Assuring Mission Success in Complex Settings

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Christopher Alberts and Audrey Dorofee March 2007

Contents / Agenda

Background

SEI MOSAIC: Managing for Success

SEI MOSAIC Project

- SEI MOSAIC Toolkit
- Mission Diagnostic
- MAAP

Conclusion

Managing Complexity

Managers are responsible for overseeing increasingly complex projects, programs, and operational processes.

- Multiple points of management control
- Complex tasks
- Complex, distributed support technologies
- Multiple, detailed status reports
- A variety of management techniques (project, security, financial, technology, etc.)
- Requirements of multiple stakeholders

Need for a New Approach

Traditional analysis and management approaches not designed for complex environments

- Cannot handle organizational and technological complexity
- Do not easily scale to distributed environments

Need new methods, tools, and techniques to

- Position projects, programs, and processes for success
- Establish and maintain confidence in achieving objectives

Managing for Mission Success

Managing for mission success requires establishing and maintaining a reasonable degree of confidence that a mission's objectives will be

successfully achieved.

SEI MOSAIC:Managing for Success

Overview

SEI Mission-Oriented Success Analysis and Improvement Criteria (MOSAIC) is a structured decision-making approach that

- Establishes a reasonable degree of confidence in the potential for a successful mission
- Helps ensure mission success in projects, programs, processes, and systems

Strategic Allocation of Resources

People need a way to make appropriate tradeoffs among a broad range of factors.

SEI MOSAIC: A Lifecycle Approach

Perform during any lifecycle phase Supports most system lifecycle models

Managing the Outcome

An outcome is the result achieved when executing a mission.

- A range of potential outcomes is possible
- Some outcomes are acceptable—success
- Some outcomes are unacceptable—failure

SEI MOSAIC defines an approach for managing the expected outcome in relation to the desired outcome.

- What is the mission likely to achieve?
- What do I want the mission to achieve?

Range of Potential Outcomes

Positioning for Success

A range of outcomes is possible for any given mission.

Conditions and potential events

- affect mission execution and influence a mission's eventual outcome
- must be appropriately managed to position a mission for success

The objective is to drive the expected outcome toward acceptable states.

Unique Features of SEI MOSAIC

Traditional Risk Management	SEI MOSAIC
Narrow scope (single project, system, or organization)	Broad scope (distributed processes, systems of systems)
Linear view of risk (cause-effect pairs)	Interrelated view of risk
Threat-driven	Outcome-driven
Hazard avoidance	Opportunity seeking
"Playing not to lose"	"Playing to win"

SEI MOSAIC Project

Characteristics of Current Approaches

A prevalence of one-size-fits-all analysis and management methods

- Complex solutions that are not easily tailored (especially to small organizations)
- Tied to specific domains or problems

Locally optimized results

- Narrow tradeoff space
- Subset of the lifecycle
- Narrow scope (e.g., single project, system, or organization)

SEI MOSAIC Approach

Each SEI MOSAIC method is tailored to

- A given situation, problem space, or lifecycle phase
- The domain or application area
- The circumstances at hand

SEI MOSAIC is focused on global effectiveness and mission success.

- Broad tradeoff space
- Lifecycle focus (development <u>and</u> operations)
- Broad scope (e.g., distributed processes, supply chains, systems of systems)

SEI MOSAIC Toolkit

SEI MOSAIC Methods

Our current work is focused on developing a suite of analysis methods.

Two methods so far:

- Mission Diagnostic is a basic approach that provides a quick, high-level evaluation.
- Mission Assurance Analysis Protocol (MAAP) is a comprehensive approach that provides an in-depth evaluation.

Mission Diagnostic

What

A time-efficient means of assessing the potential for success

Why

To determine whether conditions are favorable for a successful outcome

Key Results

An evaluation of key indicators and an estimate of the success potential

Key Indicators

Evaluate a set of indicators representing key aspects of management, for example:

- Realistic goals
- Customer requirements
- Staffing requirements
- Technology feasibility
- Plans and schedules

"Are customer requirements and needs well understood?"

Evaluating Key Indicators

Question	Answer				
	No	Likely no	Equally likely	Likely yes	Yes
1. Are goals realistic and well articulated?	đ	q	q	n	đ

Each indicator is evaluated based on the data that have been collected.

Uncertainty is incorporated into the range of answers for each indicator.

Indicator Evaluation Criteria

Answer	Definition
Yes	The answer is almost certainly "yes." Very little uncertainty exists.
Likely yes	The answer is most likely "yes." However, a degree of uncertainty exists.
Equally likely	
Likely no	The answer is most likely "no." However, a degree of
No	uncertainty exists. The answer is almost certainly "no." Very little uncertainty

Indicator Analysis

Managing the Potential for Success

The goal is to improve a mission's current state of health.

Indicators for Software Development Programs

- Are goals realistic and well articulated?
- Are communication and information sharing about mission activities effective?
- Are customer requirements and needs well understood?
- Are stakeholder politics or other external pressures minimal?
- Does the process design support efficient and effective execution?

- Are process control mechanisms are effective?
- Is task execution efficient and effective?
- Are staffing and funding sufficient to execute all mission activities?
- Are the technological and physical infrastructures adequate to support all mission activities?
- Are changing circumstances and unpredictable events effectively managed?

Evaluating Indicators

The following data are recorded for each indicator:

- Indicator score
- Rationale for indicator score
- Analysis approach
 (for example, intuition,
 qualitative analysis,
 quantitative analysis, other)
- Potential actions
- Evaluators
- Date

Mission Diagnostic Exercise and Handout

Tailoring Questions

The following questions can be used when tailoring or developing a set of indicators:

- What constitutes a successful result for the project or process?
- What constitutes an unsuccessful result, or failure, for the project or process?
- What circumstances or conditions tend to produce a successful outcome when conducting the project or process?
- What circumstances or conditions tend to produce an unsuccessful outcome, or failure, when conducting the project or process?

Mission Diagnostic Across the Lifecycle

How much uncertainty in these indicators can you tolerate at different points in the lifecycle?

MAAP

What

A systematic approach for thoroughly analyzing the potential for success

Why

To characterize the full range of drivers affecting the success potential

To set management priorities to ensure the success potential is maintained within tolerance

Key Results

An operational model, customized analysis artifacts, a measure of the success potential, and strategies for keeping the success potential within tolerance

Operational Model of Mission Activities

Drivers of Success and Failure

A broad range of drivers must be considered when analyzing the potential for mission success.

Mission

A mission threat is a fundamental flaw, or weaknesses, in the purpose and scope of a work process.

Process Design

A **design threat** is an inherent weakness in the layout of a work process.

Activity Management

An activity threat is a flaw, or weaknesses, arising from the manner in which activities are managed and performed.

Operational Environment

An environment threat is an inherent constraint, weakness, or flaw in the overarching operational environment in which a process is conducted.

Event Management

An **event threat** is a set of circumstances triggered by an unpredictable occurrence that introduces unexpected change into a process.

Scenario-Based Analysis

Complex Risks

Outcome Analysis

The goal is to ensure that the expected outcome for each objective in all evaluated scenarios is acceptable to key stakeholders.

Unique Features of SEI MOSAIC

- Manages the potential for success
- Can be applied to highly distributed programs and operational processes
- Provides a 'global' view of a mission
- Analyzes issues that are too complex for other techniques

Potential Application Areas

- Large, distributed software development programs
- Organizations in dynamic, rapidly changing business environments
- Organizations with strict reliability, security, and safety requirements
- Large, distributed supply chains
- Processes supporting critical infrastructures
- Distributed information-technology (IT) processes

Future Research and Development

Refine the current SEI MOSAIC analysis protocols.

Define and pilot additional SEI MOSAIC analysis protocols.

Begin work on an approach for real-time monitoring and management of mission outcomes.

For Additional Information

Telephone 412 / 268-5800

Fax 412 / 268-5758

WWW http://www.sei.cmu.edu/msce/

U.S. mail Customer Relations

Software Engineering Institute

Carnegie Mellon University Pittsburgh, PA 15213-3890

