
Sponsored by the U.S. Department of Defense
© 2006 by Carnegie Mellon University

1

Pittsburgh, PA 15213-3890

Best Practices

in

Software Architecture

Paul Clements
Software Engineering Institute / Carnegie Mellon University

and
Indian Institute of Technology - Bombay

26 July 2006

© 2005 by Carnegie Mellon University 2

Applied R&D laboratory situated as a college-level unit at
Carnegie Mellon University, Pittsburgh, PA, USA

Established in 1984

Technical staff of 335

Offices in Pittsburgh, Pennsylvania,
Arlington, Virginia, and
Frankfurt, Germany

Purpose: Help others make
measured improvements in their
software engineering practices

Software Engineering Institute

© 2005 by Carnegie Mellon University 3

One of 5-6 programs at the SEI, with about 30 people.
Our goal is to make improvements in

• Software product line engineering

• Predictable assembly of certifiable components

• Software architecture

• Creation

• Documentation

• Evaluation

• Use in system-building

Product Line Systems Program

© 2005 by Carnegie Mellon University 4

Software architecture

The rise of software architecture has resulted from two
trends:
• Recognition of the importance of quality attributes
• The development of very large and very complex

systems

© 2005 by Carnegie Mellon University 5

Building large, complex systems

Large-scale design decisions cannot be
made by programmers.
• Have limited visibility and short-term

perspectives
• Trained in technology solutions to

specific problems.

Teams can only be coordinated, and QA’s
can only be achieved, by making broad
design decisions that apply to the entire
system – all of its elements.

© 2005 by Carnegie Mellon University 6

Importance of quality attributes

If the only criterion for software was to get the right
answer, we would not need architectures―unstructured,
monolithic systems would suffice.
But other things also matter, such as
• modifiability
• time of development (time to market)
• performance
• coordination of work teams

These and other system quality attributes are largely
dependent on architectural decisions.
• All design involves tradeoffs in system qualities.
• The earlier we reason about tradeoffs, the better.

© 2005 by Carnegie Mellon University 7

What Is Software Architecture?

Software architecture is the structure or structures of the system,
which comprise software elements, the externally visible properties
of these elements, and the relationships among them.

Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice, Second Edition. Boston, MA: Addison-Wesley, 2003.

© 2005 by Carnegie Mellon University 8

Structures: Plural!
Systems can and do have many structures.
• No single structure can be the architecture.
• The set of candidate structures is not fixed or prescribed.
• Relationships and elements might be runtime related such as

- “sends data to,” “invokes,” or “signals”
- processes or tasks

• Relationships and elements might be nonruntime related such as
- “is a submodule of,” “inherits from,” or “is allocated to team X

for implementation”
- a class or library

• Representations of structures are views of the architecture
- All modern approaches to architecture embody the concept of

multiple views.

© 2005 by Carnegie Mellon University 9

A Picture of Architecture-Based
Development

Development organizations who use architecture as a
fundamental part of their way of doing business often
define an architecture-based development process.

This talk will illuminate some parts of that process.

One of the early parts is understanding the architecturally
significant requirements.

© 2005 by Carnegie Mellon University 10

Quality attributes

If we accept the importance of quality attributes, then we need to
understand how to specify and capture them…

• Our customer has to tell us what he wants
• Our architect and designers must understand it
• Our programmers have to achieve it
• Our testers have to test for it

…and how to design and build software to achieve them.

© 2005 by Carnegie Mellon University 11

QA’s fall into two groups

“Run-time” QA’s
• We can measure how well a system exhibits these by

watching the system in operation
• Performance, security, availability, …

“Non-run-time” QA’s
• We can measure these by watching a team in operation
• Maintainability, portability, buildability, time to market…

© 2005 by Carnegie Mellon University 12

Specifying quality attributes

Conclusion: Just naming a quality attribute doesn’t help very
much.

We can’t build software with just that. We need to be more
specific.

Most people use quality attribute scenarios to capture quality
attributes.

I want a system that is
highly modifiable!

© 2005 by Carnegie Mellon University 13

Scenarios

A scenario is a little story describing an interaction
between a stakeholder and a system.

A use case is a kind of scenario. The stakeholder is the
user. The interaction is a functional use of the system.
• “The user pushes this button, and this result

occurs.”

We can generalize the notion of a use case to come up
with quality attribute scenarios.

A quality attribute scenario is a short description of how a
system is required to respond to some stimulus.

© 2005 by Carnegie Mellon University 14

QA Scenarios

A quality attribute scenario has six parts:

• source – an entity that generates a stimulus

• stimulus – a condition that affects the system

• artifact – the part of that was stimulated by the
stimulus

• environment – the condition under which the
stimulus occurred

• response – the activity that results because of the
stimulus

• response measure – the measure by which the
system’s response will be evaluated

© 2005 by Carnegie Mellon University 15

A QA Scenario for Availability

• An unanticipated external message is received by a
process during normal operation. The process
informs the operator of the message’s receipt, and
the system continues to operate with no downtime.

1. source – external

2. stimulus – unanticipated message received

3. artifact – process

4. environment – during normal operation

5. response – system continues to operate

6. response measure – zero downtime

© 2005 by Carnegie Mellon University 16

A QA Scenario for Modifiability

• During maintenance, a change is made to the system’s
rules engine. The change is completed in one day.

1. source – requestor of the change

2. stimulus – a change is made

3. artifact – rules engine

4. environment – during maintenance

5. response – the change is completed

6. response measure – …in one day

© 2005 by Carnegie Mellon University 17

A QA Scenario for Security

• During peak operation, an unauthorized intruder tries
to download prohibited data via the system
administrator’s interface. The system detects the
attempt, blocks access, and notifies authorities within
15 seconds.

1. source – an unauthorized intruder
2. stimulus – tries to download prohibited data
3. artifact – system administrator’s interface
4. environment – during peak operation
5. response – the attempt is detected, blocked, reported
6. response measure – …within 15 seconds

© 2005 by Carnegie Mellon University 18

More about QAs

There is no standard set of quality attributes
• People disagree on names:

Maintainability/modifiability/portability
• People come up with new ones: “calibrate-ability”
• There is no standard meaning of what it means to

be “secure”

Scenarios let us avoid all of these problems!

The QAs are defined by the scenarios!

Who tells us what QA’s are important? Stakeholders!

© 2005 by Carnegie Mellon University 19

Stakeholders

Stakeholders are people with a vested interest in the
system. They are the people who can tell us what is
needed. They are the people who can tell us if what we
are building is the right thing.

We usually think of the user as telling us what is required,
but there are many kinds of stakeholders.

© 2005 by Carnegie Mellon University 20

Concerns of System Stakeholders

Marketing
stakeholder

Behavior,
performance,

security,
reliability,
usability!

Low cost,
keeping people

employed, leveraging
existing corporate

assets!

Low cost, timely
delivery, not changed

very often!

Modifiability!Neat features,
short time to market,
low cost, parity with
competing products!

Architect

Development
organization’s
management
stakeholder

End user
stakeholder

Maintenance
organization
stakeholder

Customer
stakeholder

I need a raise!

© 2005 by Carnegie Mellon University 21

Stakeholder Involvement
Stakeholders’ quality attribute requirements are seldom
documented, which results in
• goals not being achieved
• conflict between stakeholders

Architects must identify and actively engage stakeholders
early in the life cycle to
• understand the real constraints of the system (many times,

stakeholders ask for everything!)
• manage the stakeholders’ expectations (they can’t have

everything!)
• negotiate the system’s priorities
• make tradeoffs

© 2005 by Carnegie Mellon University 22

SEI Quality Attribute Workshop
(QAW)

The QAW is a facilitated method that engages system
stakeholders early in the life cycle to discover the
driving quality attributes of a software-intensive system.

Key points about the QAW are that it is

• system-centric

• stakeholder focused

• used before the software architecture has been
created

© 2005 by Carnegie Mellon University 23

QAW Steps

1. QAW Presentation and Introductions

2. Business/Mission Presentation

3. Architectural Plan Presentation

4. Identification of Architectural Drivers

5. Scenario Brainstorming

6. Scenario Consolidation

7. Scenario Prioritization

8. Scenario Refinement
Iterate as necessary with broader
stakeholder community

© 2005 by Carnegie Mellon University 24

Update Architectural Vision
Refine Requirements
Create Prototypes
Exercise Simulations
Create Architecture

QAW Benefits and Next Steps

• increased stakeholder communication
• clarified quality attribute requirements
• informed basis for architectural decisions

QAW
Quality
Attribute
Scenarios:
• raw
• prioritized
• refined

Evaluate
Architecture

Can be
used to

Potential Next Steps

Potential Benefits

© 2005 by Carnegie Mellon University 25

Creating the architecture

Architects primarily work by using previously-tried
solutions

• Large scale: Patterns and styles

• Small scale: Tactics

Styles, patterns, and tactics represent conceptual tools in
the architect’s “tool bag.”

Professional architects always keep their tool bag up to
date.

© 2005 by Carnegie Mellon University 26

Tactics

An architectural tactic is a fine-grained design approach
used to achieve a quality attribute response.

Tactics are the “building blocks” of design from which
architectural patterns are created.

Tactics to
control
responseStimulus Response

© 2005 by Carnegie Mellon University 27

Tactics for Availability

Tactics to
control
AvailabilityStimulus:

Fault occurs
Response:
Fault masked or
Repair made

© 2005 by Carnegie Mellon University 28

Summary of Availability Tactics

Availability

Fault
Detection

• Ping/Echo
• Heartbeat
• Exception

Fault
Recovery
Preparation
and Repair

• Voting
• Active

Redundancy
• Passive

Redundancy
• Spare

Fault Recovery
and
Reintroduction

Fault
Prevention

• Shadow
• State

Resynchronization
• Rollback

• Removal
From Service

• Transactions
• Process

Monitor

Fault

Fault
masked
or
repair
made

© 2005 by Carnegie Mellon University 29

Summary of Modifiability Tactics

Stimulus:
Change
arrives

Response:
Changes
made,tested,
and deployed
within time
and budget

Prevention
of Ripple Effect

Defer Binding
Time

Localize
Changes

Runtime
registration

Configuration
files

Polymorphism
Component

replacement
Adherence to

defined
protocols

Hide information
Maintain existing

interface
Restrict

communication
paths

Use an
intermediary

Semantic
coherence

Anticipate
expected
changes

Generalize
module

Limit possible
options

Abstract common
services

Modifiability

© 2005 by Carnegie Mellon University 30

Tactics for Performance

Stimulus:
Events
arrive

Response:
Response
generated
within time
constraints

Resource
management

Resource
arbitration

Resource
demand

Scheduling
policy

Introduce
concurrency

Maintain
multiple copies

Increase
available
resources

Increase
computation
efficiency

Reduce
computational
overhead

Manage event rate
Control freq. Of

sampling

Performance

© 2005 by Carnegie Mellon University 31

Tactics for Security

Stimulus:
Attack

Response:
System
detects,
resists, or
recovers from
attacks

Detecting
Attacks

Recovering
from an attack

Resisting
Attacks

RestorationIntrusion
detection

Authenticate
users

Authorize users
Maintain data

confidentiality
Maintain integrity
Limit exposure
Limit access

Security

Identification

Audit trailSee
“Availability”

© 2005 by Carnegie Mellon University 32

Tactics for Testability

Stimulus:
Completion
of an
increment

Response:
Faults
detected

Internal
monitoring

Manage
Input/Output

Built-in
monitors

Record/playback
Separate interface

from implementation
Specialized access

routines/interfaces

Testability

© 2005 by Carnegie Mellon University 33

Attribute-Driven Design (ADD) Method

ADD is a step-by-step method for systematically producing the
first architectural designs for a system.

ADD results
• Overall structuring decisions
• Interconnection and coordination mechanisms
• Application of patterns and tactics to specific parts of

architecture
• Explicit achievement of quality attribute requirements
• NOT detailed interfaces

ADD requires as input:
• Quality attribute requirements
• Functional requirements
• Constraints

© 2005 by Carnegie Mellon University 34

Attribute-Driven Design (ADD) Steps
Step 1: Confirm there is sufficient requirements information
Step 2: Choose part of the system to decompose
Step 3: Prioritize requirements and identify architectural drivers
Step 4: Choose design concept – patterns, styles, tactics -- that

satisfies the architectural drivers associated with the part of
the system we’ve chosen to decompose.

Step 5: Instantiate architectural elements and allocate
functionality

Step 6: Merge designs completed thus far
Step 7: Allocate remaining functionality
Step 8: Define interfaces for instantiated elements
Step 9: Verify and refine requirements and make them

constraints for instantiated elements
Step 10: Repeat steps 2 through 9 for the next part of the system

you wish to decompose

© 2005 by Carnegie Mellon University 35

Now what?

How do we know that our architecture is appropriate for its
intended purpose?

In a large development project, an enormous amount of
money may be riding on the architecture.

The company’s future may be at stake.

We need to evaluate the architecture.

© 2005 by Carnegie Mellon University 36

How can we do this?

The SEI has developed the Architecture
Tradeoff Analysis Method (ATAM).

The purpose of ATAM is: to assess the
consequences of architectural decisions
in light of quality attribute requirements and
business goals.

© 2005 by Carnegie Mellon University 37

ATAM Benefits

There are a number of benefits from performing
ATAM evaluations

• identified risks

• clarified quality attribute requirements

• improved architecture documentation

• documented basis for architectural decisions

• increased communication among stakeholders

The results are improved architectures.

© 2005 by Carnegie Mellon University 38

ATAM Steps

Phase 1

1. Present the ATAM
2. Present business drivers
3. Present architecture
4. Identify architectural approaches
5. Generate quality attribute utility tree
6. Analyze architectural approaches
7. Brainstorm and prioritize scenarios
8. Analyze architectural approaches
9. Present results

Phase 2

© 2005 by Carnegie Mellon University 39

Utility Tree Construction

Utility

Performance

Modifiability

Availability

Security

Add CORBA middleware
in < 20 person-months

Change web user interface
in < 4 person-weeks

Power outage at site1 requires traffic
redirected to site2 in < 3 seconds.

Network failure detected and recovered
in < 1.5 minutes

Reduce storage latency on
customer DB to < 200 ms.

Deliver video in real time

Customer DB authorization works
99.999% of the time

Credit card transactions are secure
99.999% of the time

Data
Latency

Transaction
Throughput

New products

Change
COTS

H/W failure

COTS S/W
failures

Data

Data
confidentiality

integrity

(L,M)

(M,M)

(H,H)

(H,L)

(H,H)

(H,H)

(H,M)

(H,L)

© 2005 by Carnegie Mellon University 40

Conceptual Flow of ATAM

Analysis
Architectural

Decisions

Scenarios
Quality

Attributes

Architectural
Approaches

Business
Drivers

Software
Architecture

Risks

Sensitivity Points

Tradeoffs

Non-Risks

impacts

Risk Themes

distilled
into

© 2005 by Carnegie Mellon University 41

Documenting an architecture

Architecture serves as the blueprint for the system, and
the project that develops it.
• It defines the work assignments.
• It is the primary carrier of quality attributes.
• It is the best artifact for early analysis.
• It is the key to post-deployment maintenance and

mining.

Documenting the architecture is the crowning step to
creating it.

Documentation speaks for the architect, today and 20
years from today.

© 2005 by Carnegie Mellon University 42

What’s the answer?

“How do you document a software architecture?”

In industry, there seems to be a lack of systematic approaches to
documentation. Instead, the emphasis has been on languages.

In the past, the answer seems to have been:

• “Use UML.”

• “Draw boxes and lines.”

• “What else do I need besides my class diagrams in Rose?”

• “Not very well.”

• “How do you document a what?”

Now, however, we have a much better answer.

© 2005 by Carnegie Mellon University 43

“Views and Beyond” approach to
architecture documentation

The concept of a “view” gives us our main principle of
architecture documentation:

Document the relevant views,
and then add information

that applies to more than one view,
thus tying the views together.

© 2005 by Carnegie Mellon University 44

Summary: Documenting a View

Section 1:
Primary presentation

Sections 2-6:
Supporting documentation

© 2005 by Carnegie Mellon University 45

Summary: Documentation Beyond
Views

Template for Documentation Beyond Views

How the documentation is organized
Section 1. Documentation roadmap
Section 2. View template

What the architecture is:
Section 3. System overview
Section 4. Mapping between views
Section 5. Directory
Section 6. Glossary and acronym list

Why the architecture is the way it is:

Section 7. Background, design constraints, and rationale

A template for putting Documentation Beyond Views in a volume
of its own:

© 2005 by Carnegie Mellon University 46

A Picture of Architecture-Based Dev.

Prioritized
QA scenarios

C lie nt
T elle r 1

A cco u nt
Se rve r-M a in

Acc ou n t
S e rv er -Ba cku p

Acc ou n t
A dm in is tra tiveD a ta ba se

C on n e ct o r Ty p es :
P ub lish -S usc rib e

C lien t- Se rve r
R e qu es t /R ep ly

D a tab as e Acce ss

Att ach m en tKEY C o m p on e n t T yp e s:

C lie n t

S er ver

D at ab ase

D at ab ase
A pp lica tion

ASTER
Gateway

V0
Gateway

Maintenance
Tool

DSSYBASE

KEY Repository Componen t

RPC

SQL

Exposed RPC
Interface

Exposed SQL
Interface

Patterns and tactics

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

<<layer>> C

<<layer>> B

<<segment>>
B1

<<segment>>
B2

<<segment>>
B3

<<layer>> A

<<allowed to use>>

<<allowed to use>>

<<allowed to use>>

“Sketches” of
candidate views,

determined by patterns Chosen, combined
views plus doc’n.

beyond views

Requirements,
constraints

Stakeholders

Architect’s Influences
Stakeholders

Development
organization
Technical
environment
Architect’s
experience

Requirements

System

Ar
c
hi
te
ct
(s
)

Architecture

Arch. Business Cycle

QAW

ADD

VaB
ATAM

© 2005 by Carnegie Mellon University 47

Source of material

Software Architecture in
in Practice,

Len Bass, Paul Clements,
Rick Kazman,

Addison Wesley 2003

Evaluating Software
Architectures: Methods

and Case Studies,
Paul Clements,
Rick Kazman,

Mark Klein,
Addison Wesley 2001

Documenting Software
Architectures: Views and

Beyond, P. Clements,
F. Bachmann, L. Bass,

D. Garlan, J. Ivers,
R. Little, R. Nord, J. Stafford,

Addison Wesley 2002

E-mail: clements@sei.cmu.edu

© 2005 by Carnegie Mellon University 48

New project: Improving Software
Architecture Competence

Architectures are created by architects.
• How can we help them do their best work?
• What does it mean for an architect to be

competent?
• How can an architect improve his/her

competence?

Architects work in organizations.
• How can we help an organization help their architects do their

best work?
• What does it mean for an organization that produces

architectures to be competent?
• How can an organization improve its competence in

architecture?

© 2005 by Carnegie Mellon University 49

What do architects do?

To understand how to help architects do what they do, we
need to understand what they do.
• What are their duties?
• What skills and knowledge made them “capable of

performing their allotted or required function?”

Philippe Kruchten writes that he requires
architects working for him to spend 50%
of their time on the architecture.

What do they do with the other 50%?

© 2005 by Carnegie Mellon University 50

We can survey the “community”

Sources of information
• “Broadcast” sources: Information written by self-styled

experts for mass anonymous consumptions
- Web sites: e.g., Bredemeyer, SEI, HP, IBM (16)
- Blogs and essays (16)
- “Duties” list on SEI web site
- Books on software architecture (25 top-sellers)

• Education and training sources:
- University courses in software architecture (29)
- Industrial/non-university public courses (22)
- Certificate and certification programs in architecture;

e.g., SEI, Open Group, Microsoft (7)
• “Architecture for a living” sources

- Position descriptions for software architects (60)
- Résumés of software architects

© 2005 by Carnegie Mellon University 51

Survey results to date

This is a work in progress.

To date, we have surveyed over 200 sources.

We have cataloged

• 201 duties

• 85 skills

• 96 knowledge areas

© 2005 by Carnegie Mellon University 52

Example duties
<snip>

Duties related to documentation
Thoroughly understand and document the areas

(domains) for which the system will be built
Prepare architectural documents and presentations
Document software interfaces
Produce a comprehensive documentation package

for architecture useful to stakeholders
Keeping reader’s point of view in mind while

documentation
Creating, standardizing and using architectural

descriptions
Use a certain documentation standard
Document variability and dynamism
Create conceptual architectural view

<snip>

© 2005 by Carnegie Mellon University 53

Example skills
<snip>

Inspire creative collaboration
Interpersonal skills
Interviewing
Investigative
Leadership
Learning
Listening skills
Maintains constructive working relationships
Mentoring
Negotiation skills
Observation power
Open minded
Oral and written communication skills
Organizational and workflow skills
Patient
Planning skills
Political sagacity

<snip>

© 2005 by Carnegie Mellon University 54

Example knowledge

<snip>
Software Architecture concepts
UML diagrams and UML analysis modeling
Basic knowledge of Software Engineering
Specialized knowledge of software engineering
Knowledge about IT industry future directions
Understanding of web-based applications
Experience with Web Services Technologies
Business re-engineering principles and processes
Knowledge of industry’s best practices
Experience in testing
Knowledge of testing/debugging tools
Experience with Real-time systems, Video systems
Security domain Experience

<snip>

© 2005 by Carnegie Mellon University 55

Architecture Duties (categories)

0.0%
5.0%

10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%
50.0%

A
rc

hi
te

ct
in

g

Li
fe

 c
yc

le
 p

ha
se

s
ot

he
r

th
an

ar
ch

ite
ct

ur
e

T
ec

hn
ol

og
y

re
la

te
d

In
te

ra
ct

in
g

w
ith

 th
e

st
ak

eh
ol

de
rs

M
an

ag
em

en
t

O
rg

an
iz

at
io

n
&

 B
us

in
es

s
re

la
te

d

Le
ad

er
sh

ip
 &

 te
am

 b
ui

ld
in

g

Overall for Training & Educational

Overall for Architecting For Living

Overall for Broadcasted

OVERALL

© 2005 by Carnegie Mellon University 56

Architecture Duties (sub-categories)

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%
C

re
at

in
g

ar
ch

ite
ct

ur
e

A
rc

hi
te

ct
ur

e
E
va

lu
at

io
n

an
d

A
na

ly
si

s

D
oc

um
en

ta
tio

n

E
xi
st

in
g

sy
st

em
 a

nd
 tr

an
sf

or
m

at
io

n

O
ve

ra
ll

R
eq

ui
re

m
en

ts

C
od

in
g

an
d

de
ve

lo
pm

en
t

T
es

tin
g

F
ut

ur
e

te
ch

no
lo

gi
es

T
oo

ls
 a

nd
 te

ch
no

lo
gy

 s
el

ec
tio

n

O
ve

ra
ll

C
lie

nt
s

D
ev

el
op

er
s

P
ro

je
ct

 m
an

ag
em

en
t

P
eo

pl
e

m
an

ag
em

en
t

S
up

po
rt
 fo

r
m

an
ag

em
en

t

O
rg

an
iz

at
io

n

B
us

in
es

s

T
ec

hn
ic

al
 L

ea
de

rs
hi

p

T
ea

m
 B

ui
ld

in
g

Overall for Training & Educational
Overall for Architecting For Living
Overall for Broadcasted
OVERALL

© 2005 by Carnegie Mellon University 57

Architecture Skills (categories)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

C
om

m
un

ic
at

io
n

In
te

r-
P

er
so

na
l

sk
ill

s

W
or

k
sk

ill
s

P
er

so
na

l s
ki

lls

Overall for Training & Educational

Overall for Architecting For Living

Overall for Broadcasted

OVERALL

© 2005 by Carnegie Mellon University 58

Architecture Skills (sub-categories)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%
C
om

m
un

ic
at

io
n(

O
ut

)

C
om

m
un

ic
at

io
n(

B
ot

h)

C
om

m
un

ic
at

io
n(

In
)

In
te

r-
pe

rs
on

al

sk
ill
s(

w
ith

in
 te

am
)

In
te

r-
pe

rs
on

al

sk
ill
s(

w
ith

 o
th

er
 p

eo
pl

e)

Le
ad

er
sh

ip
 s

ki
lls

E
ff
ec

tiv
el

y
M

an
ag

in
g

W
or

kl
oa

d

S
ki

lls
 t
o

E
xc

el
 in

co
rp

or
at

e
en

vi
ro

nm
en

t

S
ki

lls
 fo

r
ha

nd
lin

g

In
fo

rm
at

io
n

P
er

so
na

l Q
ua

lit
ie

s

S
ki

lls
 fo

r
H
an

dl
in

g

U
nk

no
w
n

S
ki

lls
 fo

r
H
an

dl
in

g

U
ne

xp
ec

te
d

Le
ar

ni
ng

Educational and training

Architecting for a living

Broadcasted
Overall Skills

© 2005 by Carnegie Mellon University 59

Architecture Knowledge (categories)

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

C
om

pu
te

r
S

ci
en

ce
K

no
w

le
dg

e

K
no

w
le

dg
e

of
te

ch
no

lo
gi

es
an

d
pl

at
fo

rm
s

K
no

w
le

dg
e

ab
ou

t y
ou

r
or

ga
ni

za
tio

n’
s

co
nt

ex
t a

nd
m

an
ag

em
en

t

Overall for Training & Educational

Overall for Architecting For Living

Overall for Broadcasted

OVERALL

© 2005 by Carnegie Mellon University 60

Architecture Knowledge (sub-cat’s)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

50.00%
K
no

w
le

dg
e

of
 a

rc
hi

te
ct

ur
e

co
nc

ep
ts

K
no

w
le

dg
e

of
 s

of
tw

ar
e

en
gi

ne
er

in
g

D
es

ig
n

K
no

w
le

dg
e

P
ro

gr
am

m
in

g
K
no

w
le

dg
e

S
pe

ci
fic

 (t
ec

hn
ol

og
ie

s
an

d

pl
at

fo
rm

s) P
la

tfo
rm

s

G
en

er
al

 (t
ec

hn
ol

og
ie

s
an

d

pl
at

fo
rm

s)

D
om

ai
n

K
no

w
le

dg
e

In
du

st
ry

 K
no

w
le

dg
e

E
nt

er
pr

is
e

K
no

w
le

dg
e

Le
ad

er
sh

ip
 a

nd
 m

an
ag

em
en

t

Overall for Training & Educational

Overall for Architecting For Living

Overall for Broadcasted

OVERALL

© 2005 by Carnegie Mellon University 61

Duties/Skills/Knowledge

This work lets us propose a
“duties/skills/knowledge” model
of competence.

Knowledge and skills support
carrying out the duties.

Competence is
• Carrying out the duties
• Having the skills
• Knowing the knowledge

© 2005 by Carnegie Mellon University 62

Duties/Skills/Knowledge

Advantages
• It applies equally well to individuals,

teams, and organizations.

• It straightforwardly suggests an assessment instrument.

• It straightforwardly suggests an improvement strategy
- Improve your duties
- Improve your skills
- Improve your knowledge

© 2005 by Carnegie Mellon University 63

Future work (1): Grow this body of work

Survey communities of practicing architects
• E.g., WWISA, IASA, architects within a

company
• First questionnaire: 15-minute survey of

duties, skills, and knowledge and
organizational duties.

Tie specific skills and knowledge to duties
• If knowledge or a skill doesn’t support a

duty, does it matter?

Survey more sources
• especially more position descriptions

© 2005 by Carnegie Mellon University 64

Future work (2): Apply model to
organizations
Case studies and surveys
• organizational excellence in architecture
• organizational improvement in architecture
• surveys of organizational practices

Surveys of practicing architects
• E.g., WWISA, IASA, architects within a

company
• First questionnaire: 15-minute survey of

duties, skills, and knowledge and
organizational duties.

Investigation of team practices

Assessment of past performance to find
targeted areas of improvement

© 2005 by Carnegie Mellon University 65

What are an organization’s
duties, skills, and knowledge?

List may include:
• Hire talented architects
• Establish a career track for software architects
• Make the position of architect highly regarded through visibility, reward,

and prestige
• Establish a clear statement of duties, responsibilities, and authority for

software architects
• Establish a mentoring program for architects
• Start an architecture training and education program
• Track how architects spend their time
• Establish an architect certification program
• Measure architects’ performance
• Provide a forum for architects to communicate, and share information

and experience
• Put in a place organization-wide development practices centered

around architecture
• Establish and empower an architecture review board
• Measure quality of architectures produced
• Initiate software process improvement or software quality improvement

practices

© 2005 by Carnegie Mellon University 66

Future work (3): Tie duties, skills, and
knowledge to architecture quality
Case studies of successful and failed
architectures, relating cause to effect.

Pilot assessment instruments

Pilot improvement strategies

Other models of competence
• Organizations as architectures: They have

elements and relations and behaviors.
Perhaps we can “evaluate” them as we
evaluate architectures.

• Design for Six Sigma techniques

Research collaborators wanted!

© 2005 by Carnegie Mellon University 67

Trends in Software Architecture

Predictions are risky, and usually worth less than what you
paid for them.

“Basic building blocks” of software
• Will continue becoming more sophisticated, complex,

domain-specific, interoperable, and stand-alone
(continuing a 40-year-old trend)

• “Service” is the current form of this, but will be
replaced by something else in five years

• SLAs will be come more sophisticated, generalized,
and dependable. “Credentials” will be the watchword,
especially in services. Watch for an ebay-like model
where consumers leave feedback, especially in
ubiquitous computing environments.

© 2005 by Carnegie Mellon University 68

Trends in Software Architecture

Process of architecting
• Will be come more standardized, more repeatable, more

teachable, more methodical – less “magic”
• Evaluation of architectures will continue becoming a

widespread practice
• Stakeholder-based documentation will become the norm
• Gaps in the conceptual representations (e.g., between

ADLs and downstream design languages such as UML,
or between business goals and architecture) will be
bridged

• More automated traceability, from business
processes/goals to architecture to design to code to
testing, possibly by automated design assistants and
tooling, possibly by better language support

© 2005 by Carnegie Mellon University 69

Trends in Software Architecture

Architecture as a practice
• We can view the history of software engineering as producing simpler

ways to specify much more complex software. Our languages to
describe solutions have become steadily more sophisticated.

- 1960 atoms: + - / * SQRT, simply-structured reports
- 2006 atoms: shopping cart, GUI, rules engine, workflow, auction…

• When our languages achieve a “new plateau” of expressiveness, the
programs we write suddenly become very simple, even though the
software systems are much more complex. The complexity is carried in
the language.

• The need for architecture is not as great when the programs are very
short and simple.

• But we always learn to exploit our new capabilities to the fullest. Our
programs quickly become more and more complex. Soon, we cannot
understand them, nor can we understand how they will deliver the ever-
higher quality attributes we require.

• And that is the point where architecture steps in to help us structure the
solutions and lend understandability and buildability.

© 2005 by Carnegie Mellon University 70

Trends in Software Architecture

Architecture as a practice (continued)
• Right now there seem to be two kinds of organizations.
• One kind designs extensive architectures.

- These are application builders solving unprecedented
problems, or in domains without large “platform” vendors
(they may be the platform vendors) or standardized solutions

- They perform extensive architectural design
• The other kind makes major architectural decisions by the

process of selecting a platform vendor.
- Here, “architecture” means putting big vendor-supplied

pieces together. “Design” is de-emphasized.
- The “space” of what they can specify is not that large.
- You can view the things they get to choose as a specification

language.
- They’ve just arrived at the latest “new plateau”
- They don’t view architecture design as that important.
- Last prediction: They will!

© 2005 by Carnegie Mellon University 71

Questions―Now or Later
Linda Northrop
Director
Product Line Systems Program
Telephone: 412-268-7638
Email: lmn@sei.cmu.edu

U.S. Mail:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-3890

World Wide Web:
http://www.sei.cmu.edu/
architecture

SEI Fax: 412-268-5758

Paul Clements
Email: clements@sei.cmu.edu

A Microsoft Word template for a
software architecture document
based on the Views and Beyond
approach is available at

http://www.sei.cmu.edu/architecture/
arch_doc.html

or

http://www.sei.cmu.edu/architecture
Click on documentation
Click on download

