# **Applying the Team Software Process**

Noopur Davis, SEI Bruce Erickson, Intuit

SEPG 2005 Seattle, WA



# **Topics**

- Background
- Overview of TSP
- Highlights of standard development processes in QuickBooks division of Intuit
- Integrating TSP/PSP with Intuit QuickBooks processes
- Adoption of PSP by individual engineers
- Key successes of the application of TSP
- Key challenges to integrating TSP
- Planned improvements to be adopted by the pilot team for their next project



# Background

The Team Software Process (TSP) promises

- radical improvements in quality
- superior project status visibility
- predictability
- efficiency
- a framework for continual improvement



# Questions

- How does TSP fit into existing culture and processes?
- Can TSP promises be fulfilled when working with a complex code base that has evolved over more than 10 years?

# **TSP Overview**

- The TSP is a framework and a process structure for building and guiding self-directed teams.
- The TSP addresses
  - team-building
  - team-working
- Each phase or cycle of a TSP project starts with a launch or re-launch.
- The standard strategy is to
  - develop in increments
  - use multiple cycles
  - work-ahead





# **Intuit QuickBooks Process Highlights**

- Requirements development
- User Interface design and specification
- Technical designs
- Release Commit
- Implementation
- Code Complete
- Functional test complete/UI freeze
- System test complete
- Beta ready
- Shutdown begins
- Manufacturing Release

Note: Phases overlap as needed. Phases shown here apply to software developers, not to systems testers or other functions in the organization.



| Feature   | W1               | W2     | W3        | W4 | W5               | W6                            | W7      | W8                                           | W9               | W        | 10               | W11         | W12   | W13 |
|-----------|------------------|--------|-----------|----|------------------|-------------------------------|---------|----------------------------------------------|------------------|----------|------------------|-------------|-------|-----|
| Feature 1 | Implement part 1 |        |           |    | Imple            | plement part 2 Imp.<br>part 3 |         |                                              | Implement part 4 |          |                  |             |       |     |
| Feature 2 | Requirements     |        |           |    |                  |                               | Im      | Implement feature 2 Imple<br>framework featu |                  |          | Implen<br>featur | nent<br>e 2 |       |     |
| Feature 3 | Im               | plemer | nt part 1 |    | Implement part 2 |                               |         |                                              | Im<br>pa<br>3    | p.<br>rt | Implen<br>part   | nent<br>4   |       |     |
|           |                  |        |           | 4  |                  | Key                           | s to su | ccess                                        | S:               |          |                  |             |       |     |
|           |                  |        |           |    |                  |                               |         | • Imm                                        | ediat            | e PD     | sta              | rt          |       |     |
|           |                  |        |           |    |                  |                               |         | • Extre                                      | eme p            | baral    | lelisi           | m           |       |     |
| <b>D</b>  |                  |        |           |    | B                |                               |         | • Incre                                      | emen             | tal de   | elive            | ry          |       |     |
|           |                  |        |           |    |                  |                               |         | • Rad                                        | ically           | high     | qua              | lity (T     | SP/PS | SP) |
| 68        |                  |        |           |    |                  |                               |         | • Aggi                                       | ressiv           | e tra    | ickin            | ig (TS      | P)    |     |
|           |                  |        |           |    |                  |                               |         |                                              |                  |          |                  | <u>.</u>    | - /   |     |

Noopur Davis/Bruce Erickson

Mntu

8

| Feature   | W1 | W2           | W3        | W4   | W5                              | W6 | W7  | W8                                         | W9               | V               | V10                 | W11         | W12 | W13 |
|-----------|----|--------------|-----------|------|---------------------------------|----|-----|--------------------------------------------|------------------|-----------------|---------------------|-------------|-----|-----|
| Feature 1 |    | Impler       | nent pa   | rt 1 | Implement part 2 Imp.<br>part 3 |    |     | 3                                          | Implement part 4 |                 |                     |             |     |     |
| Feature 2 |    | Requirements |           |      |                                 |    | Imp | Implement feature 2<br>framework feature 2 |                  |                 |                     | nent<br>e 2 |     |     |
| Feature 3 | Im | plemen       | it part 1 |      | Implement part 2                |    |     |                                            | In<br>pa         | np.<br>art<br>3 | Implement<br>part 4 |             |     |     |

PSP applied during implementation

- Design, personal design review, design peer review
- Code, personal code review, code peer review
- Unit test



#### Adoption of PSP by Individual Engineers

- PSP was adopted to varying degrees
- All engineers kept detailed time logs.
- All engineers recorded defects, especially defects detected in inspection and test.
- All engineers kept their task plans up to date.
- All engineers provided weekly status to the team.
- Some engineers embraced the principles of the PSP, while others remained lukewarm.

# Key Successes of the Application of TSP

- Increased visibility into project status
- Improved quality
- Longer development cycle
- Team involvement



#### Increased Visibility Into Project Status

Each team member, as well as the team as a whole, has detailed insight into project status

- Earned value
- Quality information from early phases
- Task hours
- Tasks completed
- Tasks remaining



#### **Earned Value At Project Completion**





#### **Task Hours**

Mid-way through the project, people started rolling off.





# **Importance Of Re-Planning**



100

#### Weekly Status -1

Some weeks were better...

|                                    |       |        | Plan / |
|------------------------------------|-------|--------|--------|
| Weekly Data                        | Plan  | Actual | Actual |
| Schedule hours for this week       | 60.0  | 51.3   | 1.17   |
| Schedule hours this cycle to date  | 361.0 | 325.0  | 1.11   |
| Earned value for this week         | 8.1   | 8.8    | 0.92   |
| Earned value this cycle to date    | 38.8  | 37.7   | 1.03   |
| To-date hours for tasks completed  | 344.4 | 326.5  | 1.06   |
| To-date average hours per week     | 51.6  | 46.4   | 1.11   |
| EV per completed task hour to date | 0.113 | 0.116  |        |



#### Weekly Status -2

... than other weeks!

| Weekly | Data |
|--------|------|
|--------|------|

Schedule hours for this week Schedule hours this cycle to date Earned value for this week Earned value this cycle to date To-date hours for tasks completed To-date average hours per week EV per completed task hour to date

| Plan  | Actual | Actual |
|-------|--------|--------|
| 70.0  | 57.1   | 1.23   |
| 527.0 | 480.2  | 1.10   |
| 8.1   | 4.8    | 1.69   |
| 56.6  | 49.2   | 1.15   |
| 449.2 | 463.3  | 0.97   |
| 52.7  | 48.0   | 1.10   |
| 0.126 | 0.106  |        |



Dlam /

#### **Plan vs. Actual**

|                           | Actual/Plan<br>(Final/Re-launch) |  |  |  |  |
|---------------------------|----------------------------------|--|--|--|--|
| Size (N&C LOC)            | 1.58                             |  |  |  |  |
| Effort (hours)            | 1.27                             |  |  |  |  |
| Schedule                  | 1.22                             |  |  |  |  |
| Productivity (N&C LOC/Hr) | 1.24                             |  |  |  |  |



#### **Quality Measures**



Noopur Davis/Bruce Erickson

# **Component Analysis**



Percent Defects Removed by Activity

| Design                    |
|---------------------------|
| Personal and Team Reviews |
| Implementation            |
| Unit Test                 |
| System Test               |
| Other                     |
|                           |

| Program Size                   | Plan | Actual |
|--------------------------------|------|--------|
| Total Requirements Pages (SRS) | 0    | 0      |
| Total HLD Pages (SDS)          |      |        |
| Total Detailed Design Lines    |      |        |
| Base LOC (B)                   | 0    | 0      |
| Deleted LOC (D)                | 0    | 2      |
| Modified LOC (M)               | 0    | 24     |
| Added LOC (A)                  | 862  | 892    |
| Reused LOC (R)                 | 0    | 0      |
| New and Changed LOC (N)        | 862  | 916    |
| Total LOC (T)                  | 862  | 890    |
| Total New Reuse LOC            | 0    | 92     |

Quality Profile for Assembly JobCostsByVendor Reports



18%



#### Noopur Davis/Bruce Erickson

#### **Process Yields**





#### **Longer Development Cycle**



<sup>1</sup> Source: The Team Software Process in Practice: A Summary of Recent Results, Davis and Mullaney, SEI Technical Report CMU/SEI-2003-TR-014, http://www.sei.cmu.edu/publications/documents/03.reports/03tr014.html

#### Noopur Davis/Bruce Erickson



#### **Team Member Involvement -1**

- Team member comments during the project postmortem
  - "Beginning to like the process. Makes interaction with people more efficient. You know what other team members are doing."
  - "Liked clear definition of what people are responsible for. Promotes ownership of tasks."
  - "Lots of things I liked. The power it gives us at getting better at estimating and planning. All the fun data it gives us to see how we can improve. There is a shift in the mental sense to accept the fact that there are defects, and where we can improve is what to do about the defects."



#### **Team Member Involvement -2**

#### Team member comments (continued)

- "It protects us from ourselves. The task plan includes the things that we always say we will do...and it helps us feel good about them when we do them."
- "Wish requirements were better expressed. Very little guidance exists for requirements (in the TSP)."
- "Logging defects early gives an indication of remaining defects."

#### **Team Member Involvement -3**

#### Team member comments (continued)

- "The tool is not flexible enough."
- "The tool was my main complaint."
- "The TSP creates a lot of interdependencies, but the tool does not help you track them."
- "Logging every little change I made as a defect was difficult."
- "Almost an overbearing importance on system test defects. Some system test defects were not very important at all."



# **Key Challenges to Integrating TSP**

#### The TSP tool could improve for

- managing dependencies
- managing milestones
- PSP training
- Communication
  - with non-TSP teams
  - with Release Management
- Launching using industry data rather than your own
- Balancing roles
  - Manager/Team Lead/Coach/Planning Manager
  - Team Roles (Planning Manager, Quality Manager...)



# **Planned Improvements -1**

#### Apply TSP to requirements phase.

- include personal review
- include team inspection
- develop specific checklists
- log time spent and defects found
- Include architects in all design inspections.
- Include code champions in code inspections.
- Separate our high-level and detailed designs, with personal reviews and inspections for both.
- Develop list of QuickBooks-specific assumed behaviors. Use this checklist to help review and inspect designs.



# **Planned Improvements -2**

- During initial launch, focus on getting detail for requirements and plan for requirements activities.
- Investigate conceptual design before the launch. Let architects review conceptual design during the launch.
- Manage expectations so organization understands that re-planning will occur.
- Full cross-functional participation in the launch.



## Conclusion

#### What worked well

- Team commitment to trying the processes
- Earned value tracking focused us on our task plans, and protected our quality assessment activities

#### What did not work well

- Should have had Product Manager more involved during launch
- Need to separate our high-level and detailed designs
- Want to apply to requirements phase to reduce downstream defects



# **Contact Information**

#### **Noopur Davis**

- nd@sei.cmu.edu
- ndavis@davissys.com

**Bruce Erickson** 

bruce\_erickson@intuit.com

Visit the SEI TSP web site at

http://www.sei.cmu.edu/tsp

