
1

© 2005 by Carnegie Mellon University

Sponsored by the U.S. Department of Defense
© 2005 by Carnegie Mellon University

Version 1.0 page 1

Pittsburgh, PA 15213-3890

Methodical Design of 
Software Architecture 
Using an Architecture 
Design Assistant (ArchE)

Felix Bachmann and Mark Klein
Software Engineering Institute

© 2005  by Carnegie Mellon University Version 1.0 page 2

Outline
Motivation

Principles

ArchE

Example



2

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 3

The Key Question

Requirements Software Architectures

How do we systematically move from a set of 
requirements to a software architecture that 

satisfies those requirements?

© 2005  by Carnegie Mellon University Version 1.0 page 4

Designing is very knowledge intensive:
• The required expertise rarely resides in one 

place/person
• It’s unclear how/what knowledge should drive design

Knowledge requirements:
• Domain
• Quality attribute (e.g. performance, security, 

modifiability)
• Architectural design
• Design methodology
• ….

The Problem



3

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 5

Our Goals
Goal: To methodically design software 
architectures so that they predictably meet 
quality attribute requirements.
Sub-goals:

• Determine/discover fundamental design 
principles

• Operationalize principles via method(s) 
(“Attribute Driven Design”)

• Investigate techniques and build prototypes 
for automated support (ArchE)

© 2005  by Carnegie Mellon University Version 1.0 page 6

Outline
Motivation

Principles

ArchE

Example



4

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 7

Types of Requirements

Constraints – pre-specified design decisions 

Features – what functions add value to the user  (e.g. what the system 
does)

Quality Attribute– how well the system does by various measures (e.g., 
how timely,  secure, modifiable it is) 

Requirements Software Architectures

© 2005  by Carnegie Mellon University Version 1.0 page 8

Answer:  Functional requirements are least important for 
architecture design – quality requirements and constraints are 
most important

Here’s some evidence:
If the only concern is functionality then a monolithic system 
would suffice.

However is it quite common to see:
• Redundancy structures for reliability
• Concurrency structures for performance
• Layers for modifiability

What type of requirements drive 
architectural design?



5

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 9

What does an architect/ArchE need 
to know to methodically design?
Knowledge requirements

• Quality knowledge – how to achieve required qualities in 
an architecture design

• Architecture design process – how to get an architecture 
from requirements

Our approach:
• Precisely define quality attribute requirements in terms of 

scenarios.
• Exploit the “structure” of quality attribute models to define 

the structure of well-formed architectures.
• Define transformations between architecture models, 

quality attribute models, quality attribute scenarios and 
quality attribute measures.

© 2005  by Carnegie Mellon University Version 1.0 page 10

We have a common form for specification of 
quality requirements
We use quality attribute general scenarios, which are 
system independent,  to guide the specification of quality 
attribute requirements.

We characterize quality attribute requirements for a 
specific system by a collection of concrete quality 
attribute scenarios. These are instances of general 
scenarios.

We use general scenario generation tables to construct 
well-formed general scenarios for each attribute.



6

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 11

General Scenarios
General scenarios have six parts. The “values” for each 
part define a vocabulary for articulating quality attribute 
requirements. The parts are:
• Stimulus
• Source of stimulus
• Environment in which the stimulus arrives
• Artifact influenced by the stimulus
• Response of the system to the stimulus
• Response measures

© 2005  by Carnegie Mellon University Version 1.0 page 12

Availability Scenario Generation Table
Source of stimulus:

• Internal to the system
External to the system

Environment:
Normal operation

• Degraded mode 
Response:

record it
notify parties 
operate in normal or 
degraded mode

Stimulus:
Unanticipated event

• Update to a data store
Artifact:

Process
• Persistent storage

Response measures:
Availability percentage

• Time range in which the 
system can be in degraded 
mode

Example Scenario:
“An unanticipated message is received by a system process during 
normal operation. The process has to record it, inform the 
appropriate parties and continue to operate in normal mode without 
any downtime.”



7

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 13

Software Architecture

a

Quality Attribute Requirement Quality Attribute Model

What does it mean to satisfy a quality 
attribute requirement?

Quality Attribute Measures

I

E

La

S

If evaluated value is inside 
the region defined by the 
requirement, the 
requirement is satisfied.

A quality attribute requirement 
defines a region within the set of 
quality attribute measures.
An architecture can be interpreted in 
terms of quality attribute model 
which, in turn, can be evaluated to 
determine which quality attribute 
value the software architecture will 
achieve for a particular stimulus.

aStimulus

© 2005  by Carnegie Mellon University Version 1.0 page 14

Quality Attribute Models

RMA

Software Architectures

aa′

Quality Attribute Requirements 

PerfRqt

Quality Attribute Models

Scenario includes:

•Stimulus (arrival rate)

•Response (Latency)

Latency = F(

Arrival rate,

Computational requirements,

Priorities of tasks,

…)

Bound by 
scenario

Bound by 
either 
architecture 
or constraints



8

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 15

Parameters define architectural tactics

Scenario includes:

•Stimulus (arrival rate)

•Latency

Latency = F(

Arrival rate,

Computational requirements,

Priorities of tasks,

…)

Bound by 
scenario

Bound by 
architecture 
or 
constraints.

Tactics are designed to adjust the parameters.

Can work backwards – determine which values of parameters 
will satisfy latency, with given arrival rate, and then ask whether 
these values are architecturally achievable using tactics.

May also weaken constraints or requirements using tactics. 

© 2005  by Carnegie Mellon University Version 1.0 page 16

What are architectural tactics?

For the six quality attributes –availability, 
modifiability, performance, security, testability, 
usability - we have enumerated a collection of 
“tactics”

Formal definition: An architectural tactic is a 
means of satisfying a quality attribute 
response measure by manipulating some 
aspect of a quality attribute model through 
architectural design decisions. 



9

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 17

Architectural Tactics

Quality Attribute Measures

I

RMA

Software Architectures

aa′
T

Quality Attribute Requirements 

PerfRqt

Quality Attribute Models

ES

An architectural tactic moves from 
one architecture to another where 
a parameter of the quality attribute 
model moves in a known direction.

La’La

© 2005  by Carnegie Mellon University Version 1.0 page 18

Performance Tactics

Events 
arrive

Response 
generated 
within time 
constraints

Performance

Performance 
Demand

• Increase 
Computational 
Efficiency

• Reduce 
Computational 
Overhead

• Manage Event Rate
• Control Frequency 
of Sampling

Resource 
Management

• Introduce 
Concurrency

• Maintain Multiple 
Copies

• Increase 
Available 
Resources

Resource 
Arbitration

• Scheduling 
Policy

• Synchronization 
policy



10

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 19

Outline
Motivation

Principles

ArchE

Example

© 2005  by Carnegie Mellon University Version 1.0 page 20

ArchE – Architectural Expert
ArchE is a tool intended to complement an architect during 
the design process

Our vision is that
• The architect has domain knowledge and an 

understanding of what is feasible
• ArchE has knowledge of quality attributes and their 

relation to design

ArchE is emerging work at the SEI.



11

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 21

ArchE vis a vis any particular quality 
attribute
Quality attribute theories are created and change over 
time

We want ArchE infrastructure to be independent of any 
particular quality attribute
• ArchE is modular with respect to quality attributes that 

are included 
• We use term “reasoning framework” to describe how 

quality attribute knowledge is encapsulated in ArchE.
• We view reasoning frameworks as “plug-ins”

© 2005  by Carnegie Mellon University Version 1.0 page 22

Process of using ArchE (current 
version)
Architect: provide scenarios and features to ArchE

ArchE: generates initial architecture based on reasoning 
frameworks and scenarios

ArchE: presents list of possible tactics to improve 
architecture to architect

Architect: choose tactic to apply

ArchE: apply tactic and generate new list of possible 
tactics 



12

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 23

ArchE Uses Tactics to Move 
Architecture in the Design Space

Quality Attribute Measures

I

RMA

Software Architectures

aa′
T

Quality Attribute Requirements 

PerfRqt

Quality Attribute Models

ES

An architectural tactic moves from 
one architecture to another where 
a parameter of the quality attribute 
model moves in a known direction.

La’La

© 2005  by Carnegie Mellon University Version 1.0 page 24

Outline
Motivation

Principles

ArchE

Example



13

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 25

Initial Functions for Sensor Demo
Receive data 
from sensor

Identify differences 
from past readings

Correct for 
environmental 

factors

Determine 
sensor status

Determine
warning status

of type 2

1

Responsibilityn

Data flow

Key:

Inform rest of 
system of any 

alerts

Determine warning 
status of type 1

sensor

Sensor input goes down two paths

One determines whether sensor is 
operational

One calculates values and 
potential alerts based on values

© 2005  by Carnegie Mellon University Version 1.0 page 26

Functions as they are entered into 
ArchE
1. Receive data from sensor (Receive)
2. Correct for environmental factors (Correct)
3. Determine sensor status (Status)
4. Identify warning conditions (Detect)

4.1 Identify differences from past readings (Diff)
4.2 Determine warning status

4.2.1 Determine warning status of type 1 (Type 1)
4.2.2 Determine warning status of type 2 (Type 2)

5. Inform rest of the system of any errors (Inform)
(Demo step 1)



14

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 27

Scenarios for the Sample Problem

Modifiability
1. Replace sensor without change to functionality within 4 

person days
2. Add new warning status without impacting existing warning 

statuses within 2.5 person days

Performance
1. Determine sensor status within 250 ms after receiving sensor 

input. Sensor input arrives every 500ms
2. Determine differences from past readings within 1250ms 

after receiving input. Input arrives every 1600ms.
3. Inform the rest of system of any alerts within 350ms after the 

arrival of alert status. Alert status arrives every 350ms.
(Demo step 2)

© 2005  by Carnegie Mellon University Version 1.0 page 28

Relate Scenarios to Responsibilities

Responsibilities and relations among responsibilities carry 
parameters.

Scenarios are not yet related to responsibilities. 

Costs, execution times, and dependency are not yet 
assigned 

Thus, there is not enough information for ArchE to 
determine whether the scenarios can be met.



15

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 29

If no assignment of responsibilities to modules then assign 
each responsibility from initial set to its own module.

(Demo step 3)

Retrieve parameters from architect.
• Cost of change of responsibility
• Probability of change propagating

Initial Architecture for Impact Analysis

© 2005  by Carnegie Mellon University Version 1.0 page 30

Parameterized Values of Impact 
Analysis Model

Receive data 
from sensor

Identify differences 
from past readings

Correct for 
environmental 

factors

Determine 
sensor status

Determine
warning status

of type 2

1

Cost of changing 
responsibilityn

Probability of 
propagation

Key:

Inform rest of 
system of any 

alerts

Determine warning 
status of type 1

sensor

1

2

2 1
1

1.5

1.5

.7

.7
.7

.7

.7

.7

.7

n

.7

(Demo step 4)



16

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 31

Scenarios for the Sample Problem

Modifiability
1. Replace sensor without change to functionality within 4 

person days
2. Add new warning status without impacting existing warning 

statuses within 2.5 person days

Performance
1. Determine sensor status within 250 ms after receiving sensor 

input. Sensor input arrives every 500ms
2. Determine differences from past readings within 1250ms 

after receiving input. Input arrives every 1250ms.
3. Inform the rest of system of any alerts within 350ms after the 

arrival of alert status. Alert status arrives every 350ms.

© 2005  by Carnegie Mellon University Version 1.0 page 32

ArchE Proposes Possible Tactics
For modifiability ArchE can propose tactics like:

• Localization

• Encapsulation

• wrappers

We choose “localize”



17

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 33

Result after tactic “localize”
Receive input 
from sensor

Identify differences 
from past readings

Correct for 
environmental 

factors

Determine 
sensor status

Inform rest of 
system of any 

alerts

Determine
warning status

of type 2

.7

.7

.7

1

1

2

1

1

1

Inform rest of 
system of any 

alerts

Determine warning 
status of type 1

.7

.7

.7

1

1.5

1.5

.7

.7

.7 New 
responsibility 
as a result of 

tactic

ArchE creates new 
responsibility and makes 
it dependent on affected 
modules

Architect must give new 
responsibility meaningful name 
and adjust dependencies, 
costs, probabilities, and names 
of affected responsibilities.

.7

sensor

(Demo step 5)

© 2005  by Carnegie Mellon University Version 1.0 page 34

Result after changing dependencies 
and choosing encapsulation

Smooth input

Identify differences 
from past readings

Correct for 
environmental 

factors

Determine 
sensor status

Inform rest of 
system of any 

alerts

Determine
warning status

of type 2

.7

.7

.7

1

1

2

n
Responsibility with 
cost factor
Dependency with 
probabilityn

Key:

1

1

1

Inform rest of 
system of any 

alerts

Determine warning 
status of type 1

.7

.7

.7

1

1.5

1.5

.7

.2

.2 Convert input 
to internal 

syntax

3.97 Days for 
Scenario 1



18

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 35

Scenarios for the Sample Problem

Modifiability
1. Replace sensor without change to functionality within 3 

person days
2. Add new warning status without impacting existing warning 

statuses within 2 person days

Performance
1. Determine sensor status within 250 ms after receiving 

sensor input. Sensor input arrives every 500ms
2. Determine differences from past readings within 1250ms 

after receiving input. Input arrives every 1600ms.
3. Inform the rest of system of any alerts within 350ms after 

the arrival of alert status. Alert status arrives every 
350ms.

© 2005  by Carnegie Mellon University Version 1.0 page 36

Responsibility
(n is exec time)

affects Task

Initial Architecture
n

Scenario 1 –
Period (500) and Deadline (250)

Scenario 2 –
Period (350) and Deadline (350)

Scenario 3 –
Period (1600) and Deadline (1250)

Status
150

Inform
300

Correct
100

Receive
30

Detect
120

Create a task for each scenario.
Assign deadline monotonic priorities to the tasks

6

2

4



19

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 37

Responsibility
(n is exec time)

affects Task

Evaluate Model
n

Scenario 1 –
Period (500) and Deadline (250) Status

150

Inform
300Scenario 2 –

Period (350) and Deadline (350)

Scenario 3 –
Period (1600) and Deadline (1250) Correct

100
Receive

30
Detect

120

Total utilization > 1.0 and deadlines are violated !
Tactic: Try reducing execution times of several 

responsibilities

6

2

4

Latency = 150  

Latency = INF !

Latency = INF !

130

225

60 60

(Demo step 6)

© 2005  by Carnegie Mellon University Version 1.0 page 38

Responsibility
(n is exec time)

affects Task

Applying Tactics -1
n

Scenario 1 –
Period (500) and Deadline (250) Status

130

Inform
225Scenario 2 –

Period (350) and Deadline (350)

Scenario 3 –
Period (1600) and Deadline (1250) Correct

60
Receive

30
Detect

60

Total utilization < 1.0 but deadlines are still violated !
Tactic: Try reducing execution time of Status.

6

2

4

Latency = 130  

Latency = 360 !

Latency = 2375 !

120

(Demo step 7)



20

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 39

Responsibility
(n is exec time)

affects Task

Applying Tactics -2
n

Scenario 1 –
Period (500) and Deadline (250) Status

120

Inform
225Scenario 2 –

Period (350) and Deadline (350)

Scenario 3 –
Period (1600) and Deadline (1250) Correct

60
Receive

30
Detect

60

One deadline is still violated !
Tactic: Try increasing period of Inform.

6

2

4

Latency = 120  

Latency = 345 

Latency = 1980 !

385

(Demo step 8)

© 2005  by Carnegie Mellon University Version 1.0 page 40

Responsibility
(n is exec time)

affects Task

Applying Tactics -3
n

Scenario 1 –
Period (500) and Deadline (250) Status

120

Inform
225Scenario 2 –

Period (385) and Deadline (350)

Scenario 3 –
Period (1600) and Deadline (1250) Correct

60
Receive

30
Detect

60

One deadline is still violated !
Tactic: Try increasing period of Status.

6

2

4

Latency = 120  

Latency = 345 

Latency = 1410 !

550



21

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 41

Responsibility
(n is exec time)

affects Task

Applying Tactics -4
n

Scenario 1 –
Period (550) and Deadline (250) Status

120

Inform
225Scenario 2 –

Period (385) and Deadline (350)

Scenario 3 –
Period (1600) and Deadline (1250) Correct

60
Receive

30
Detect

60

*** Success ***

6

2

4

Latency = 120  

Latency = 345 

Latency = 1065

(Demo step 8)

© 2005  by Carnegie Mellon University Version 1.0 page 42

Status
Applying ArchE to realistic examples
• ArchE has demonstrated that methodical design with 

predictable results is possible for small systems.
• We are looking for collaborators to help us with the 

extension of PAD and ArchE.
Extensions to ArchE that are underway
• Input constraints
• ArchE proposes patterns as well as tactics
• Variability reasoning framework
• Extension of performance reasoning framework



22

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 43

Future Work - 1
Make searching more efficient
• Patterns presented to architect as well as 

tactics
• Tradeoffs managed in a better fashion
• Better initial guess at architecture
• More sophisticated search
• Learning based on past choices

© 2005  by Carnegie Mellon University Version 1.0 page 44

Future Work - 2
Make more and better reasoning frameworks
• More depth in current reasoning frameworks
• Add reasoning frameworks for other attributes (e.g., 

variability, security, dependability)
• Develop domain specific language for specification of 

reasoning frameworks
• Make ArchE more realistic

- Apply to more sophisticated problems
- Improve the user interface



23

© 2005 by Carnegie Mellon University

© 2005  by Carnegie Mellon University Version 1.0 page 45

Three SEI technical reports available on our web site:
1. Illuminating the fundamental contributors to software 

architecture quality. CMU/SEI-2002-TR-025
2. Deriving architectural tactics: A step toward methodical 

architectural design  CMU/SEI-2003-TR-004
3. Preliminary Design of ArchE: A Software Architecture 

Design Assistant CMU/SEI-2003-TR-021 

Lists of general scenarios and tactics 
are available in second edition of 
Software Architecture in Practice

More Information


