
1

Architecture and Design

Guest Lecture for
COMP 180: Software Engineering

Tufts University
Fall 2006

John Klein

2

Architecture – Definitions

• http://www.sei.cmu.edu/architecture/definitions.html

• The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and
the relationships among them.

– Bass, Clements, Kazman, Software Architecture in
Practice (2nd edition), Addison-Wesley 2003.

• The structure of the components of a program/system, their
interrelationships, and principles and guidelines governing their
design and evolution over time.

– Garlan, Perry, "Introduction to the Special Issue on
Software Architecture," IEEE Transactions on Software
Engineering, April 1995.

3

Practitioner Definitions

• “Software architecture is the set of decisions which, if
made incorrectly, may cause your project to be
cancelled.”

– Eoin Woods

• “Decomposition of the problem in a way that allows
your development organization to efficiently solve it,
considering constraints like organizational structure,
team locations, individual skills, and existing assets.”

– John Klein

4

Architecture/Design Decisions

from Malan,Bredemeyer, “Less is More with Minimalist Architecture”, IT Pro, Sept/Oct 2002, p. 48.

5

Frequently Used Tools in the
Software Designer’s Toolbox

• Abstraction

• Separation of Concerns

• Patterns – Architecture, Design, Language &
Technology

• Organizational Patterns (see Coplien and Harrison,
Organizational Patterns of Agile Software
Development. Prentice Hall, 2004.)

• Notations – UML, SDL, Traces, Formal Specification
Languages (Z, CSP, …), Predicate Logic

6

Abstraction

7

All Software is an Abstraction –
Underneath it all is electrons flowing through semiconductors

• Logic gates…

• Early 4-bit counter (DEC PDP-6, circa 1965)

mA-1.6Low-level input current (@ V
I
= 0.4V)I

IL

V0.8Low-level input voltageV
IL

µA40High-level input current (@ V
I
= 2.4V)I

IH

V2High-level input voltageV
IH

UNITMAXTYPMIN

8

Abstractions

• Assembly Language

• High-Level Languages

ALIGN 4 ; 0

PUBLIC _main

_main PROC NEAR

@B1@8: ; preds: B1.3

mov edx, DWORD PTR 12[ebp] ; 2

mov eax, DWORD PTR 8[ebp] ; 2

cmp eax, 2 ; 10

mov edx, DWORD PTR [edx] ; 8

movsx ecx, BYTE PTR [edx] ; 8

je @B1@1 ; PROB 5% ; 10

public TerminalLogger(Provider theProvider, ILog log, String extension) {

logDest = log;

try {

try {

myAddress = theProvider.getAddress(extension);

myTerminal = theProvider.getTerminal(extension);

} catch (Exception e) {

tracer.error("Looks like a bad extension");

throw (e);

}

myTerminal.addCallObserver(this);

} catch (Exception e) {

tracer.error("TerminalLogger constructor caught " + e);

return;

}

}

9

And even higher abstractions…

10

An Abstraction is a “many-to-one” mapping

• An abstraction is a “virtual machine” than removes some of the
unneeded details and complexity from the base machine

• Reduce the “impedance mismatch” between the base machine and
the problem to be solved

• The challenge for the designer is to know when to stop…

– Everything should be as simple as possible, but no simpler

- Albert Einstein

• Different problems have different sets of “unneeded details”

Java Application

(bytecode)

Java Virtual Machine

WindowsSolaris Linux

PentiumSPARC zSeries

11

Separation of Concerns

12

Separation of Concerns – Examples

• Performance

– Inter-process communication

– End-to-end latency

• Security

– Hardened external interfaces

– Flow and persistence of cleartext data

• Maintainability

– Components can be changed independently

• Testability

– Data can be injected and recorded from individual
subsystems

– Subsystems can run independently

13

Concerns lead us to choose “Structures” to
describe the architecture

• “Software architecture…is the structure or structures of the
system…”

• A structure is a binary relation*

– Define the elements

– Define the rule

• Examples:

– Inheritance hierarchy: Element = Class, Rule = “is a subclass
of”

– Pipe and Filter Structure: Elements = Filters and Pipes, Rule =
“attached to”

– Implementation Technology: Elements = Modules and
Programming Languages, Rule = “is implemented in”

• “What do the boxes and lines in that diagram mean?

*This description of structures as relations is based on a presentation by David Weiss.

14

Putting it all together

15

Using Abstraction and Separation of Concerns to
create an Information-hiding Module Structure

• For tonight…Module = Work Assignment

• Concerns –

– How do you divide the system so that each module can be
built by an individual or team?

– How do you partition the system so that parts can be
changed independently?

– How do you minimize the risk of “unknowns” at the start of a
project? How do you deal with “TBDs” in the requirements?

• David Parnas (1972) proposed that using an “information hiding”
criteria to decompose the system into modules will satisfy all of
these concerns

• Later work by Baldwin & Clark showed the economic value of
modularity, and Sullivan, et al showed that Parnas’s criteria was
optimal in an economic sense.

16

Information-hiding criteria

• The information here is “design decisions”, especially those that
are likely to change

• Each module hides (ideally) a single decision

– The “secret” of the module is the design decision that can
change without affecting any other module

– Hide the secret behind an interface

• The interface defines an abstraction

• Modules are “write-time” entities, not “run-time” entities

– Hide design information, don’t minimize run-time data
exchange

• Typical decisions – data representation, persistence mechanism,
algorithm implementation, hardware platform, COTS packages
(different rates of change)

17

Information-Hiding Structure

• Element: Modules

• Rule: “refines the secret of”

• This is not O-O…don’t think inheritance

• Example:

Data Source Interface

System Integration

External Platform Abstraction

Basic Transport

External Interface

System Installation Module

System Administration

System Administration UI

Distributed System Module

License Service

Logging Service

Alarming

Internationalization Support

Product Naming and Branding

Scheduled Task

Security Services

Shared Services

User Interface Framework

Application Design Environment

Monitoring and Reporting

System Data Model

Data Management

Knowledgebase Management

Workflow Services

Platform Services

Communications Channel

Client Channel Control

Media Processing

Communication Services

Resource Presence and Availability

Work Item Services

Event Management

Resource Assignment Service

Communications Workflow

System State

Campaign Management

CRM Behavior Services

CRM Integration

CRM Data Integration

CRM Behavior

Context Management

Customization Management

Conventional CM

Build Management

Package Management

Modification Request Tracking

Product Dependency

Product Component Dependency

Product Deployment Policy

License Policy Module

Production Line Module

CRM Platform

18

Modules exist in many forms

• A set of programs and shared data

• Abstract interface and implementation

• A state machine

• A class

• An abstract data type

• An abstraction

• A collection of macros and preprocessor directives

From David Weiss, “Information Hiding”, Avaya Labs Research Report ALR-2002-031

19

Decision Binding Time

• When do we make each decision?

• Model for decision times is system and technology specific

– When? How?

• Examples:

– Specification-time

– Architecture-time

– Design-time

– Code-time

– Compile-time

– Link-time

– Package-time

– Install-time

– Configuration-time

– Run-time

20

Example from a Java System Under
Development

Java dynamic class loading“Plug-and-play” automatic selection of

a component based on

environment

Run-time

Setting values in Enterprise DatabaseAssociating a handler to an extension

event

Customization-

time

Installation options

Metadata

Setting values in Enterprise Database

Selecting which modules to install

Setting default parameters

Entering initial parameters

Install & Deploy-

time

Installation-builder scriptsSelecting components for a modulePackage-time

Code and MetadataDefinition of extension points (events

and filters)

Development-

time

Product Specification

Architecture Specification

Feature content

Platform - programming language,

application server, inter-process

communication mechanism

Architecture-time

Binding MethodExamples of decisionsBinding Time

21

Reality Check

• Real world is imperfect

– It is hard to isolate each design decision in a single module

– It is hard to define interfaces that reflect the desired
abstractions

• Why?

– Reuse of existing assets

– Mergers and acquisitions

– Organizational constraints – people, processes, locations

– Conway’s Law – The structure of the system reflects the
structure of the organization that builds it - “…[an]
organization had eight people who were to produce a
COBOL and an ALGOL compiler…five people were assigned
to the COBOL job and three to the ALGOL job. The resulting
COBOL compiler ran in five phases, the ALGOL compile ran in
three.”

22

So what’s an architect to do in the “real world”?

• Do the best you can

– Focus on modularizing high-change/high-risk areas of the
system

– It’s OK to have a top-level module that is less cohesive and
collects the “leftover” unrelated set of decisions

• There is still value in an “information hiding” and “separation of
concerns” mindset

– Basic tools for dealing with complex systems

– Examples – Quality Attributes, General Scenarios, Architecture
Tactics

• Track the deviations from ideal, know the weaknesses of your
design

– What is going to be hard to change?

– Is the deviation worth the risk?

23

Review

• Architecture is the structure or structures that describe
the system

• Structure = Mathematical Relation = Elements & Rule

• Abstraction – One-to-Many mapping

• Separation of Concerns – Concerns tell us what
structures we need to describe

• Information Hiding – Hide each design decision within
a module

• Decision Binding Times

• Reality gets in the way

24

References

• D.L. Parnas, “On the Criteria to be Used in Decomposing Systems into
Modules”, CACM., Vol 15, no. 12, pp. 1053-1058, Dec. 1972. Reprinted as
Chapter 7 in Software Fundamentals: Collected Papers by David L.
Parnas, Hoffman and Weiss, eds. Addison-Wesley, 2001.

• D. Parnas, “Designing Software for Ease of Extension and Contraction.”
IEEE Trans. on Software Engineering, March 1979, pp. 128-138. Reprinted
in Software Fundamentals: Collected Papers by David L. Parnas, Hoffman
and Weiss, eds. Addison-Wesley, 2001.

• D.L. Parnas, P. Clements, D. Weiss, “The Modular Structure of Complex
Systems”, IEEE Trans. Software Eng., Vol 11, no. 3, pp. 259-266, March
1985. Reprinted as Chapter 16 in Software Fundamentals: Collected
Papers by David L. Parnas, Hoffman and Weiss, eds. Addison-Wesley,
2001.

• Baldwin and Clark, “Modularity in the Design of Complex Engineering
Systems”, Harvard Business School Working Paper,

• Sullivan, et al, “The Structure and Value of Modularity in Software
Design”, ESEC/FSE 2001, Vienna, Austria.

• J. Coplien and N. Harrison, Organizational Patterns of Software
Development. Prentice Hall, 2004.

