Army Software Product Line Workshop

Linda Northrop Director Research, Technology, and System Solutions Program

Software Engineering Institute Carnegie Mellon University Pittsburgh, PA 15213

Software Engineering Institute Carnegie Mellon

© 2009 Carnegie Mellon University

Software Engineering Institute (SEI)


Department of Defense R&D Laboratory (FFRDC)

Created in 1984

Under contract to Carnegie Mellon University

Offices in Pittsburgh, PA; Washington, DC; and Frankfurt, Germany

SEI Mission: advance software and related disciplines to ensure the development and operation of systems with predictable and improved cost, schedule, and quality.

Software Engineering Institute

Carnegie Mellon

SEI Technical Programs

Networked Systems Survivability (CERT)

- Secure Software and Systems
- Cyberthreat and Vulnerability Analysis
- Enterprise Workforce Development
- Forensics

Software Engineering Process Management (SEPM)

- Capability Maturity Model Integration (CMMI)
- Team Software Process (TSP)
- Software Engineering Measurement and Analysis (SEMA)

Acquisition Support (ASP)

Research, Technology, and System Solutions (RTSS)

- Architecture-Centric Engineering
- Product Line Practice
- System of Systems Practice
- System of Systems Software
 Assurance
- Ultra-Large-Scale (ULS) System
 Perspective

Independent Research and Development (IR&D)

SEI Technical Programs

Networked Systems Survivability (CERT)

- Secure Software and Systems
- Cyberthreat and Vulnerability Analysis
- Enterprise Workforce Development
- Forensics

Software Engineering Process Management (SEPM)

- Capability Maturity Model Integration (CMMI)
- Team Software Process (TSP)
- Software Engineering Measurement and Analysis (SEMA)

Acquisition Support (ASP)

Research, Technology, and System Solutions (RTSS)

- Architecture-Centric Engineering
- Product Line Practice
- System of Systems Practice
- System of Systems Software
 Assurance
- Ultra-Large-Scale (ULS) System
 Perspective

Independent Research and Development (IR&D)

Software Engineering Institute

Mission of the SEI Research, Technology, and System Solutions Program

The Research, Technology, and System Solutions Program enables

- cost effective
- development, evolution, and recomposition of
- predictably high-quality systems
- at all scales

With regard to its software product line effort, it aims to

• make product line development and acquisition a low-risk, high-return proposition for all organizations.

Software Engineering Institute Carnegie Mellon

Some of the Organizations Using RTSS Technology

Software Engineering Institute

Carnegie Mellon

Summary of SEI Contributions

Models and Guidance

- A Framework for Software Product Line PracticeSM
- Software Product Line Acquisition: A Companion to A Framework for Software Product Line Practice
- Product line practice patterns
- Product line adoption roadmap
- Pedagogical product line

Methods and Technology

- product line analysis
- architecture definition, documentation, evaluation (ATAM®), and recovery
- mining assets
- production planning
- Structured Intuitive Model for Product Line Economics (SIMPLE)
- Product Line Technical ProbeSM (PLTPSM)
- Product Line Quick Look (PLQL)
- Interactive workshops in product line measurement, variability management, product line management
- Prediction-enabled component technology

Book

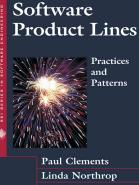
Software Product Lines: Practices and Patterns

Curriculum and Certificate Programs

- Five courses and three certificate programs
- Product Line Executive Seminar

Conferences and Workshops

• SPLC 1, SPLC2, SPLC 2004; SPLC 2006; Workshops 1997 - 2005; Army Product Line Workshop 2007


Technical Reports, publications, and Web site

Software Engineering Institute

Carnegie Mellon

DoD Product Line Workshops

Hands-on meetings to

- identify industry-wide best practices in software product lines
- share DoD software product line practices, experiences, and issues
- discuss ways in which the current gap between commercial best practice and DoD practice can be bridged
- gather material for and review the DoD Acquisition Companion to the SEI Framework for Software Product Line Practice (*Software Product Line Acquisition: A Companion to A Framework for Software Product Line Practice*)

Today's Workshop Is Funded by ASSIP

The goal of the United States Army Strategic Software Improvement Program (ASSIP) is to dramatically improve the acquisition of softwareintensive systems.

ASSIP has funded the delivery of courses from the SEI Software Product Line Curriculum at Army locations and presentations on software product lines at PEO sites.

In addition, the ASSIP has funded the Army Senior Leader Program, which has involved tutorials on software architecture and software product lines among other topics.

ASSIP is funding this workshop to bring together those in the Army community who are using or trying to use product line practices.

Software Engineering Institute Carnegie Mellon © 2009 Carnegie Mellon University

Workshop Goals

Share Army and DoD product line practices, experience and issues, from both development and acquisition viewpoints

Examine barriers and enablers to much broader adoption of software product line practices within the Army

Determine the steps needed to make software product line practices more beneficial and relevant to Army programs

Discuss ways in which the Army's Strategic Software Improvement Program (ASSIP) can be of assistance

Agenda

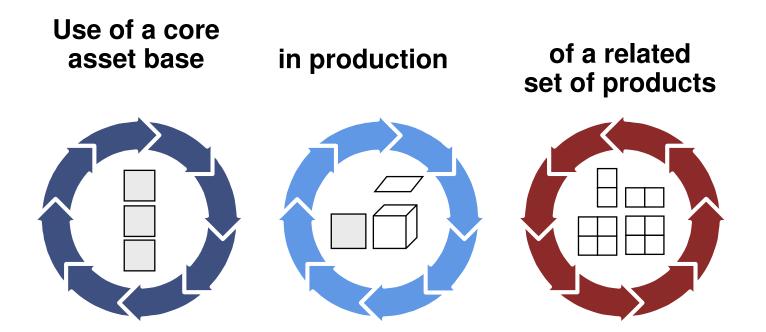
0800 – 0830	Introductions
0830 – 0915	Welcome and background: Linda Northrop, SEI
0915 – 1000	A Proactive Product Line Acquisition Approach, John Bergey, SEI
1000 – 1015	BREAK
1015 – 1045	An Approach to Product Line Acquisition Planning, Larry Jones, SEI

DoD software product line experience presentations

1045 — ⁻	1130	Paul Jensen	Overwatch, Textron Systems
1130 — ⁻	1215	Brian Kemper	PEO STRI
1215 – 1300	LUNCH		

DoD software product line experience presentations continued

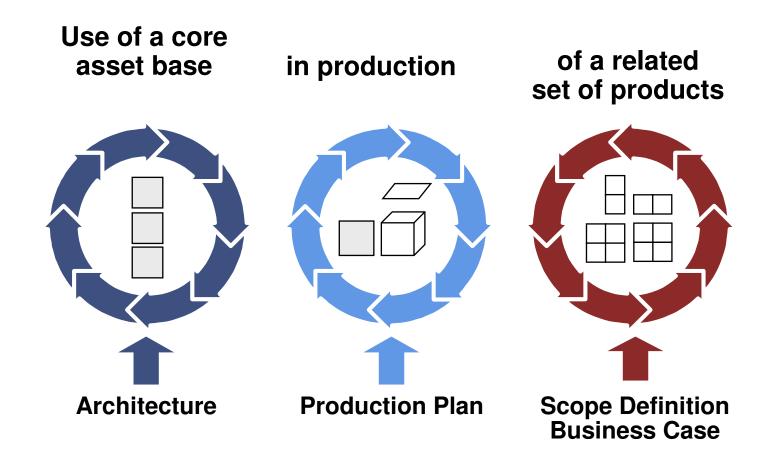
1300 – 13	345 I	Don Snelgrove	BAE
1345 – 14	430 I	Ed Dunn	NUWC
1430 – 1445	BREAK		
1445 – 1600	Discussion: Product line acquisition support -needs and priorities.		
1600 – 1630	Workshop	Wrap-up	


What Is A Software Product Line?

A *software product line* is a set of software-intensive systems sharing a common, managed set of features that satisfy the specific needs of a particular market segment or mission and that are developed from a common set of core assets in a prescribed way.

- a new application of a proven concept
- an innovative, growing concept in software engineering

The Key Concepts



Software Engineering Institute

Carnegie Mellon

The Key Concepts

Software Engineering Institute

Carnegie Mellon

Widespread Use of Software Product Lines

Successful software product lines have been built for families of among other things

- mobile phones
- command and control ship systems
- satellite ground station systems
- avionics systems
- command and control/situation awareness systems
- pagers
- engine control systems
- mass storage devices

- billing systems
- web-based retail systems
- printers
- consumer electronic products
- acquisition management enterprise systems
- financial and tax systems
- medical devices
- farm fish management software

Specific Examples - 1

Feed control and farm management software

Bold Stroke Avionics

E-COM Technology Ltd.

Medical imaging workstations

Firmware for computer peripherals

5ESS telecommunications switch

Gas turbines, train control, semantic graphics framework

Internet payment gateway infrastructure products

ERICSSON 🔰

AXE family of telecommunications switches

Elevator control systems

NOKIA

Mobile phones, mobile browsers, telecom products for public, private and cellular networks

Computer printer servers, storage servers, network camera and scanner servers

Customized solutions for transportation industries

Software for engines, transmissions and controllers

LSI LOGIC

RAID controller firmware for disk storage units

Interferometer product line

Software Engineering Institute

Carnegie Mellon

Specific Examples - 2

PHILIPS

High-end televisions, PKI telecommunications switching system, diagnostic imaging equipment

Rockwell Collins

Commercial flight control system avionics, Common Army Avionics System (CAAS), U.S. Army helicopters

symbian

EPOC operating system

Test range facilities

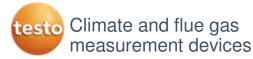
Office appliances

SALION TARGET, WIN, DELIVER

Revenue acquisition management systems

TELVENT

Industrial supervisory control and business process management systems


Command and control simulator for Army fire support

Automotive gasoline systems

SIEMENS

Software for viewing and quantifying radiological images

Support software

Pagers product line

Software Engineering Institute

Carnegie Mellon

Real World Motivation

Organizations use product line practices to:

- achieve large scale productivity gains
- improve time to market
- maintain market presence
- sustain unprecedented growth
- achieve greater market agility
- compensate for an inability to hire
- enable mass customization
- get control of diverse product configurations
- improve product quality
- increase customer satisfaction
- increase predictability of cost, schedule, and quality

Software Engineering Institute

Carnegie Mellon

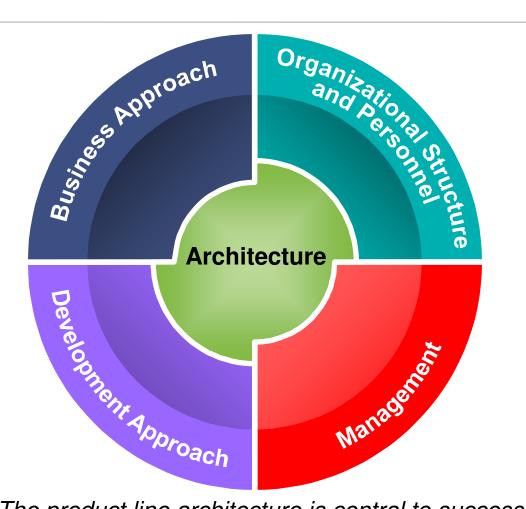
Software Product Lines Value Proposition

The systematic use of software product line practices results in significant organizational benefits including

- increased quality
 - by as much as 10x
- decreased cost
 - by as much as 60%
- decreased labor needs
 - by as much as 87%
- decreased time to market (to field, to launch...)
 - by as much as 98%
- ability to move into new markets
 - in months, not years

The Value of Options

A software product line approach provides options to future market opportunities.


- The exact opportunities and their certainty are impossible to predict.
- Organizations need a way to conduct product experiments in low-cost, low-risk ways.
- Software product lines permit those kind of experiments through predefined variation points that can be exercised to meet new needs.

Options to future mission needs are important to the DoD.

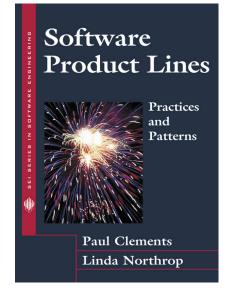
Software Engineering Institute

Necessary Changes

The product line architecture is central to success.

Software Engineering Institute Car

Carnegie Mellon


The SEI Framework For Software Product Line Practicesm

The SEI Framework for Software Product Line Practice is a conceptual framework that describes the essential activities and twenty-nine practice areas necessary for successful software product lines.

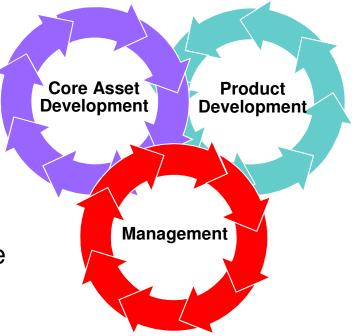
The Framework, originally conceived in 1998, is evolving based on the experience and information provided by the community.

Version 4.0 – in *Software Product Lines: Practices and Patterns*

Version 5.0 – <u>http://www.sei.cmu.edu/productlines/framework.html</u>

Software Engineering Institute

Carnegie Mellon


Three Essential Activities

All three activities are interrelated and highly iterative.

There is no "first" activity.

- In some contexts, existing products are mined for core assets.
- In others, core assets may be developed or procured for future use.

There is a strong feedback loop between the core assets and the products.

Strong management at multiple levels is needed throughout. Management oversees core asset and product development. Management orchestrates all activities and processes needed to make the three essential activities work together.

Driving the Essential Activities

Supporting the essential activities are essential practices that fall into practice areas. A *practice area* is a body of work or a collection of activities that an organization must master to successfully carry out the essential work of a product line.

Three Categories Of Practice Areas

The practice areas represent common activities in software development that are adapted to the needs of a product line approach.

Software Engineering Institute Carnegie Mellon © 2009 Ca

Framework Version 5.0

Core Asset Product Development Development **ESSENTIAL ACTIVITIES** Management **PRACTIČE AREAS** Software Engineering **Technical Management Architecture Definition Configuration Management** Make/Buy/Mine/Commission **Architecture Evaluation** Analysis **Component Development** Measurement and Tracking **Mining Existing Assets Process Discipline Requirements Engineering** Scoping **Software System Integration Technical Planning Technical Risk Management Operations** Testing **Understanding Relevant Tool Support** Domains **Using Externally** Key: Available Software New Name and Substantial Change **Substantial Change**

Organizational Management

Building a Business Case

Customer Interface Management

Developing an Acquisition Strategy

Funding

Launching and Institutionalizing

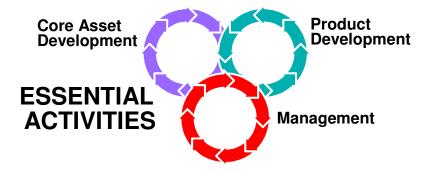
Market Analysis

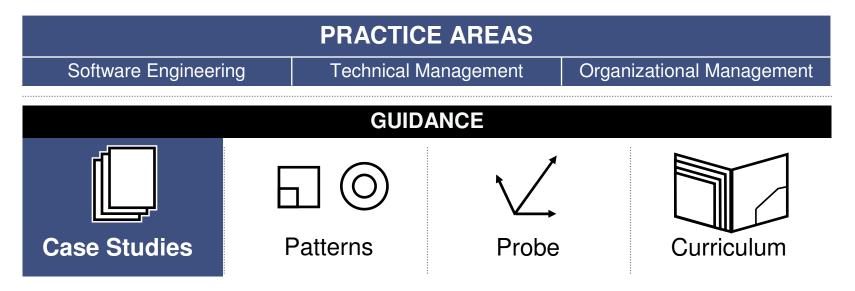
Organizational Planning

Organizational Risk Management

Structuring the Organization

Technology Forecasting


Training



Software Engineering Institute

Carnegie Mellon

Dilemma: How Do You Apply The 29 Practice Areas?

Software Engineering Institute Carnegie Mellon

Case Studies

CelsiusTech – CMU/SEI-96-TR-016

http://www.sei.cmu.edu/publications/documents/01.reports/96.tr.016.html

Cummins, Inc. Software Product Lines: Practices and Patterns

Market Maker Software Product Lines: Practices and Patterns

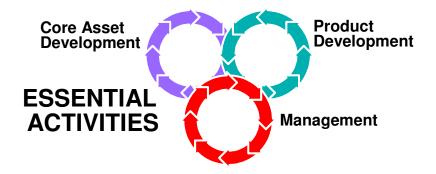
NRO/Raytheon – CMU/SEI-2001-TR-030

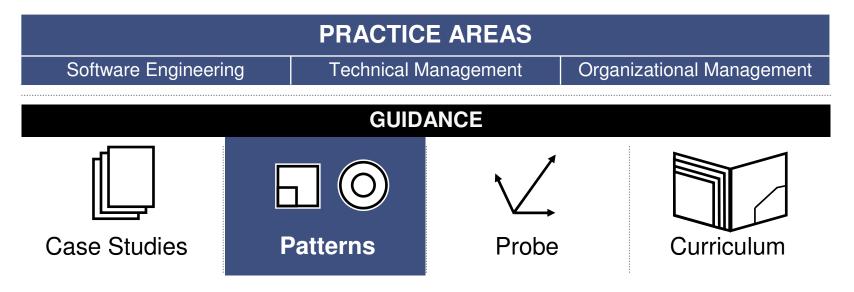
http://www.sei.cmu.edu/publications/documents/01.reports/02tr030.html

NUWC - CMU/SEI-2002-TN-018

http://www.sei.cmu.edu/publications/documents/02.reports/02tn018.html

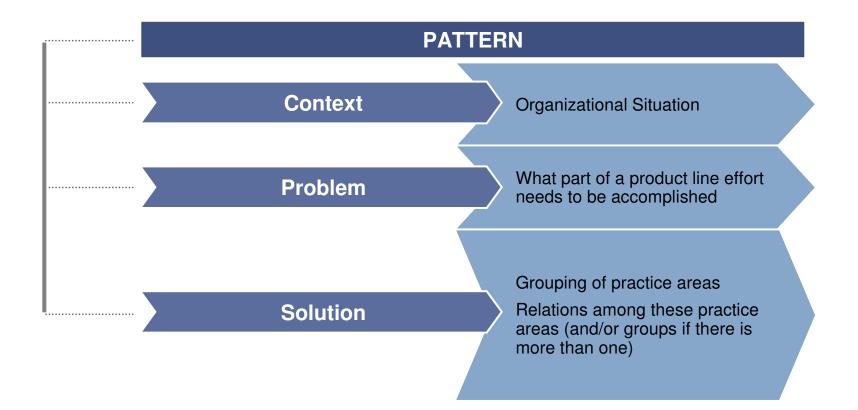
Salion, Inc. – CMU/SEI-2002-TR-038


http://www.sei.cmu.edu/publications/documents/02.reports/02tr038.html


U.S. Army – CMU/SEI-2005-TR-019

http://www.sei.cmu.edu/publications/documents/05.reports/05tr019.html

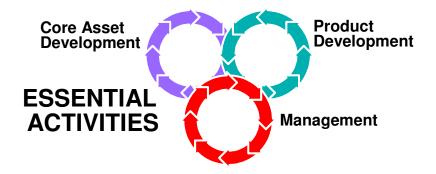
Help To Make It Happen

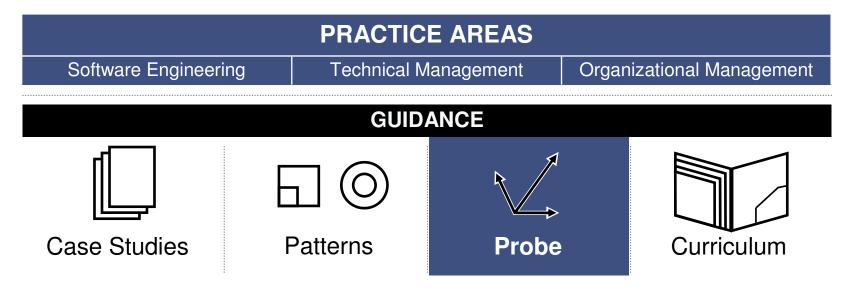


Software Engineering Institute Car

Carnegie Mellon

Software Product Line Practice Patterns


Software Engineering Institute CarnegieMellon


Current Set Of Patterns

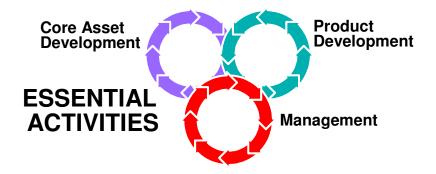
Pattern	Variants	
Assembly Line		
Cold Start	Warm Start	
Curriculum		
Each Asset	Each Asset Apprentice Evolve Each Asset	
Essentials Coverage		
Factory	Adoption Factory	
In Motion		
Monitor		
Process	Process Improvement	
Product Builder	Product Gen	
Product Parts	Green Field Barren Field Plowed Field	
What to Build	Analysis Forced March	

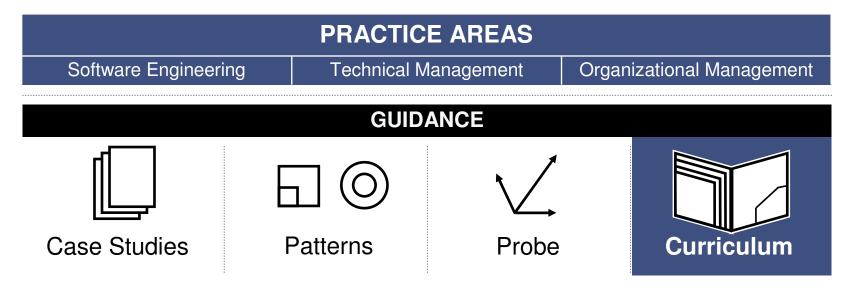
Help To Make It Happen

Software Engineering Institute

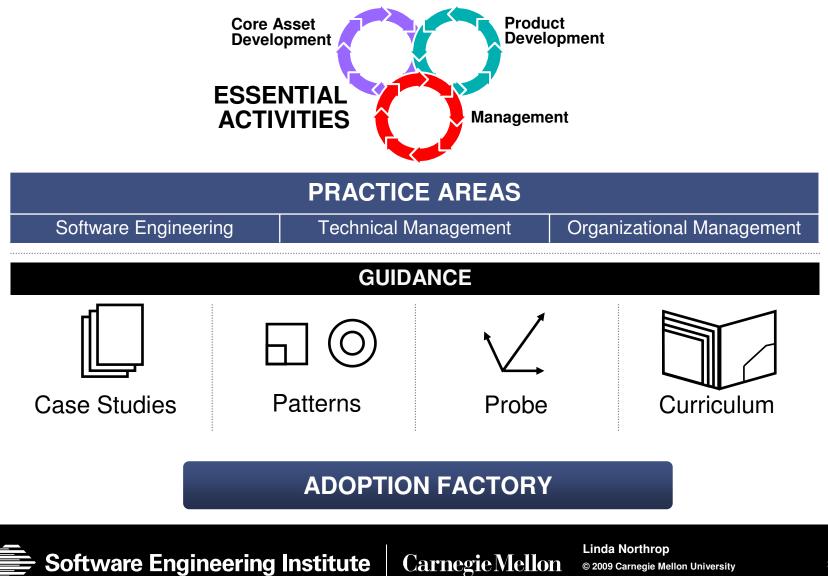
Carnegie Mellon

What Is An SEI Product Line Technical Probe (PLTP)?


The SEI PLTP is a method for examining an organization's readiness to adopt or ability to succeed with a software product line approach.


- It is a diagnostic tool based on the SEI Framework for Software Product Line Practice.
- The 29 practice areas are the basis of data collection and analysis.

Help To Make It Happen


Software Engineering Institute C

Carnegie Mellon © 2009 Carnegie Mellon University

The SEI Software Product Line Curriculum

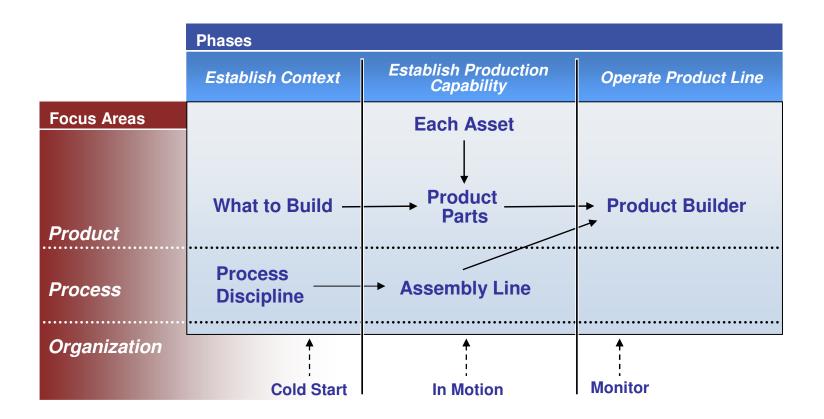
	Three Certificate Programs			
	Software Product Line Professional	PLTP Team Member	PLTP Leader	
Five Courses				
Software Product Lines	\checkmark	\checkmark	\checkmark	
Adopting Software Product Lines	\checkmark	\checkmark	\checkmark	
Developing Software Product Lines	\checkmark	\checkmark	\checkmark	
PLTP Team Training		\checkmark	\checkmark	
PLTP Leader Training			\checkmark	
PLTP Lead Observation			\checkmark	
				- · · · · · · · · · · · · · · · · · · ·
Software Engine	ering Institute	Carnegie	Line Mellon © 20	da Northrop 09 Carnegie Mellon University

Adding An Adoption Roadmap

35

The Product Line Adoption Endgame

To have an operational software product line.


To do that, an organization must

- have
 - -a core asset base
 - -supportive processes and organizational structures
- develop products from that asset base in a way that achieves business goals
- prepare itself to institutionalize product line practices

Software Engineering Institute

The SEI Adoption Factory Pattern

Informs and information flow

----► Supports

Software Engineering Institute Carneg

Carnegie Mellon ^{Linda N}© 2009 Ca

Associated Practice Areas

	Establish Context	Establish Production Capability	Operate Product Line
Product	 Marketing Analysis Understanding Relevant Domains Technology Forecasting Building a Business Case Scoping 	 Requirements Engineering Architecture Definition Architecture Evaluation Mining Existing Assets Component Development Using Externally Available Software Software System Integration Testing 	 Requirements Engineering Architecture Definition Architecture Evaluation Mining Existing Assets Component Development Using Externally Available Software Software System Integration Testing
Process	Process Discipline	 Make/Buy/Mine/Commission Configuration Management Tool Support Measurement and Tracking Technical Planning Technical Risk Management 	
Organization	 Launching and Institutionalizing Funding Structuring the Organization Operations Organizational Planning Customer Interface Management Organizational Risk Management Developing an Acquisition Strategy Training 	 Launching and Institutionalizing Funding Structuring the Organization Operations Organizational Planning Customer Interface Management Organizational Risk Management Developing an Acquisition Strategy Training 	 Measurement and Tracking Technical Risk Management Organizational Risk Management Customer Interface Management Organizational Planning

PLP Products and Services

Assist others

- SEI Product Line Technical Probe
- SEI Product Line Quick Look
- Practice-specific workshops
- Planning workshops
- Connecting to other strategies

SEI Framework for Software Product Line Practice

Ensure practicability

- Methods
- Product Line Practice Patterns
- Case studies
- Adoption Roadmap
- Acquisition Companion

Foster widespread awareness

- Books
- Reports, articles, papers
- Five-course curriculum
- Executive seminar
- Conferences
- Workshops
- Website

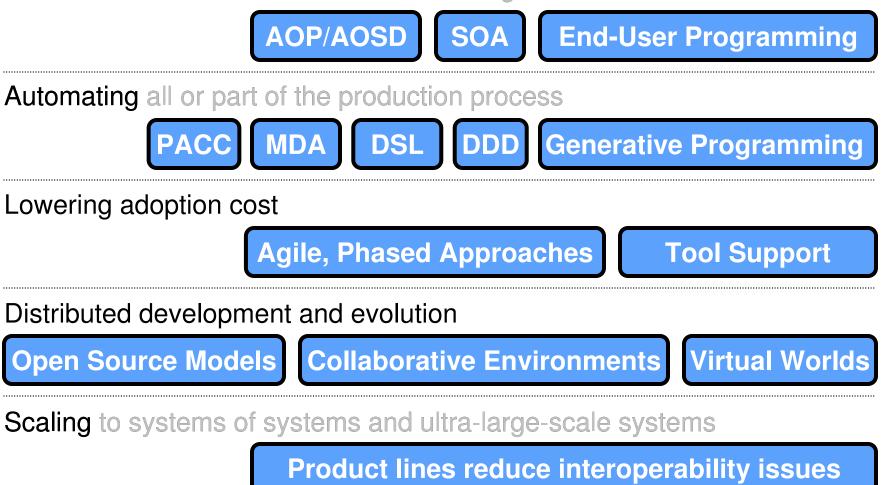
Enable others

- Certificate Programs
- Course licensing
- PLTP Leader Certification

Software Engineering Institute

Carnegie Mellon

What's Different About Reuse With Software Product Lines?


- Business dimension
- Iteration
- Architecture focus
- Preplanning
- Process and product connection

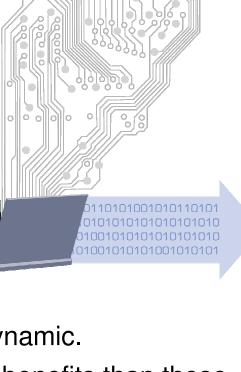
Challenges - Emerging Solutions

Variation mechanisms and variation management

Product Lines of the Future

Will harness new and emerging technologies

- metadata
- automated derivation
- SOA
- end-user programming


and new forms of collaboration

- cooperative models
- globalization
- virtual worlds
- collaborative environments

to make product lines more doable, pliable, and dynamic.

Tomorrow's product lines will accrue even greater benefits than those already demonstrated.

Linda Northrop

© 2009 Carnegie Mellon University

Ongoing SEI Product Line Research

Product derivation

- variation mechanisms
- production plan definition and implementation
- product line production including automated derivation

Product line adoption strategies

economic models

Adapting product line concepts to exploit new technologies and serve new contexts

- system of systems
- service-oriented architectures
- open source
- globalization
- ultra-large scale systems

Software Engineering Institute

Contact Information

Linda Northrop

Research, Technology, and System Solutions Program

Telephone: 412-268-7638

Email: Imn@sei.cmu.edu

U.S. Mail:

Software Engineering Institute Carnegie Mellon University 4500 Fifth Avenue Pittsburgh, PA 15213-3890

World Wide Web:

p://www.sei.cmu.edu/productlines Software Engineering Institute Carnegie Mellon

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copyright license under

