
10/22/02 ©USC-CSE 1

C e B A S EC S E
USC

Center For Software Engineering

Barry Boehm, USC
Vic Basili, Fraunhofer Maryland

SIS Acquisition Conference
January 28, 2003

Complex Systems of Systems (CSOS) :
Software Benefits,Risks,and Strategies

10/22/02 ©USC-CSE 2

C e B A S EC S E
USC

Center For Software Engineering

• CSOS characteristics and software
benefits

• Software benefits and risks
• Software risks and strategies
• Conclusions

Complex Systems of Systems (CSOS):
Software Benefits, Risks, and Strategies

10/22/02 ©USC-CSE 3

C e B A S EC S E
USC

Center For Software Engineering

 CSOS Characteristics and Software Benefits

• Flexibility to accommodate
concurrent and incremental
development

• Need for early capabilities

• Rapidly adaptable
• Rapidly upgradeable
• Near-free COTS technology

upgrades

• Need to rapidly accommodate
frequent changes in missions,
environment, technology, and
interoperating systems

• Ease of accommodating many
combinations of options

• Ease of tailoring various system
and CSOS versions

• Many component systems and
contractors with wide variety of
users and usage
scenarios—including legacy
systems

(relative to hardware)

10/22/02 ©USC-CSE 4

C e B A S EC S E
USC

Center For Software Engineering

CSOS Software Benefits, Risks, and Strategies
• Accommodating many combinations of options

– Development speed; integration; cross-system KPP’s
• Accommodating many combinations of systems and

contractors
– Subcontractor specifications, incompatibilities, change

management
• Rapid tailoring and upgrade of many combinations of options

– Version control and synchronous upgrade propagation
• Flexibility, rapid adaptability, incremental development

– Subcontractor chain increment synchronization;
requirements and architecture volatility

• Near-free COTS technology upgrades
– COTS upgrade synchronization; obsolescence; subcontractor

COTS management

• Compound risks

10/22/02 ©USC-CSE 5

C e B A S EC S E
USC

Center For Software Engineering

Many CSOS Options and Software Development Speed

• Risk #1: Limited speed of CSOS Software Development
– Many CSOS scenarios require close coupling of complex

software across several systems and subsystems
– Well-calibrated software estimation models agree that

there are limits to development speed in such situations
– Estimated development schedule in months for closely

coupled SW with size measured in equivalent KSLOC
(thousands of source lines of code):
Months =~ 5 * 3 KSLOC

85504033- Months

50001000500300- KSLOC

10/22/02 ©USC-CSE 6

C e B A S EC S E
USC

Center For Software Engineering

Risk #1: Limited Speed of CSOS Software Development

• Strategy #1a. Architect the CSOS software to be able to develop
independent software units in parallel and have them cleanly
integrate at the end.

• Strategy #1b. Focus scope of Initial Operational Capability (IOC)
on top-priority, central-risk elements.
– Prioritize the IOC feature content to enable a Schedule-as-

Independent-Variable (SAIV)* development process:
• Estimate maximum size of software buildable with high

confidence within available schedule
• Define core-capability IOC content based on priorities, end-

to-end usability, and need for early development of central-
risk software

• Architect for ease of adding and dropping borderline-priority
features

• Monitor progress; add or drop features to meet schedule
* Can be used for a Cost-as-Independent Variable (CAIV) process as well

10/22/02 ©USC-CSE 7

C e B A S EC S E
USC

Center For Software Engineering

Many CSOS Options and Software Integration

• Risk #2. Critical dimensions of software integration may begin late
and cause overruns. CSOS software needs to be integrated:

– by CSC/CSCI hierarchy
– by cross-IPT software exercises which incrementally ingrate the

software
– by critical threads and scenarios (nominal and off-nominal);
– by number of platforms and processors involved; by homogeneous-to-

heterogeneous platforms;
– by friendly-to-adversarial environment; etc.

• Strategy #2a. Reflect all of these software integration dimensions in
the system integration plans for each Build in each Increment.

• Strategy #2b. Integrate early via architectural analysis and best-
possible versions of daily-build-and-test strategies. This involves
significant cross-IPT coordination, and subcontractor provisions
and procedures to provide intermediate versions of software for
early integration testing.

10/22/02 ©USC-CSE 8

C e B A S EC S E
USC

Center For Software Engineering

• Risk #3. Many CSOS software Key Performance
Parameter (KPP) tradeoffs may be cross-cutting,
success-critical, difficult to analyze, and
incompletely formulated.

• Strategy #3. Focus significant modeling,
simulation, and execution analyses on success-
critical software KPP tradeoff issues. These
should particularly include critical-infrastructure
KPP tradeoff analyses, and adversary-oriented
analyses and exercises.

Many CSOS Options and Cross-System KPP’s

10/22/02 ©USC-CSE 9

C e B A S EC S E
USC

Center For Software Engineering

How Soon to Define Subcontractor Interfaces?
Risk exposure RE = Prob(Loss) * Size(Loss)

-Loss due to rework delays

Time spent defining & validating architecture

RE =
P(L) * S(L)

Many interface defects: high P(L)
Critical IF defects: high S(L)

Few IF defects: low P(L)
Minor IF defects: low S(L)

10/22/02 ©USC-CSE 10

C e B A S EC S E
USC

Center For Software Engineering

How Soon to Define Subcontractor Interfaces?
- Loss due to rework delays

- Loss due to late subcontact startups

Time spent defining & validating architecture

RE =
P(L) * S(L)

Few delays: low P(L)
Short Delays: low S(L)

Many delays: high P(L)
Long delays: high S(L)

Many interface defects: high P(L)
Critical IF defects: high S(L)

Few IF defects: low P(L)
Minor IF defects: low S(L)

10/22/02 ©USC-CSE 11

C e B A S EC S E
USC

Center For Software Engineering

Time spent defining & validating architecture

RE =
P(L) * S(L)

Many delays: high P(L)
Long delays: high S(L)

Sweet
Spot

Many interface defects: high P(L)
Critical IF defects: high S(L)

Few IF defects: low P(L)
Minor IF defects: low S(L)

How Soon to Define Subcontractor Interfaces?
- Sum of Risk Exposures

Few delays: low P(L)
Short delays: low S(L)

10/22/02 ©USC-CSE 12

C e B A S EC S E
USC

Center For Software Engineering

How Soon to Define Subcontractor Interfaces?
-Very Many Subcontractors

Risk #4: Delayed CSOS availability due to many-subcontractor IF rework

Strategy #4: Invest more time in architecture definition

RE =
P(L) * S(L)

Mainstream
 Sweet

 Spot

High-Q
Sweet
Spot

Higher P(L),
S(L): many more IF’s

Time spent defining & validating architecture

10/22/02 ©USC-CSE 13

C e B A S EC S E
USC

Center For Software Engineering

Rapid, Synchronous Software Upgrades
• Risk #5. Out-of-synchronization software upgrades will be a major

source of operational losses
– Software crashes, communication node outages, out-of-synch

data, mistaken decisions
– Extremely difficult to synchronize multi-version, distributed,

mobile-platform software upgrades
– Especially if continuous-operation upgrades needed

• Strategy #5a. Architect software to accommodate continuous-
operation, synchronous upgrades
– E.g., parallel operation of old and new releases while validating

synchronous upgrade
• Strategy #5b. Develop operational procedures for synchronous

upgrades in software support plans
• Strategy #5c. Validate synchronous upgrade achievement in

operational test & evaluation

10/22/02 ©USC-CSE 14

C e B A S EC S E
USC

Center For Software Engineering

Rapid Adaptability to Change: Architecture

• Risk #6. Software architecture may be over-optimized for
performance vs. adaptability to change

• Strategy #6. Modularize software architecture around
foreseeable sources of change
-Identify foreseeable sources of change

-Technology, interfaces, pre-planned product
improvements
-Encapsulate sources of change within software modules

-Change effects confined to single module
 -Not a total silver bullet, but incrementally much better

10/22/02 ©USC-CSE 15

C e B A S EC S E
USC

Center For Software Engineering

Rapid Adaptability to Change:
Evolving Software Architecture

• Risk #7. Software architecture will need to change & adapt to rapidly
changing priorities and architecture drivers
– new COTS releases;
– evolving enterprise standards and policies;
– emerging technologies and competitor threats

• Strategy #7a. Organize CSOS software effort to ensure the ability to rapidly
analyze, develop, & implement software architecture changes. Empower a
focal-point integrator of the software architecture and owner of the critical
software infrastructure.

• Strategy #7b. Raise the organizational level of the owner of the software
architecture & infrastructure (and the owner of CSOS software integration
and test) to a very high level in the CSOS organizational structure.

10/22/02 ©USC-CSE 16

C e B A S EC S E
USC

Center For Software Engineering

Rapid Adaptability to Change:
Architecture Evolution and Subcontracting

• Risk #8. The CSOS software architecture will inevitably change.
Inflexible subcontracting will be a major source of delays and shortfalls.

• Strategy #8. Develop subcontract provisions enabling flexibility in
evolving deliverables. Develop an award fee structure and procedures
based on objective criteria for evaluating subcontractors’ performance in:

-Schedule Preservation
-Cost Containment
-Technical Performance
-Architecture and COTS Compatibility
-Continuous Integration Support
-Program Management
-Risk Management

10/22/02 ©USC-CSE 17

C e B A S EC S E
USC

Center For Software Engineering

Flexibility and Rapid Adaptability to Change:
Definitive but Flexible Software Milestones

• Risk #9. Flexible CSOS software process will be
overconstrained by too-tight milestone exit criteria, but
will be hard to monitor and can run out of control with too-
loose milestone exit criteria.

• Strategy #9. Use the WinWin Spiral Model Life Cycle
Objectives (LCO) and Live Cycle Architecture (LCA)
milestone criteria. They provide risk-driven degrees of
milestone deliverable content, and require demonstration
of compatibility and feasibility via a Feasibility Rationale
deliverable.

10/22/02 ©USC-CSE 18

C e B A S EC S E
USC

Center For Software Engineering

Need Concurrently Engineered Milestone Packages
–Life Cycle Objectives (LCO); Life Cycle Architecture Package (LCA)

•Assurance of consistency among elements above
•All major risks resolved or covered by risk management plan.

Feasibility Rationale

• Elaboration of WWWWWHH* for initial Operational Capability (IOC)
 - Partial elaboration, identification of key TBD’s for later increments

Life-Cycle Plan

•Choice of architecture and elaboration by increment
 - Physical and logical components, connectors, configurations,
constraints
 -COTS, reuse choices
 - Domain architecture and architectural style choices
• Architecture evolution parameters

System and
Software
Architecture

•Elaboration of functions, interfaces, quality attributes, and
prototypes by increment
 - Identification of TBD’s (to be determined items)
•Stakeholders’ concurrence on their priority concerns

System
Requirements

•Exercise range of usage scenarios
•Resolve major outstanding risks

System Prototype(s)

•Elaboration of system objectives and scope by increment
•Elaboration of operational concept by increment

Operational Concept

*WWWWWHH: Why, What, When, Who, Where, How, How Much

10/22/02 ©USC-CSE 19

C e B A S EC S E
USC

Center For Software Engineering

LCO (MS A) and LCA (MS B) Pass/Fail Criteria

A system built to the given architecture will
• Support the operational concept
• Satisfy the requirements
• Be faithful to the prototype(s)
• Be buildable within the budgets and schedules in the

plan
• Show a viable business case
• Establish key stakeholders’ commitment to proceed

– Cross Talk, December 2001

LCO: True for at least one architecture
LCA: True for the specific life cycle architecture;
 All major risks resolved or covered by a risk management plan

10/22/02 ©USC-CSE 20

C e B A S EC S E
USC

Center For Software Engineering

Near-Free COTS Technology Upgrades:
COTS Upgrade Synchronization and Obsolescence
• Risk #10. If too many COTS software products, versions, and releases

are contained in the various CSOS software elements, the software will
not integrate. If unsupported COTS software releases are contained in
the software elements, the integration will suffer serious delays. Given
that COTS software products typically undergo new releases every 8-9
months, and become unsupported after 3 new releases, there are high
risks that a tightly-budgeted delivery on a software subcontract spanning
over 30 months will include unsupported COTS software products.

• Strategy #10a. Develop a management tracking scheme for all COTS
software products in all CSOS software elements, and a strategy for
synchronizing COTS upgrades.

• Strategy #10b. Develop contract and subcontract provisions and
incentives to ensure consistency and interoperability across contractor
and subcontractor-delivered COTS software products, and to ensure that
such products are recent-release versions.

10/22/02 ©USC-CSE 21

C e B A S EC S E
USC

Center For Software Engineering

CSOS Compound Risks
• Risk #11. Serious inter-system compound risks will be discovered

late. Compound risks are very frequently architecture-breakers,
budget-breakers, and schedule-breakers. Examples include closely-
couples immature technologies and closely-coupled, ambitious
critical path tasks.

• Strategy #11a. Establish a hierarchical software risk tracking
compound risk assessment scheme. The top level of the hierarchy
would be the Top-10 system-wide software risks. These would tier
down to system-level and subcontractor-level Top-10 risk lists.
These are valuable both for overall software risk management and
for compound risk assessment.

• Strategy #11b. Develop high-priority plans to decouple high-risk
elements and to reduce their risk exposure.

• Strategy #11c. Establish a CSOS Software Risk Experience Base.
This is extremely valuable in avoiding future instances of previously
experienced risks.

10/22/02 ©USC-CSE 22

C e B A S EC S E
USC

Center For Software Engineering

Conclusions: CSOS and Software
• Software is a critical enabling technology for Complex Systems of

Systems(CSOS)
-It provides the means for dealing with many CSOS risks and
opportunities
-Particularly those involving interoperablity and rapid adaptability to
change

• Software’s CSOS benefits come with their own risks
-Some of these are rarely encountered in hardware-intensive acquisitions
-They particularly affect ambitious CSOS schedules

• Strategies for dealing with CSOS software risks are becoming available
-Some require changes in traditional acquisition practices

• CSOS software risks are often cross-cutting and CSOS-wide
-Successfully resolving them often requires informed, pro-active, high-
level management authority

	Complex Systems of Systems (CSOS) : Software Benefits, Risks, and Strategies
	Complex Systems of Systems (CSOS) (cont'd.)
	CSOS Characteristics and Software Benefits
	CSOS Software Benefits, Risks, and Strategies
	Many CSOS Options and Software Development Speed
	Risk # 1: Limited Speed of CSOS Software Developmen
	Many CSOS Op ions and Sof ware In egra ion
	Many CSOS Options and Cross- System KPPs
	How Soon to Define Subcontractor Interfaces?
	How Soon (cont'd.)
	How Soon (cont'd.)
	How Soon (cont'd.)

	Rapid, Synchronous Software Upgrades
	Rapid Adaptability to Change: Architecture
	Rapid Adaptability to Change: Evolving Software Architecture
	Rapid Adaptability to Change: Architecture Evolution and Subcontracting
	Flexibility and Rapid Adaptability to Change: Definitive but Flexible Software Milestones
	Need Concurrently Engineered Milestone Packages
	LCO (MS A) and LCA (MS B) Pass/ Fail Cri eria
	Near- Free COTS Technology Upgrades: COTS Upgrade Synchronization and Obsolescence
	Engineering CSOS Compound Risks
	Conclusions: CSOS and Software

