
quality attributes can be reduced. - will return to this idea when we
discuss tradeoffs.

A Reasoning Framework encapsulates the
knowledge needed to enable ArchE (or a designer)

to reason about a specific quality attribute

40
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Reasoning Frameworks within ArchE – 1

A reasoning framework within ArchE

1. Translates from architecture description to quality attribute model – we call this
“Interpretation”

2. Evaluates quality attribute scenarios in terms of the model – we call this
“Evaluation”

3. Proposes tactics to improve architecture.

Two inputs into a reasoning framework within ArchE

1. Current architecture

2. Relevant quality attribute scenarios

Outputs:

1. Evaluation of current architecture with respect to the quality attribute scenarios

2. List of potential tactics to improve the architecture if at least one scenario is
currently unmet

41
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Reasoning Frameworks within ArchE – 2

Requires a clear definition of the architectural elements, relations, and
properties that can influence a quality attribute.

• The Interpretation extracts this information from an architecture and
creates a model from it

Requires the existence of a “Formula” to do calculations with the model
to provide some information about the fulfillment of the quality
attribute

• That is what the “Evaluation” does

Requires a clear definition of possible changes to the architecture to
make it better fulfill the quality attribute

• This is what “tactics” are for

42
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example: Modifiability Reasoning Framework – 1

The modifiability of an architecture depends on the assignment of functionality
to modules and the dependencies between the modules. The modifiability is
measured in cost (effort) of change.

Therefore the following information must be available:

• Responsibility graph

— Have dependencies

— Can be decomposed

• Responsibility properties

— Cost of change

• Dependency (between responsibilities) properties

— Strength of coupling

• Responsibilities are assigned to modules

43
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Assigning costs of change to each responsibility is job of architect. There is no way
ArchE can know initial values.

If architect did not assign a strength of coupling for dependencies between
responsibilities, then ArchE assumes a default probability (0.7).

Constructing model from architecture description is easy because of the form of the
architecture description.

• Each module has a cost of change which is the sum of the cost of change of the
assigned responsibilities

• Each module, that is not decomposed, becomes a node in the model

• Each node has a cost of change that is the cost of change of the module

• The dependencies between responsibilities directly determine the dependencies
between modules

• Module dependencies become the arcs in the model that connect the nodes

• Each module dependency has a strength of coupling, which is assigned to the
arcs in the model

Example: Modifiability Reasoning Framework – 2

44
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Module
A

Module
B

Module
C

Architecture Modifiability Model

Resp. A

Resp. B

Resp. C

Resp. D

Cost 2.0

Cost 4.0

Cost 2.0

Cost 4.0

Cost 2.0

Cost 3.0

Cost 5.0

0.2

A

B

C

Cost 2.0

0.2

0.7

0.7

Example: Modifiability Reasoning Framework – 3

Interpretation
Cost 4.0

Cost 5.0

45
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example: Computing Predicted Cost Of Change - 1

Begin with a scenario that gives requirement

Every scenario is tied to responsibilities that are impacted by the scenario
(architect does this)

Determines the modules affected by the scenarios

Compute expected cost of change for that scenario as the sum of the expected
cost of change affected modules.

Now need to worry about ripples.

The average cost of changing the neighboring module (B) of module (A) equals
the cost of change for module (B) times the strength of coupling between
module (A) and (B).

Add all the costs and you have the average cost of change for the scenario.

46
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Validity of cost model

Cost model has not been validated

Has some plausibility – it is based on standard concepts of coupling and
cohesion

It has the properties that were assumed for derivation of tactics

Has the most impact on ArchE’s actions when in multi-step mode

47
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Performance theory

The ArchE performance reasoning framework is based on Rate Monotonic
Analysis (suitable for reasoning about real time deadlines).

The theory used in ArchE has the following assumptions:

• Single processor

• Basic computational unit is a task

• There may be resources shared among tasks

• Tasks are independent except for explicit reliance on shared resources

• Only one task can use a shared resource at a given point in time

• Processor scheduling priorities are given by the task order – i.e. task 1
is highest priority, task 2 is second, etc

48
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example: Performance Reasoning Framework – 1

The performance of an architecture depends on the assignment of functionality
to tasks. One of the typical measures for performance is Latency – the time it
take to finish a task.

Therefore the following information must be available:

• Performance scenarios

— Have period

• Scenario to responsibility assignment

• Responsibility properties

— Execution time

49
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Assigning each responsibility an execution time is job of architect. There is no
way ArchE can know initial values.

Constructing model from architecture description is as follows:

• Each performance scenario becomes a task

• The period specified for the scenario becomes the period of this task

• Each responsibility has an execution time

• Responsibilities assigned to a scenario become responsibilities
assigned to the task

• Responsibilities not assigned to a performance scenario are assigned
to an additional, low priority task (background task)

• Shared responsibilities become shared resources

• A shared resource has an execution time for each task that uses this
resource

Example: Performance Reasoning Framework – 2

50
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Scenario
1

Architecture Performance Model

Resp. A

Resp. B

Time 20

140

100

Period 100

350

Task 1

Task 2

Task 3

Example: Performance Reasoning Framework – 3

InterpretationScenario
2

Scenario
3

Period 140

Period 350

Time 20

Shared
A

Shared
B

2ms

20ms

20ms

20ms

51
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

ArchE Completes Initial Information

Evaluate for
performance and
determine missing
information

ArchE has scenarios
and initial
responsibilities

Evaluate for
modifiability and
determine missing
information

ArchE
Designer provides
missing information

52
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Edit responsibility properties

53
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Scenario Status

Models are created and evaluated as soon as the necessary
information is available. Scenarios are marked as satisfied or not.

54
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Assigned to

The Principles of Architecture Design

Quality
Attribute

Requirements

Functional
Requirements

Reasoning
Frameworks, like

Performance,
Modifiability, etc.

Architecture n + 1Architecture n

Interpretation

Tactic # 7

Assigned to

Satisfied

Repeat until satisfied

Evaluation

55
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Managing the Alternatives:
Reasoning Frameworks Part 2:
Closing in on the Solution

56
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Architecture Transformation - Tactics

A tactic always changes some of the elements and/or properties that
are influential in building a quality attribute model

Anything an “Interpretation” uses as input to generate the model can
be changed by a tactic. (Knowing what an Interpretation does means
knowing what the possible tactics are)

Analyzing a quality attribute model to determine what would produce a
better “Evaluation” result guides the selection of possible tactics.

Since a model only contains a fraction of the information about the
architecture it is easier to determine possible architecture
transformations (tactics).

An architectural tactic is a small transformation of an
existing architecture to another one that would better

support a specific quality attribute

57
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Motivating Tactics Through a Queuing Model
for Performance

arrivals
queue

server

results

Parameters:
• Arrival rate
• Queuing disciple
• Scheduling algorithm
• Service time
• Topology
• Network bandwidth
• Routing algorithm

Latency (time to compute
results) can only be affected
by changing one of the
parameters

Scheduling
algorithm

Routing of
messages

58
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Performance tactics - 1

Architectural means for controlling the parameters of a
performance model

Arrival rate – restrict access, differential rate/charging structure

Queuing discipline

• FCFS

• Priority queues

• Etc

Network bandwidth – faster networks

59
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Performance Tactics - 2

Service time

• Increase efficiency of algorithms

• Cut down on overhead (reduce inter-process communication, use
thread pools, use pool of DB connections, etc)

• Use faster processor

Scheduling algorithm – round robin, service last interrupt first, etc

Topology – add/delete processors

Routing algorithm – load balancing

60
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Modifiability Tactics within ArchE

The following modifiability tactics are currently implemented in ArchE

• Encapsulation – reduces coupling

• Raising level of abstraction – reduces coupling

• Intermediary – reduces coupling of some dependency

• Splitting responsibility – enables new responsibility to module
assignments, changes cost of change

• Localization – changes responsibility to module assignment

• Wrapper – reduces all outgoing couplings

We motivated tactics in terms of the modifiability model but to use tactics in
ArchE, more information is needed.

61
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example: Splitting Responsibility – 1

If a responsibility is affected by a change then it might be that not everything
of that responsibility has to change.

The “Splitting Responsibility” tactics splits a responsibility into two parts, only
one of which is affected by a scenario.

Reduces the cost of change.

Key:

Module
Probability of
propagation

PBA PAB

Before After

B

A

B

A’ A”

PBA’ PA’B PBA” PA”B

PA’A’’

PA’’A’6 3 3

62
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Example: Splitting Responsibility – 2

What else needs to be specified?

If a responsibility is decomposed into two new responsibilities, the names of
the new responsibilities must be specified.

Each new responsibility has a cost of change and probability of propagation to
those responsibilities that had dependencies with the responsibility being
decomposed.

The two new responsibilities have probabilities of propagation between them.

What does ArchE know?

• ArchE cannot know the names of the new responsibilities.

• ArchE does not know (but has default values – divided by two) for the
cost of change of the new responsibilities

• ArchE does not know (but has default values) for the probabilities of
propagation.

63
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Performance tactics implemented in ArchE

Requirements tactics:

• Increase the period

• Increase the deadline

Scheduling tactics:

• Theory says that scheduling the task with the shortest deadline first is
optimal.

Execution time tactics

• Reduce execution time

Resource sharing tactics

• Split responsibility – allows executing responsibility with different
priorities

• Reduce blocking – split responsibility into portion that uses shared
resource and portion that does not.

64
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Limitations of application of performance tactics

Change requirements – ArchE has no means to know to do this (in single step
mode)

Reduce execution time – ArchE tests various levels of reduction. Architect (or
other means) must determine feasibility

Split responsibility – new names, execution times must be assigned, and new
blocking times must be assigned

Reduce blocking – new names, execution times must be assigned, and new
blocking times must be assigned

65
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

ArchE’s Action

Evaluate for
performance and
determine possible
tactics to improve
architecture for
performance
scenarios

ArchE has scenarios
and current
architecture with all
necessary information

Evaluate for modifiability and
determine possible tactics to
improve architecture for
modifiability scenarios

Display tactics to
designer

ArchE

66
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Evaluation of Tactics

ArchE evaluates suggested tactics and provides information about
their influence on the architecture for the designer.

Improved

Neutral

Deteriorated

Tactic

67
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Assigned to

The Principles of Architecture Design

Quality
Attribute

Requirements

Functional
Requirements

Reasoning
Frameworks, like

Performance,
Modifiability, etc.

Architecture n + 1Architecture n

Interpretation

Evaluation

Tactic # 7

Assigned to

Satisfied

Repeat until satisfied

68
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

ArchE’s Action

Evaluate the influence
of the plausible
tactics on the
architecture

ArchE uses the
quality attribute
models to reason
about plausible
tactics

Present the Designer with
selected tactics in form of
questions

Designer picks a
tactic to apply

ArchE

69
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Suggested Tactics – Shared Resources

Architect can either accept the suggestion and let ArchE do the
transformation or changes the architecture manually.

70
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Suggested Tactics – Reduced Execution Time

71
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Influence of Tactics on Other Quality Attributes

ArchE immediately evaluates the architecture again after applying a
tactic to present possible side effects to the designer.

Assume reducing execution time of a responsibility will cause its cost
of change to increase since it implies a more complicated algorithm.

72
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Modifiability Impacted After Reduce Execution Time
Tactic

First column depicts if scenario is satisfied or not

Second column depicts change after tactic was applied

73
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Assigned to

The Principles of Architecture Design

Quality
Attribute

Requirements

Functional
Requirements

Reasoning
Frameworks, like

Performance,
Modifiability, etc.

Architecture n + 1Architecture n

Interpretation

Evaluation

Tactic # 7

Assigned to

Satisfied

Repeat until satisfied

74
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

ArchE Multi-Step Mode – 1

So far we presented ArchE in a single step mode.

In this mode ArchE evaluates the current architecture and makes
suggestions for the next step.

ArchE can also run in a multi-step mode.

In this mode ArchE automatically chooses one of the suggested
tactics, applies it to the architecture and evaluates the consequences.

This is repeated a specified number of times. … or until a solution is
found.

ArchE presents the sequence of chosen tactics to the designer.

75
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

ArchE Multi-Step Mode – 2

Unacceptable Architecture

Acceptable Architecture

Solution!

Decision

76
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Automating Trade off

Trade off is giving up one thing of value to achieve something else of value

How is value of architecture measured?

• Ideally against business goals – but we have no method for doing this.

• Can measure how well architecture does against requirements.

Valuing requirements

• Assign value to requirements – quality and functional

77
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Utility

Utility is a concept dating to the 18th century.

For quality attribute requirements

• So far we applied a utility value to scenarios of 0 or 1;
0 equals scenario is not satisfied and 1 means scenario is
satisfied

• By scaling to values between 0-1 utility reflects the value of
partially satisfied scenarios

ArchE can use the utility value to determine solutions when no
solution would be possible otherwise.

Utility is practically an instrument for weakening of
requirements.

1

0

1

0

78
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Side Effects of Reasoning Frameworks - 1

Reasoning frameworks are intended to isolate one quality attribute from
another

Parameters for reasoning framework are attributes to responsibilities.

As long as no parameters are shared among reasoning frameworks then they
should be independent – correct?

79
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Side Effects of Reasoning Frameworks - 2

Consider performance and modifiability

• Performance parameters are

— Execution time of a responsibility

— Scheduling priority of a responsibility

— Sharing of resources among responsibilities

• Modifiability parameters are

— Cost of change of a responsibility

— Probability of propagation among responsibilities

As you can see, nothing is shared between the two reasoning
frameworks

80
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Side Effects of Reasoning Frameworks - 3

Impact of modifiability on performance

• Modifiability can introduce new responsibilities, e.g. introduce an
intermediary

• Performance responds to new responsibilities by acquiring or deducing
appropriate parameters

• => not a problem so far

Continuing …

• Suppose performance now reduces execution time of the intermediary

• Could impede the function of the intermediary

• => problem since performance needs to understand the purpose of the
responsibility and whether reducing execution time will impede the
purpose.

81
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Side Effects of Reasoning Frameworks - 4

Within ArchE, the utility curve determines utility after reducing execution
time and there is a separate tradeoff manager who responsibility is to
generate utility curves for potential interactions among reasoning
frameworks. (As of today this is hard coded in ArchE)

useful area
30ms

20ms

0 1

10ms

Execution
time of intermediary

Probability
of propagation

Assumed utility curve
between execution time
and propagation of an

intermediary

If execution time is reduced
to less then 27ms, the
intermediary becomes
ineffective.

82
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Some Final Words about ArchE

ArchE is untested with respect to large numbers of scenarios

The Attribute Driven Design (ADD) method focuses on small number of
scenarios.

ArchE is useful when used in conjunction with ADD

• Recall from ADD that key steps are

— Find small number of architectural drivers (scenarios)

— Design to satisfy this set of architectural drivers

• ArchE can be used in this context

83
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Plans for ArchE

ArchE v2.1 is ready for beta test.

We plan to distribute ArchE freely to two communities:

• Instructors who will use ArchE within a course on software architecture

• Researchers who are interested in developing new reasoning
frameworks

Looking for one additional beta test site in each category

Plan on general distribution to these two communities fall 2007.

84
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Managing the Future:
Increasing available and codified
knowledge

85
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Extending the Knowledge

You want to use ArchE but you have a specific problem to solve that
ArchE does not know anything about (Yet!).

Remember:

• If you know what information is required to reason about this problem

• If you know how to distinguish good from bad solutions

• If you know how to change the architecture to make it better

Then you can create your reasoning framework to solve this problem
and plug it into ArchE.

… then ArchE automatically checks the side effects your solution may
have on other quality attribute that ArchE understands.

86
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Two methods to extend ArchE

ArchE supports two methods for adding new reasoning frameworks,
internal and/or external

Modifiability

Performance

External

Depend
ability

SecurityArchE

Reasoning
Frameworks

New Internal

New
External

87
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Adding an internal Reasoning Framework

Layered View of ArchE
Reasoning Frameworks are implemented as “plug-ins”

88
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Development Environment for Internal Reasoning
Frameworks

ArchE is constructed as an Eclipse plug-in on top of:

• JESS – a rules engine (free to academic institutions)

• Java – generally available

• MySQL Database – also free

Implementing an internal reasoning framework requires knowledge of
this infrastructure.

89
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Adding an external Reasoning Framework

A reasoning framework can be implemented in any language on any type of
system and can be connected to an ArchE instance via an XML interface over the
net.

Exchange of
commands

Exchange of data
(architecture)

90
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Typical Sequence Between ArchE and
Reasoning Framework

ArchE Reasoning Frameworks

Apply Tactic and suggest tactics

Scenario Result

Suggested Tactic

Apply Tactic

Scenario Result

To get candidate
architectures

For each candidate
architecture

Describe Tactic

Tactic suggestion to user
For the most

promising candidate
architecture

91
The Architect and ArchE
Bachmann, Bass, Bianco 03/26/07
© 2007 Carnegie Mellon University

Thank You

Questions??

