
1
 2005 Software Engineering Institute

Achieving Quality Requirements
with Reused Software Components:
Challenges to Successful Reuse
Second International Workshop on Models and Processes
for the Evaluation of off-the-shelf Components (MPEC’05)

21 May 2005

Donald Firesmith
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
dgf@sei.cmu.edu

2
 2005 Software Engineering Institute

Topics

• Introduction
• Reusing Software
• Quality Models and Requirements
• Risks and Risk Mitigation
• Conclusion

3
 2005 Software Engineering Institute

Introduction 1

• When reusing components, many well known
problems exist regarding achieving functional
requirements.

• Reusing components is an architectural
decision as well as a management decision.

• Architectures are more about achieving quality
requirements than achieving functional
requirements.

• If specified at all, quality requirements tend to
be specified as very high level goals rather than
as feasible requirements. For example:

• “The system shall be secure.”

4
 2005 Software Engineering Institute

Introduction 2

• Actual quality requirements (as opposed to
goals) are often less negotiable than functional
requirements.

• Quality requirements are much harder to verify.
• Quality requirement achievability and tradeoffs

is one of top 10 risks with software-intensive
systems of systems. (Boehm et al. 2004)

• How can you learn what quality requirements
were originally used to build a reusable
component?

• What should architects know and do?

5
 2005 Software Engineering Institute

Reusing Software

• Scope of Reuse
• Types of Reusable Software
• Characteristics of Reusable Software

6
 2005 Software Engineering Institute

Scope of Reuse

• Our subject is the development of software-
intensive systems that incorporate some reused
component containing or consisting of software.

• We are not talking about developing software
for reuse in such systems
(i.e., this is not a ‘design for reuse’ discussion).

• The scope is all reusable software, not just
COTS software.

7
 2005 Software Engineering Institute

Types of Reusable Software

• Non-developmental Item (NDI) components
with SW come in many forms:

• COTS (Commercial Off-The-Shelf)
• GOTS (Government Off-The-Shelf)
• GFI (Government Furnished Information)
• GFE (Government Furnished Equipment)
• OSS (Open Source Software)
• Shareware
• Legacy (for Ad Hoc Reuse)
• Legacy (for Product Line)

• They have mostly similar characteristics.
• Differences more quantitative than qualitative

8
 2005 Software Engineering Institute

Characteristics of Reusable SW 1

• Not developed for use in applications / systems
with your exact requirements. For example,
they were built to different (or unknown):
• Functional requirements (operational profiles,

feature sets / use cases / use case paths)
• Quality requirements (capacity, extensibility,

maintainability, interoperability, performance,
safety, security, testability, usability)

• Data requirements (types / ranges / attributes)
• Interface requirements (syntax, semantics,

protocols, state models, exception handling)
• Constraints (architecture compatibility,

regulations, business rules, life cycle costs)

9
 2005 Software Engineering Institute

Characteristics of Reusable SW 2

• Intended to be used as a blackbox
• Hard, expensive, and risky to modify and

maintain
• The following may not be available, adequate,

or up-to-date:
• Requirements Specifications
• Architectural Documents
• Design Documentation
• Analyses
• Source code
• Test code and test results

• Lack of documentation is especially common
with COTS SW.

10
 2005 Software Engineering Institute

Characteristics of Reusable SW 3

• Maintained, updated, and released by others
according to a schedule over which you have
no control

• Typically requires licensing, which may involve
major issues

• Often needs a wrapper or an adaptor:
• Must make trade-off decision that developing

glue code is worth the cost and effort of using
the component

11
 2005 Software Engineering Institute

Component Quality Requirements

• Often overlooked
• Typically poorly engineered:

• Not specified at all
• Not specified properly (incomplete, ambiguous,

incorrect, infeasible)
- Specified as ambiguous, high-level quality goals

rather than as verifiable quality requirements
• Must be analyzed and specified in terms of

corresponding quality attributes
• Requires quality model to do properly

12
 2005 Software Engineering Institute

Quality Models 1

• Quality Model – a hierarchical model (i.e., a layered
collection of related abstractions or simplifications) for
formalizing the concept of the quality of a system in terms
of its:
• Quality Factors – high-level characteristics or attributes of a

system that capture major aspects of its quality (e.g.,
interoperability, performance, reliability, safety, and usability)

• Quality Subfactors – major components of a quality factor
or another quality subfactor that capture a subordinate
aspect of the quality of a system (e.g., throughput, response
time, jitter)

• Quality Criteria - specific descriptions of a system that
provide evidence either for or against the existence of a
specific quality factor or subfactor

• Quality Measures – gauges that quantify a quality criterion
and thus make it measurable, objective, and unambiguous
(e.g., transactions per second)

13
 2005 Software Engineering Institute

Quality Model 2

Quality Model

Quality SubfactorQuality Factor

System-Specific
Quality Criterion

Quality
Measure

measures
provides

evidence for
existence of

System

describes quality of

is measured
using

provides
evidence for
existence of

14
 2005 Software Engineering Institute

Quality Factors

Quality Factor

Defensibility

Safety Security Survivability

Quality Model

Dependability

Availability Reliability Robustness

Correctness InteroperabilityCapacity Performance Utility

15
 2005 Software Engineering Institute

Quality Requirements

Quality Requirement

Quality Model

Quality SubfactorQuality Factor

System-
Specific
Quality

Criterion

Quality
Measure

with Threshold

measures

provides evidence
for existence of

System

provides evidence
for existence of

describes
quality of

Quality requirement – a mandated combination
of quality criterion and quality measure threshold
or range

16
 2005 Software Engineering Institute

Some Important Quality Factors

• All quality factors may have requirements that
reusable components must meet.

• Today, we will briefly consider the following:
• Availability
• Capacity
• Performance
• Reliability
• Robustness
• Safety
• Security
• Testability

17
 2005 Software Engineering Institute

Availability

• Availability – the proportion of the time that an application
or component functions properly (and thus is available for
performing useful work)

• Measured/Specified as the average percent of time
that one or more functions/features/use cases/use
case paths [must] properly operate without
scheduled or unscheduled downtime under given
normal conditions.

• Becomes exponentially more difficult and expensive as
required availability increases (99% vs. 99.999%)

• Many possible [inconsistent] architectural mechanisms
• Requires many long-running tests to verify
• SW dependencies makes estimation of overall availability

from component availabilities difficult, even if known

18
 2005 Software Engineering Institute

Capacity

• Capacity - the maximum number of things that
an application or component can successfully
handle at a single point in time
• Measured/Specified in terms of number of users,

number of simultaneous transactions, number of
records stored, etc.

• Cannot be indefinitely large
• Solutions require both hardware and software

architectural decisions that may be inconsistent
with those of the reusable components

• Reasonably straight-forward to test if required
capacity is achieved, but not actual system
capacity

19
 2005 Software Engineering Institute

Performance 1

• Performance – the execution time of a function of an
application or component. Subfactors include:

• Determinism – the extent to which events and
behaviors are deterministic and can be precisely and
accurately predicted and scheduled

• Jitter – the variability of the time interval between an
application or component’s periodic actions

• Latency – the time that an application or component
takes to execute specific tasks (e.g., system
operations and use case paths) from end to end

• Response Time – the time that an application or
component takes to initially respond to a client request
for a service or to be allowed access to a resource

• Throughput – the number of times that an application
or component is able to complete an operation or
provide a service in a specified unit of time

20
 2005 Software Engineering Institute

Performance 2

• Measured and specified in many different ways

• Not all functions need high performance

• Although certain performance subfactors are vital for
safety and security certification and for real time
scheduling analysis, these performance subfactors
are rarely considered by product suppliers and other
developers

• Architectural mechanisms include real-time OS, cyclic
executive, no automatic garbage collection, repeated
hardware, etc.

• Requires significant analysis and testing to verify

21
 2005 Software Engineering Institute

Reliability

• Reliability – the degree to which an application or
component continues to function properly without failure
under normal conditions or circumstances

• Measured/specified as the:
- Mean time between failures (MTBF) during a given time

period under a given operational profile, whereby MTBF
is defined as the average period of time that the
application continues [shall continue] to function correctly
without failure under stated conditions.

- [Maximum permitted] number of failures per unit time
• Becomes exponentially more difficult and expensive as

required reliability increases

• Many possible [inconsistent] architectural mechanisms
• Requires many long-running tests to verify

22
 2005 Software Engineering Institute

Robustness
• Robustness – the degree to which an application or

component continues to function properly under
abnormal conditions or circumstances during a given
time period:
• Environmental tolerance (e.g., vibration or power)
• Failure tolerance (fail safety, fail softness –

degraded mode)
• Fault tolerance (presence of defects/bugs)
• Error tolerance (erroneous input)

• Becomes exponentially more difficult and expensive as
required robustness increases

• Many possible [inconsistent] architectural mechanisms
(e.g., fault detection by heartbeat vs. ping/echo vs. exception)

• Requires many difficult and expensive tests to verify
• SW dependencies makes estimation of overall robustness

from component robustness difficult, even if known

23
 2005 Software Engineering Institute

Safety 1

• Safety is the degree:
• Of freedom from:

• Accidental (unintentional) harm to valuable assets
• Safety incidents (accidents and near misses) that

can cause accidental harm
• Hazards that may cause safety incidents
• Safety risks (max. harm times probability)

• To which the following exist:
• Prevention of accidental harm
• Detection of safety incidents
• Reaction to safety incidents
• Adaptation to avoid accidental harm in the future

24
 2005 Software Engineering Institute

Safety 2

• Safety is becoming more and more critical as
more and more systems have safety
ramifications.

• Reusable software (e.g., COTS) often does not
address safety.

• Safety Integrity Levels (SILs) in the
requirements require proportionate Safety
Evidence Assurance Levels (SEALs) regarding
the development of components to achieve
certification:
• Architecture as well as design, coding, and

testing

25
 2005 Software Engineering Institute

Safety 3

• Reused components have:
• Different or nonexistent safety requirements
• Different, incompatible, or nonexistent

safeguards
• Poor (inappropriate, incomplete, missing)

requirements are the cause of roughly 40% of
accidents.

• Therac-25 (6 deaths) and Ariane-5 ($500
million) examples of accidents due to reuse

26
 2005 Software Engineering Institute

Security 1

• Security is the degree :
• Of freedom from:

• Malicious harm to valuable assets from attackers
• Security incidents (successful attacks, unsuccessful

attacks, probes) that can cause malicious harm
• Threats that may cause security incidents
• Security risks (max. harm times probability)

• To which the following exist:
• Prevention of malicious harm
• Detection of security incidents
• Reaction to security incidents
• Adaptation to avoid security problems in the future

27
 2005 Software Engineering Institute

Security 2

• Security is becoming more and more critical as
more and more systems have security
ramifications (e.g., private data, nonrepudiation
needs, valuable assets)

• Reusable software (e.g., COTS) often does not
adequately address security

• Security must be architected into systems, not
added on afterwards

• Reused components have:
• Different or nonexistent security requirements
• Different, nonexistent, or incompatible security

controls

28
 2005 Software Engineering Institute

Testability

• Testability – the degree to which an application
or component facilitates the creation and
execution of successful tests

• A function of:
• Observability
• Controllability

• Directly at odds with security
• Typically low with blackbox components not

delivered with test cases and test harnesses
• Limited to blackbox component testing, system

integration testing, system testing, and quality
requirements testing

29
 2005 Software Engineering Institute

Summary of Risks

• Reusable component is built to different quality
requirements than current system.

• Components often have incompatible
architectural approaches to support achieving
important quality requirements.

• Difficult and expensive to verify achievement of
quality requirements by reusable components

• Difficult to obtain safety and security
certifications for reused components and
resulting systems

• Glue code is neither always adequate nor
inexpensive.

30
 2005 Software Engineering Institute

Risk Mitigation 1

• Do not assume that reuse will necessarily be
cheaper, faster, or better.

• Negotiate quality requirements with ranges as
well as hard thresholds if practical.

• Demand credible evidence from supplier to
support reusability analysis.

• Talk to users of the reusable components to
learn from their experiences.

31
 2005 Software Engineering Institute

Risk Mitigation 2

• Do not overlook quality requirements / attributes
when assessing the appropriateness of
“reusable” components.

• Perform major reuse readiness assessment of
the reusable components that includes
verification of quality requirements:
• Technical analysis
• Prototyping
• Testing

• Plan for the significant cost (schedule, effort,
expense) of performing a real readiness
assessment.

32
 2005 Software Engineering Institute

Conclusion

If you are not concerned, you have probably not
paid sufficient attention.

	 Achieving Quality Requirements with Reused Software Components: Challenges to Successful Reuse
	Topics
	Introduction
	Introduction - 2
	Reusing Software
	Scope of Reuse
	Types of Reusable Software
	Characteristics of Reusable Software
	Characteristics of Reusable Software - 2
	Characteristics of Reusable Software - 3
	Component Quality Requirements
	Quality Models
	Quality Models - 2
	Quality Factors
	Quality Requirements
	Some Important Quality Factors
	Availability
	Capacity
	Performance
	Performance - 2
	Reliability
	Robustness
	Safety
	Safety - 2
	Safety - 3
	Security
	Security - 2
	Testability
	Summary of Risks
	Risk Mitigation
	Risk Mitigation - 2
	Conclusion

