
1/27/04 ©USC-CSE 1

University of Southern California
Center for Software Engineering C S E

 USC

Barry Boehm, USC
 Keynote Address

Third Annual Conference on the Acquisition of
Software-Intensive Systems

January 27, 2004
(boehm@sunset.usc.edu)

(http://sunset.usc.edu)

Early Warning Indicators in the
Acquisition of Software-Intensive

Systems

1/27/04 ©USC-CSE 2

University of Southern California
Center for Software Engineering C S E

 USC

Outline

• Trends in Defense Software-Intensive Systems
• Need for New Acquisition Approaches
• Trilateral SIS Working Group Effort to Develop

SIS Acquisition Early Warning Indicators
• Current Goal/Critical Success Factor Framework
• Community Opportunity to Improve Framework

1/27/04 ©USC-CSE 3

University of Southern California
Center for Software Engineering C S E

 USC

Trends in Defense Software-Intensive Systems
• Transformational, network-centric systems

– These are fundamentally software-intensive

• Emphasis on joint, interoperable, capability-based
systems
– And increasingly, systems of systems

• Increasing requirements emergence, COTS-dependence,
environmental change

• Traditional sequential acquisition practices increasingly
inadequate
– Fixed-requirements, -cost, -schedule contracting
– Waterfall legacies: MIL-STD-1521B, parts of Software

CMM

1/27/04 ©USC-CSE 4

University of Southern California
Center for Software Engineering C S E

 USC

Waterfall Legacies: SW CMM v.1.1

• Requirements Management, Ability 1:
 “Analysis and allocation of the system

requirements
is not the responsibility of the

software engineering group
but is a prerequisite for their work.”

1/27/04 ©USC-CSE 5

University of Southern California
Center for Software Engineering C S E

 USC

Defense Management Evolving New
Acquisition Approaches

• US: 5000.1 and 5000.2, CMMI, Acquisition
CMM, evolutionary acquisition

• UK: DPA Stocktake Initiative
• Australia: Software Material Reform Program,

Capability Systems Life Cycle

1/27/04 ©USC-CSE 6

University of Southern California
Center for Software Engineering C S E

 USC

Trilateral Working Group Addressing
Early Warning Indicators

• US, UK, and Australian participants
• Mix of traditional and emerging indicators
• Current version a work in progress; seeking

community feedback
• Organized around program goals and critical

success factors
• Focused on readiness for milestone decision

reviews

1/27/04 ©USC-CSE 7

University of Southern California
Center for Software Engineering C S E

 USC

Trilateral Working Group
• Matt Ashford, AUS MOD
• Shonnag Allison, UK DPA
• Barry Boehm, USC
• Julien Burridge, UK DPA
• Kathleen Dangle, Fraunhofer Center – Maryland
• Brian Gallagher, SEI
• Jim Linnehan, USA(ALT)
• Peter Nolte, OUSD(AT&L)/DS
• Don Reifer, USC
• Richard Turner, GWU

1/27/04 ©USC-CSE 8

University of Southern California
Center for Software Engineering C S E

 USC

Current Goal/Critical Success Factor
Framework

• Counterexamples of what happens if factors not
addressed

• Examples of more detailed checklists from current
working group material

• Examples of potential early warning indicator tracking
system displays.

1/27/04 ©USC-CSE 9

University of Southern California
Center for Software Engineering C S E

 USC

Software Acquisition Goals
•Goal 1. System and software objectives and constraints
have been adequately defined and validated.

•Goal 2. The system and software acquisition strategies are
appropriate and compatible.

•Goal 3. The success-critical stakeholders have committed
adequate software capability to perform their software-
related tasks.

•Goal 4. The software product plans and process plans are
feasible and compatible. A Feasibility Rationale provides
convincing evidence that:

•Goal 5. Software progress with respect to plans is
satisfactory.

1/27/04 ©USC-CSE 10

University of Southern California
Center for Software Engineering C S E

 USC

Critical Success Factors: Goal 1
Goal 1. System and software objectives and constraints have been
adequately defined and validated.

•1.1 System and software functionality and performance
objectives have been defined and prioritized.

•1.2 The system boundary, operational environment, and system
and software interface objectives have been defined.

•1.3 System and software flexibility and evolvability objectives
have been defined and prioritized.

•1.4 System and software environmental, resource,
infrastructure, and policy constraints have been defined.

•1.5 System and software objectives have been validated for
overall achievability within the system and software

constraints.

1/27/04 ©USC-CSE 11

University of Southern California
Center for Software Engineering C S E

 USC

Why Software Projects Fail

1/27/04 ©USC-CSE 12

University of Southern California
Center for Software Engineering C S E

 USC

Effect of Unvalidated Requirements

$100M

$50M

Arch. A:
Custom
many cache processors

Arch. B:
Modified
Client-Server

1 2 3 4 5

Response Time (sec)

Original Spec After Prototyping

Available budget

1/27/04 ©USC-CSE 13

University of Southern California
Center for Software Engineering C S E

 USC

Effect of Unvalidated Software Schedules

• Original goal: 18,000 KSLOC in 7 years
– Initial COCOMO II, SEER runs showed infeasibility
– Estimated development schedule in months for closely

coupled SW with size measured in equivalent KSLOC
(thousands of source lines of code):
Months =~ 5 * 3 KSLOC

108725033- Months

10,00030001000300- KSLOC

•Solution approach; descope features; architect for decoupled
parallel development

1/27/04 ©USC-CSE 14

University of Southern California
Center for Software Engineering C S E

 USC

Detailed Software Cost and Schedule Checklist
• Were multiple independent estimation methods used?

i. Individual expert judgment
ii. Group consensus (Delphi, group meeting, etc.)
iii. Analogy to previous experience
iv. Single parametric model

• v. Multiple parametric models
• Were the methods relevant to the project?
• For each method, were the inputs sufficient?
• For each input, is there a credible basis of estimate?
• Are the resulting estimates realistic?
• Were the inputs and estimates reviewed by experts?
• Are the estimates and the reviews current?
• Are there mechanisms to monitor and adjust assumptions and

estimates?

1/27/04 ©USC-CSE 15

University of Southern California
Center for Software Engineering C S E

 USC

•Goal 2. The system and software acquisition strategies are appropriate
and compatible.

•2.1 They define the acquisition life cycle, success-critical
stakeholder roles and responsibilities, contracting mechanisms, and
progress milestones and success criteria.

•2.2 They assign adequate levels of authority and responsibility for
software integration and change management across the

program elements, supplier chains, and external interfaces.

•2.3 They identify the most critical system and software risks
and an effective risk management process.

•2.4 They are compliant with legal, policy, regulatory, standards,
and security requirements.

•2.5 They are compatible with each other and facilitate system
and software engineering concurrency, synchronization, flexibility, and
stability.

Critical Success Factors: Goal 2

1/27/04 ©USC-CSE 16

University of Southern California
Center for Software Engineering C S E

 USC

Effect of Software Underrepresentation

Original

SW

Sensors

SW

Networks

SW

WMI

C4ISR Sys Engr Platforms

PM

New

Sensors Networks

SW

C4ISR Software Sys Engr

PM

•Software risks discovered too late

•Slow, buggy change management

•Recent large project reorganization

SW SWSW

SW

Software

SW SW

1/27/04 ©USC-CSE 17

University of Southern California
Center for Software Engineering C S E

 USC

Effect of Waterfall SEMP and Spiral SDP

• Delays in starting critical software
infrastructure
– OS, networking, DBMS, transaction processing, …

• Infeasible infrastructure
– Premature performance requirements (e.g., 1

second)

• Premature hardware selection overconstrains
software
– Can also induce premature COTS commitments

• Waterfall-based progress payments
undermine-spiral tasks
– Develop prototypes or get paid for specifications

1/27/04 ©USC-CSE 18

University of Southern California
Center for Software Engineering C S E

 USC

Early Risk Resolution Quotes

“In architecting a new software program,
all the serious mistakes are made on
the first day.”

 Robert Spinrad, VP-Xerox, 1988

“If you don’t actively attack the risks,
the risks will actively attack you.”

Tom Gilb, 1988

1/27/04 ©USC-CSE 19

University of Southern California
Center for Software Engineering C S E

 USC

Risk of Delaying Risk Management: Systems
—Blanchard- Fabrycky, 1998

Detail Design
and

Development

100

25

50

75

Conceptual-
Preliminary

Design

Construction
and/or

Production

System Use, Phaseout,
and Disposal

N
E
E
D

% Commitment to Technology,
Configuration, Performance, Cost, etc.

Cost Incurred

System-Specific Knowledge

Ease of Change

1/27/04 ©USC-CSE 20

University of Southern California
Center for Software Engineering C S E

 USC

Risk of Delaying Risk Management: Software

Phase in Which defect was fixed

10

20

50

100

200

500

1000

R
el

at
iv

e
co

st
 t

o
 f

ix
 d

ef
ec

t

2

1

5

Requirements Design Code Development Acceptance Operation
 test test

Smaller software projects

Larger software projects

• Median (TRW survey)

 80%

 20%

SAFEGUARD

GTE

IBM-SSD

•

•

•

•

•

•

1/27/04 ©USC-CSE 21

University of Southern California
Center for Software Engineering C S E

 USC

Steeper Cost-to-fix for High-Risk Elements

0
10
20
30
40
50
60
70
80
90

100

0 10 20 30 40 50 60 70 80 90 100

% of Software Problem Reports (SPR’s)

TRW Project A
373 SPR’s

TRW Project B
1005 SPR’s

% of
Cost
to
Fix
SPR’s

Major Rework Sources:
Off-Nominal Architecture-Breakers
A - Network Failover
B - Extra-Long Messages

1/27/04 ©USC-CSE 22

University of Southern California
Center for Software Engineering C S E

 USC

Acquisition Strategy Checklist
• Is the acquisition strategy consistent with the level of software risk on the

program?
i. List of software risks (how many, how identified, what are they, breadth and

depth, criticality, risk exposure)
ii. List of mitigation strategies that address software risks (number of risks

addressed by strategy, available resources to perform mitigation)
iii. Map of software risks and mitigation strategies to reveal coverage
iv. Milestone decision criteria that address software risks
 v. Activities performed to assure acquisition strategy is appropriate
vi. Positions of software experts within the acquisition program’s organizational

structure or hierarchy
vii. System engineering trade off analyses to be performed and assessment of

their impact on software; software trade off analyses and when they will be
performed

• Are qualified stakeholders involved in the preparation and execution of the
acquisition strategy?

• Do the acquisition strategy and pre-award processes (solicitation) address
software-related qualifications in selecting contractor(s)?

• Do the post-award processes (contract monitoring) facilitate the acquisition
strategy that addresses software issues?

1/27/04 ©USC-CSE 23

University of Southern California
Center for Software Engineering C S E

 USC

Goal 3. The success-critical stakeholders have committed adequate
software capability to perform their software-related tasks.

• 3.1 The success-critical stakeholders have been identified and
their roles and responsibilities negotiated.

• 3.2 The stakeholders involved in software-related negotiations
are represented by collaborative, representative,

authorized, committed, and knowledgeable personnel.
• 3.3 Acquisition executives and contracting personnel have

adequate software acquisition experience or training.
• 3.4 Suppliers, integrators, and acquirers have adequate

software skills and process maturity for their software- related
tasks.

• 3.5 Software staffing estimates have been validated for
feasibility and achievability.

Critical Success Factors: Goal 3

1/27/04 ©USC-CSE 24

University of Southern California
Center for Software Engineering C S E

 USC

Effect of Missing Operational Stakeholders

• Interoperators: Problems detected during
critical missions

• Maintainers: Slow, expensive response to
change

• Users: Information overload, wrong mission
decisions

• Administrators: Workflow slowdowns, unused
flexibility

1/27/04 ©USC-CSE 25

University of Southern California
Center for Software Engineering C S E

 USC

The Model-Clash Spider Web: Master Net
- Stakeholder value propositions (win conditions)

1/27/04 ©USC-CSE 26

University of Southern California
Center for Software Engineering C S E

 USC

Critical Success Factors for Integrated
Team Members

- CrossTalk, December 2003

• Not collaborative: Discord, frustration, loss of
morale

• Not representative: Delivery of unacceptable
systems, late rework

• Not authorized: Authorization delays,
unsupported systems

• Not committed: Missing homework,
discontinuities, delays

• Not knowledgeable: Unacceptable systems,
delays, late rework

1/27/04 ©USC-CSE 27

University of Southern California
Center for Software Engineering C S E

 USC

Goal 4. The software product plans and process plans are feasible and
compatible. A Feasibility Rationale provides convincing evidence that:

• 4.1 The lifecycle benefits determined by the system and software
requirements are worth the lifecycle investments determined by the system
and software architecture and choice of components.

• 4.2 A system built to the system and software architecture will support
the operational concept, satisfy the requirements and success-critical
stakeholders, and be buildable within the budgets and schedules in the
process plans.

• 4.3 All major software risks have been either resolved or covered by risk
management plans.

• 4.4 Plans for evolutionary/incremental software development and
integration are validated for achievability and kept stable during each
increment.
4.5 Software technologies, COTS, and NDI components have been
validated for maturity and compatibility.

Critical Success Factors: Goal 4

1/27/04 ©USC-CSE 28

University of Southern California
Center for Software Engineering C S E

 USC

Life Cycle Anchor Points
• Common System/Software stakeholder commitment

points
– Defined in concert with 30 Government, industry organizations
– Coordinated with Rational’s Unified Software Development

Process

• Life Cycle Objectives (LCO; DoD Milestone A)
– Stakeholders’ commitment to support system architecting
– Like getting engaged

• Life Cycle Architecture (LCA; DoD Milestone B)
– Stakeholders’ commitment to support full life cycle
– Like getting married

• Initial Operational Capability (IOC)
– Stakeholders’ commitment to support operations
– Like having your first child

1/27/04 ©USC-CSE 29

University of Southern California
Center for Software Engineering C S E

 USC

LCO (MS A) and LCA (MS B) Pass/Fail Criteria

A system built to the given architecture will
• Support the operational concept
• Satisfy the requirements
• Be faithful to the prototype(s)
• Be buildable within the budgets and schedules in

the plan
• Show a viable business case
• Establish key stakeholders’ commitment to proceed

– Cross Talk, December 2001

LCO: True for at least one architecture
LCA: True for the specific life cycle architecture;
 All major risks resolved or covered by a risk management plan

1/27/04 ©USC-CSE 30

University of Southern California
Center for Software Engineering C S E

 USC

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60

Percent of Time Added for Architecture and Risk Resolution

P
er

ce
n

t o
f T

im
e

A
d

d
ed

 to
 O

ve
ra

ll
S

ch
ed

u
le

How Much Architecting Is Enough?
-A COCOMO II Analysis

Percent of Project Schedule Devoted to
Initial Architecture and Risk Resolution

Added Schedule Devoted to Rework
(COCOMO II RESL factor)

Total % Added Schedule

10000
KSLOC

100 KSLOC

10 KSLOC

Sweet Spot

Sweet Spot Drivers:

Rapid Change: leftward

High Assurance: rightward

1/27/04 ©USC-CSE 31

University of Southern California
Center for Software Engineering C S E

 USC

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1997 1998 1999 2000 2001

Year

% COTS-
based USC
e-services

projects

COTS: The Future is Here
• Escalate COTS priorities for research, staffing, education

– It’s not “all about programming” anymore

1/27/04 ©USC-CSE 32

University of Southern California
Center for Software Engineering C S E

 USC

COTS-Based System Effort Scaling

COTS

Relative
COTS

Adaptation
Effort

• Reduce # COTS or Weaken COTS coupling
 - COTS choices, wrappers, domain architectures,
 open standards, COTS refresh synchronization

8

6

4

2

10

1 2 3 4

Strong COTS
Coupling

Weak COTS
Coupling

1/27/04 ©USC-CSE 33

University of Southern California
Center for Software Engineering C S E

 USC

COTS Upgrade Synchronization and
Obsolescence

• Risk #1: Many subcontractors means a proliferation of
evolving COTS interfaces

• Risk #2: Aggressively-bid subcontracts can lead to
delivery of obsolete COTS
– New COTS released every 8-9 months (GSAW)
– COTS unsupported after 3 releases (GSAW)
– An actual delivery: 120 COTS; 46% unsupported

• Strategy #1: Emphasize COTS interoperability in
source selection process

• Strategy #2: Contract provisions ensuring delivery of
refreshed COTS products.

1/27/04 ©USC-CSE 34

University of Southern California
Center for Software Engineering C S E

 USC

• Goal 5. Software progress with respect to plans is satisfactory.
• 5.1 Software cost, schedule, and progress metrics are defined

and monitored, and are acceptably consistent with plans.
• 5.2 Software development, integration, verification and

validation, and risk management milestones are being successfully
met.

• 5.3 Progress toward satisfying the software Feasibility Rationale
is monitored, and shortfalls are identified as risks to be
managed.

• 5.4 Likely changes in software-related policy, technology,
requirements, COTS/NDI components, and interfaces are monitored
and analyzed for impact, and are pro-actively being addressed.

• 5.5 Independent assessments of software aspects are performed
periodically.

Critical Success Factors: Goal 5

1/27/04 ©USC-CSE 35

University of Southern California
Center for Software Engineering C S E

 USC

Project Top 10 Risk Item List: Satellite Experiment Software

Risk Item
 Mo. Ranking
This Last #Mo. Risk Resolution Progress

Replacing Sensor-Control Software 1 4 2 Top Replacement Candidate Unavailable
Developer

Target Hardware Delivery Delays 2 5 2 Procurement Procedural Delays

Sensor Data Formats Undefined 3 3 3 Action Items to Software, Sensor Teams;
 Due Next Month

Staffing of Design V&V Team 4 2 3 Key Reviewers Committed; Need Fault-
 Tolerance Reviewer

Software Fault-Tolerance May 5 1 3 Fault Tolerance Prototype Successful
Compromise Performance

Accommodate Changes in Data 6 - 1 Meeting Scheduled With Data Bus
Bus Design Designers

Testbed Interface Definitions 7 8 3 Some Delays in Action Items; Review
 Meeting Scheduled

User Interface Uncertainties 8 6 3 User Interface Prototype Successful

TBDs In Experiment Operational - 7 3 TBDs Resolved
Concept

Uncertainties In Reusable - 9 3 Required Design Changes Small,
Monitoring Software Successfully Made

1/27/04 ©USC-CSE 36

University of Southern California
Center for Software Engineering C S E

 USC

Independent Assessments
• Help programs and broaden understanding

– Fight PM tunnel vision
– Identify issues across programs
– Capture lessons learned

• Example: Tri-Service Assessment Initiative
– Over 50 assessments
– Direct impact on programs (e.g. FCS, Comanche)
– Systemic findings from macro-analysis

• Common causes of problems
• Chains of events that may signify risks
• Unintended consequences from policies

– A major input to this Goal/CSF framework

1/27/04 ©USC-CSE 37

University of Southern California
Center for Software Engineering C S E

 USC

Example Assessment Summary

New objectives to validateGYGY1.5 Objectives validated with
respect to constraints

Interoperability more
complexGYGG1.4 Environment, resource, policy

constraints

GGGY1.3 Flexibility and evolvability
objectives

Interoperability more
complexGYGY1.2 System boundary,

environment, interfaces

GGGG1.1 Functionality and
performance objectives

New interoperability O&CsGYGY1. System and software
objectives and constraints

P
rev io us
a ctu al

C
u

r re n
t

p
ro

jec te d

C
u

r re n
t

a ctu
al

N
ex t

p roj ec ted

C
om

m
en ts

1/27/04 ©USC-CSE 38

University of Southern California
Center for Software Engineering C S E

 USC

Challenge to Community

•Goal/CSF Framework improvement
suggestions

•Techniques for avoiding problem situations

•Experimental application and feedback

	Early Warning Indicators in the Acquisition of Software- Intensive Systems
	Outline
	Trends in Defense Software- Intensive Systems
	Waterfall Legacies: SW CMM v. 1.1
	Defense Management Evolving New Acquisition Approaches
	Trilateral Working Group Addressing Early Warning Indicators
	Trilateral Working Group
	Current Goal/ Critical Success Factor Framework
	Software Acquisition Goals
	Critical Success Factors: Goal 1
	Why Software Projects Fail
	Effect of Unvalidated Requirements
	Effect of Unvalidated Software Schedules
	Detailed Software Cost and Schedule Checklist
	Critical Success Factors: Goal 2
	Effect of Software Underrepresentation
	Effect of Waterfall SEMP and Spiral SDP
	Early Risk Resolution Quotes
	Risk of Delaying Risk Management: Systems
	Risk of Delaying Risk Management: Software
	Steeper Cost- to- fix for High- Risk Elements
	Acquisition Strategy Checklist
	Critical Success Factors: Goal 3
	Effect of Missing Operational Stakeholders
	The Model- Clash Spider Web: Master Net
	Critical Success Factors for Integrated Team Members
	Critical Success Factors: Goal 4
	Life Cycle Anchor Points
	LCO (MS A) and LCA (MS B) Pass/ Fail Criteria
	How Much Architecting Is Enough?
	COTS: The Future is Here
	COTS- Based System Effort Scaling
	COTS Upgrade Synchronization and Obsolescence
	Critical Success Factors: Goal 5
	Project Top 10 Risk Item List: Satellite Experiment Software
	Independent Assessments
	Example Assessment Summary
	Challenge to Community

