Business Process Lines to develop Service-Oriented Architectures through the Software Product Lines paradigm

Nicola Boffoli, Danilo Caivano, Daniela Castelluccia, Fabrizio Maria Maggi, Giuseppe Visaggio SERLAB - Department of Informatics University of Bari - Italy {boffoli, caivano, castelluccia, maggi, visaggio}@di.uniba.it

SERLAB

SOFTWARE ENGINEERING RESEARCH LABORATORY 0/0 DIPARTIMENTO DI INFORMATICA VIA DRASDNA, 4 - 70126 - BARI TEL: + 39, 050, 5443879 FAX: + 39,050,54488336

Outline

SPL + SOA

- q Why?
- What?
- q How?

Our proposal

- g Business Process Line
- Decision Models
- Case Study

SPL + SOA: Why?

Two common perspectives

Software reuse

 implementing new software systems reusing existing software resources rather than developing the same software capabilities again

g Software flexibility

- allowing to adapt the systems to the different customers of a whole market segment
 - SPL focuses on the commonality and variability to build a set of software products
 - SOA allows to compose, orchestrate and maintain solutions based on services, implementing business processes

SPL + SOA: What?

Our Proposal

transferring peculiarities/advantages from SPL to SOA

g build a SOA systems line suitable to customers or market segments needs in a specific application domain

SPL + SOA: How?

We start from a deep analysis of the business processes identifying in them commonality and variability typical of the SPL paradigm

Business Process Line

Decision Models

Business Process Line (BPL)

A BPL realizes processes able to adapt themselves to different customer needs

- Each process of a BPL can be then transformed into the corresponding SOA system
 - If the business processes are adaptable to the customer needs
 - then the generated SOA system, it will result in its turn suitable to the specific customer requirements

From SPL to BPL: Analogies and Tailoring ...

SPL

- collection, organization and systematic refinement of the assets (invariant or variant)
- Automatic building of the products
 - Product Configuration: through asset integration procedures
 - Product Specialization: through the specification of the assets parametric part

... From SPL to BPL: Analogies and Tailoring

BPL

- Asset concept is referred to activities and work definitions
- Product Configuration L Process Configuration
 - the assets (activities and work definitions) can be added to a basic business process in order to configure the target business process
- Product Specialization L Process Specialization
 - each asset of the target business process can be specialized through attributes indicating specific architectural characteristics to implement them

BPL Decision Models

Hypothesis: two kind of relations

- between the business capabilities (characterizing the customer needs) and the suitable processes elements (that have to be integrated in the target business process)
- between the customer requirements and the specific peculiarities of the processes elements previously integrated in the target process.

Decision Table Formalism

A decision table (DT) is divided in four quadrants: conditions (Cond), conditional states (S), actions (Act) and rules (x)

The table is defined so that each combination of conditions and conditional states corresponds to a set of actions to carry out.

Cond ₁		ļ	S ₁₁		S ₁₂							
Cond ₂	S	21	S	22	S		22					
CondN	Swi	S _{M2}	Swi	Sw2	S	S _{M2}	Swi		S _{N2}			
Act ₁	-	-	-	-	Х	Х	Х		Х			
Act ₂	-	ı	-	-	ı	-	_		Х			
									_			
Act _M	-	Х	_	Х	-	Х	-	_	Comp			

- Compact overview
- Modular knowledge organization
- Evaluation of consistency, completeness and redundancy

Configuring DT ...

For each BPL a configuring DT is built in order to select the variant assets characteristic of the requested business capabilities

They have to be composed with the invariant assets (integrated into a basic process) in order to generate the target business process

... Configuring DT

the CONDITION quadrant contains a set of business capabilities, BC_i i=1,...n

the CONDITIONAL STATE quadrant contains the possible values of each business capability $[BC_i] = \{bc_{i1}, bc_{i2}, ..., bc_{iq}\}$

the ACTION quadrant contains all the possible variant assets $\{va_1, va_2, ..., va_r\}$ that can be added to the process

commonality

the RULE quadrant recorresponding varian

BC ₁		bo	11		bc ₁₂						
BC ₂	b	C ₂₁	bo	22	bo	21	bc ₂₂				
BCn	bc _{n1}	bc _{n2}									
va ₁	-	-	x	-	-	-	-	,			
va ₂	х	х -				-	-	-			
va ₃	-	-			х	ı	ı	-			
va ₄	-	-	-	-	-	-	х	-			
va ₅	-	-			-	X	1	-			
var	-	-	-	-	-	-	-	x			

Specializing DT

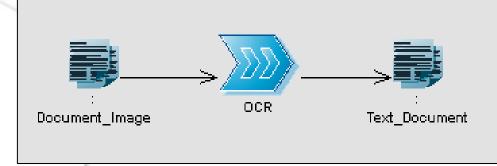
For each asset, variant or invariant, a specializing DT is built as follows

- the CONDITION quadrant contains a set of customer requirements, CR_j j=1,...,m, to specialize the parametric part of the asset
- the CONDITIONAL STATE quadrant contains the possible values of each requirement: $[CR_i] = \{cr_{i1}, cr_{i2}, ..., cr_{it}\}$
- the ACTION quadrant contains the parameters $\{p_1, p_2, ..., p_s\}$ and their values allowing to specialize the parametric part of
 - the asset
- the RULE quadrant set to the correspond

-	CR ₁		fr	11			fr	12		fr ₁₃				
t	CR ₂	fr ₂₁		fr ₂₂		fr ₂₁		fr ₂₂		fr ₂₁		fr	22	
- 1														
9	CRn	fr _{n1}	fr _{n2}											
	p ₁ = "Y"	-	,	-	Х	Х	-	-	-	-	-	Х	Х	
	p ₁ = "N"	Х	Х	Х	-	-	х	X	•	Х	Х	-		
	p _s = "χ"	х	1	1	Х	-	-	1	ı	X	ı	•	х	
	p _s = "y"	1	х	X	1	х	-	X	1	ı	ı	1	-	
	p _s = "z"	1	-	-	-	-	x	-	X	-	Х	Х	-	

Case Study ...

Our proposal has been investigated in an industrial case during the research project "DAMA" (Data Archiving Management and Acquisition)


A specific part, Document Recognizing, is here summarized

Invariant Part

the process contains an OCR (Optical Character Recognition) activity requiring a scanned Document Image as input and produces a recognized Text

Document as output

... Case Study ...

Configuring DT

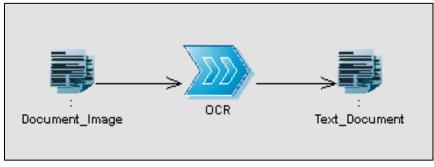
the table provides the following business capabilities: Signature Extraction, Layout Analysis and Image Extraction

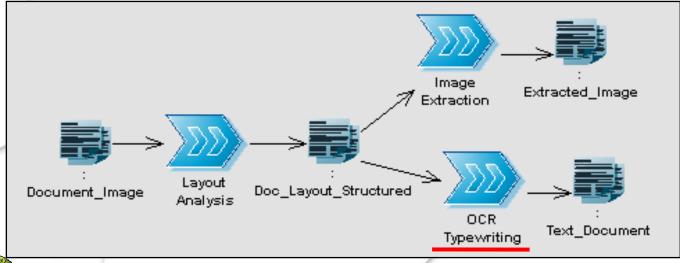
Signed Documents		Dig	jital			Autog	raphic		Without Sign				
Document Type	Struc	Structured		Unstructured		Structured		Unstructured		Structured		Unstructured	
Documents with Images	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	
Layout Analysis	Х	Х	-	-	Х	X	-	•	Х	Х	-	•	
Image Extraction	Х	-	Х	_	Х	-	Х	-	Х	-	Х	-	
AutographicSign Extraction	-	•	-	-	Х	Х	Х	Х	1	i	-	ı	
Digital Sign Extraction	Х	Х	Х	Х	-	_	_	•	-	_	_	•	

... Case Study ...

Scenario

The enterprise needs besides to elaborate and archive typewriting and structured documents, containing images and without signature"


Signed Documents		Dig	jital			Autog	raphic		Without Sign				
Document Type	Structured		Unstructured		Structured		Unstructured		Structured		Unstructured		
Documents with Images	Y	N	Υ	N	Υ	N	Υ	N	Υ	N	Υ	N	
Layout Analysis	Х	Х	-	-	Х	Х	-	-	Х	X	-	-	
Image Extraction	Х	-	Х	-	Х	•	Х	-	Х	-	Х	-	
AutographicSign Extraction	•	-	-	-	Х	Х	Х	Х	-	-	-	1	
Digital Sign Extraction	×	×	Х	Х	-		-	-	-	_	-	-	



... Case Study

Conclusion ...

This work proposes to apply the good practices of SPL to SOA, the authors introduce

- the concept of BPL in order to identify commonality and variability of SOA systems at the process level
- q two kind decision models supporting BPL activities
 - Configuring Decision Model
 - Specializing Decision Model

The case study DAMA is ongoing and encourages further investigations in other applicative domains in order to confirm and generalize the preliminary results

... Conclusion

In order to support the application of the proposal here presented, the authors are developing two tools:

- the former aims to automate the decision tables management (design and consulting)
- the latter is able to transform business process models in executable workflows for SOA systems

