— LarnegicMellon
=— Software Engineering Institute

Achieving Quality Requirements

with Reused Software Components:
Challenges to Successful Reuse

Second International Workshop on Models and Processes
for the Evaluation of off-the-shelf Components (MPEC’05)

21 May 2005
Donald Firesmith

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
dgf@sei.cmu.edu

icse@5 H@% :

© 2005Software Engineering Institute

arnegie Mellon

=— Software Engineering Institute

Topics

Introduction

Reusing Software

Quality Models and Requirements
Risks and Risk Mitigation
Conclusion

2\

, £1 =014
icse@s "f‘ﬂlr-"Jr' © 2005Software Engineering Institute

Cavrnegie Mellon

=— Software Engineering Institute

Introduction 1

* When reusing components, many well known
problems exist regarding achieving functional
requirements.

* Reusing components is an architectural
decision as well as a management decision.

 Architectures are more about achieving quality
requirements than achieving functional
requirements.

« |f specified at all, quality requirements tend to
be specified as very high level goals rather than
as feasible requirements. For example:

. * “The system shall be secure.”

fu™y

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

Carrsegie Mellon
= Software Engineering Institute

ntroduction 2

 Actual quality requirements (as opposed to
goals) are often less negotiable than functional
requirements.

« Quality requirements are much harder to verify.

« Quality requirement achievability and tradeoffs
Is one of top 10 risks with software-intensive
systems of systems. (Boehm et al. 2004)

 How can you learn what quality requirements
were originally used to build a reusable
component?

 What should architects know and do?

F

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

———_ Carnegie Mellon

=— Software Engineering Institute

Reusing Software

« Scope of Reuse
« Types of Reusable Software
« Characteristics of Reusable Software

2\

, £1 =014
icse@s "f‘ﬂlr-"Jr' © 2005Software Engineering Institute

Carrsegie Mellon
= Software Engineering Institute

Scope of Reuse

« Our subject is the development of software-
iIntensive systems that incorporate some reused
component containing or consisting of software.

« We are not talking about developing software
for reuse in such systems
(i.e., this is not a ‘design for reuse’ discussion).

* The scope is all reusable software, not just
COTS software.

F

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

Carrsegie Mellon
= Software Engineering Institute

Types of Reusable Software

« Non-developmental Item (NDI) components
with SW come in many forms:

COTS (Commercial Off-The-Shelf)
GOTS (Government Off-The-Shelf)

GFI (Government Furnished Information)
GFE (Government Furnished Equipment)
OSS (Open Source Software)

« Shareware

» Legacy (for Ad Hoc Reuse)

» Legacy (for Product Line)

* They have mostly similar characteristics.
« Differences more quantitative than qualitative

F

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

Carrsegie Mellon
= Software Engineering Institute

Characteristics of Reusable SW 1

* Not developed for use in applications / systems
with your exact requirements. For example,
they were built to different (or unknown):

* Functional requirements (operational profiles,
feature sets / use cases / use case paths)

* Quality requirements (capacity, extensibility,
maintainability, interoperability, performance,
safety, security, testability, usability)

- Data requirements (types / ranges / attributes)

* Interface requirements (syntax, semantics,
protocols, state models, exception handling)

« Constraints (architecture compatibility,
regulations, business rules, life cycle costs)

—

o,
Fu®y

. |“I . -III"I
1ose :]":- qﬁ ﬂ| [© 2005Software Engineering Institute ®

Cavrnegie Mellon

=— Software Engineering Institute

Characteristics of Reusable SW »

F

F y
fu™y

icse s |E|:l[-il| '[:fl I|l

Intended to be used as a blackbox

Hard, expensive, and risky to modify and
maintain

The following may not be available, adequate,
or up-to-date:

* Requirements Specifications
Architectural Documents
Design Documentation
Analyses

Source code

Test code and test results

Lack of documentation is especially common
with COTS SW.

© 2005Software Engineering Institute

—————

Cavrnegie Mellon

=— Software Engineering Institute

Characteristics of Reusable SW s

F

icse s |E|:l[-il| '[:fl I|l

Maintained, updated, and released by others
according to a schedule over which you have
no control

Typically requires licensing, which may involve
major issues
Often needs a wrapper or an adaptor:

« Must make trade-off decision that developing
glue code is worth the cost and effort of using
the component

© 2005Software Engineering Institute 10

Carrsegie Mellon
= Software Engineering Institute

Component Quality Requirements

» Often overlooked

 Typically poorly engineered:
* Not specified at all

» Not specified properly (incomplete, ambiguous,
incorrect, infeasible)

- Specified as ambiguous, high-level quality goals
rather than as verifiable quality requirements

* Must be analyzed and specified in terms of
corresponding quality attributes

« Requires quality model to do properly

F

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

11

Cavrnegie Mellon

=— Software Engineering Institute

Quality Models 1

* Quality Model — a hierarchical model (i.e., a layered
collection of related abstractions or simplifications) for
fc])cr_rpallzmg the concept of the quality of a system in terms
of its:

* Quality Factors — high-level characteristics or attributes of a
system that capture major aspects of its quality (e.é;.,
interoperability, performance, reliability, safety, and usability)

. Qualit%/ Subfactors — major components of a quality factor
or another quality subfactor that capture a subordinate
aspect of the quality of a system (e.g., throughput, response
time, jitter)

 Quality Criteria - specific descriptions of a system that
provide evidence either for or against the existence of a
specific quality factor or subfactor

* Quality Measures — gauges that quantify a quality criterion
and thus make it measurable, objective, and unambiguous
B (e.g., transactions per second)

P
Fu®y

. |“I ".__-III"I
icse@s '11ﬂ| g © 2005Software Engineering Institute 12

Carrsegie Mellon
=— Software Engineering Institute

Quality Model 2

Quality Model

¢

Quality Factor |H

Quality Subfactor

is measured
using

AN

provides

*

provides

evidence for evidence for

existence of existence of /

System-Specific
Quality Criterion

icse@5 i)

describes quality of

System

© 2005Software Engineering Institute

measures

Quality
Measure

13

—

e Mellon

Software Engineering Institute

Quality Factors

Quality Model

!

Quality Factor

/\

Capacity | | Correctness Dependability | | Interoperability | | Performance | | Utility
I I I
Availability Defensibility Reliability Robustness
I I
Safety Security Survivability

icse@s H@ﬁ

© 2005Software Engineering Institute

Cavrnegie Mellon

—————

Software Engineering Institute

Quality Requirements

Quality requirement — a mandated combination
of quality criterion and quality measure threshold

or range

F

F y
fu™y

icsals |E|:l[-il| '[:fl I|l

Quality Model

!

Quality Factor @—]

N

Quality Subfactor

*

provides evidence provides evidence

for existence of

Quality
Measure
with Threshold

|

for existence of

N

measures

System-
Specific
Quality

Criterion

¢

Quality Requirement

© 2005Software Engineering Institute

describes
quality of

—

System

15

Carrsegie Mellon
= Software Engineering Institute

Some Important Quality Factors

« All quality factors may have requirements that
reusable components must meet.

« Today, we will briefly consider the following:
 Availability

Capacity

Performance

Reliability

Robustness

Safety

« Security

 Testability

F

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

16

Carrsegie Mellon
= Software Engineering Institute

Availability

 Availability — the proportion of the time that an application
or component functions properly (and thus is available for
performing useful work)

« Measured/Specified as the average percent of time
that one or more functions/features/use cases/use
case paths [must] properly operate without
scheduled or unscheduled downtime under given
normal conditions.

« Becomes exponentially more difficult and expensive as
required availability increases (99% vs. 99.999%)

« Many possible [inconsistent] architectural mechanisms
« Requires many long-running tests to verify

« SW dependencies makes estimation of overall availability

/~~from component availabilities difficult, even if known

S Iﬂl ;P
icse@s '11ﬂ| g © 2005Software Engineering Institute 17

Carrsegie Mellon
= Software Engineering Institute

Capacity

 Capacity - the maximum number of things that
an application or component can successfully
handle at a single point in time

 Measured/Specified in terms of number of users,
number of simultaneous transactions, number of
records stored, etc.

« Cannot be indefinitely large

* Solutions require both hardware and software
architectural decisions that may be inconsistent
with those of the reusable components

« Reasonably straight-forward to test if required
capacity is achieved, but not actual system
capacity

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

18

Carrsegie Mellon
Software Engineering Institute

—————

Performance 1

« Performance — the execution time of a function of an
application or component. Subfactors include:

« Determinism — the extent to which events and
behaviors are deterministic and can be precisely and
accurately predicted and scheduled

» Jitter — the variability of the time interval between an
application or component’s periodic actions

- Latency — the time that an application or component
takes to execute specific tasks (e.g., system
operations and use case paths) from end to end

* Response Time — the time that an application or
component takes to initially respond to a client request
for a service or to be allowed access to a resource

« Throughput — the number of times that an application
or component is able to complete an operation or
provide a service in a specified unit of time

—

Fu®y

. Idll "._--III"l
icse@s '11ﬂ| g © 2005Software Engineering Institute 19

Carrsegie Mellon
= Software Engineering Institute

Performance 2

« Measured and specified in many different ways
 Not all functions need high performance

 Although certain performance subfactors are vital for
safety and security certification and for real time
scheduling analysis, these performance subfactors
are rarely considered by product suppliers and other
developers

 Architectural mechanisms include real-time OS, cyclic
executive, no automatic garbage collection, repeated
hardware, etc.

« Requires significant analysis and testing to verify

—

o,
Fu®y

. Idll "._--III"l
icse@s '11ﬂ| g © 2005Software Engineering Institute 20

——
e

Cavrnegie Mellon

=— Software Engineering Institute

Reliability

* Reliability — the degree to which an application or
component continues to function properly without failure
under normal conditions or circumstances

» Measured/specified as the:

- Mean time between failures (MTBF) during a given time
period under a given operational profile, whereby MTBF
is defined as the average period of time that the
application continues [shall continue] to function correctly
without failure under stated conditions.

- [Maximum permitted] number of failures per unit time

« Becomes exponentially more difficult and expensive as
required reliability increases

 Many possible [inconsistent] architectural mechanisms
* Requires many long-running tests to verify

F

Fu®y

. ol 00
icse@s "f‘ﬂl g © 2005Software Engineering Institute 21

Cavrnegie Mellon

= Software Engineering Institute

Robusthess

Robustness — the degree to which an application or
component continues to function properly under
abnormal conditions or circumstances during a given
time period:

 Environmental tolerance (e.g., vibration or power)

 Failure tolerance (fail safety, fail softness —
degraded mode)

* Fault tolerance (presence of defects/bugs)

* Error tolerance (erroneous input)
Becomes exponentially more difficult and expensive as
required robustness increases

Many possible [inconsistent] architectural mechanisms
(e.g., fault detection by heartbeat vs. ping/echo vs. exception)

Requires many difficult and expensive tests to verify
SW dependencies makes estimation of overall robustness

/from component robustness difficult, even if known

. o T L
1ose :]":- qﬁ ﬂ| [© 2005Software Engineering Institute 2

—

e

F

arnegie Mellon

Software Engineering Institute

Safety -

Safety is the degree:

» Of freedom from:
 Accidental (unintentional) harm to valuable assets

« Safety incidents (accidents and near misses) that
can cause accidental harm

« Hazards that may cause safety incidents
« Safety risks (max. harm times probability)
« To which the following exist:
* Prevention of accidental harm
 Detection of safety incidents
« Reaction to safety incidents
» Adaptation to avoid accidental harm in the future

Fu®y

icse@5 S

© 2005Software Engineering Institute

23

Carrsegie Mellon
= Software Engineering Institute

Safety

« Safety is becoming more and more critical as
more and more systems have safety
ramifications.

« Reusable software (e.g., COTS) often does not
address safety.

» Safety Integrity Levels (SILs) in the
requirements require proportionate Safety
Evidence Assurance Levels (SEALSs) regarding
the development of components to achieve
certification:

 Architecture as well as design, coding, and
testing

. Idll "._--III"l
icse@s '11ﬂ| g © 2005Software Engineering Institute 24

———_ Carnegie Mellon

=— Software Engineering Institute

Safety s

 Reused components have:
« Different or nonexistent safety requirements

« Different, incompatible, or nonexistent
safequards
« Poor (inappropriate, incomplete, missing)
requirements are the cause of roughly 40% of
accidents.

« Therac-25 (6 deaths) and Ariane-5 ($500
million) examples of accidents due to reuse

F

. ol 00
icse@s "f‘ﬂl g © 2005Software Engineering Institute

25

r— {.'l

e el lon
Software Engineering Institute

Security 1

e

« Security is the degree

o Of freedom from:
e Malicious harm to valuable assets from attackers

« Security incidents (successful attacks, unsuccessful
attacks, probes) that can cause malicious harm

» Threats that may cause security incidents
« Security risks (max. harm times probability)
« To which the following exist:
* Prevention of malicious harm
« Detection of security incidents
* Reaction to security incidents
« Adaptation to avoid security problems in the future

F

Fu®y

. ol 00
icse@s "f‘ﬂl g © 2005Software Engineering Institute 26

Carrsegie Mellon
= Software Engineering Institute

Security 2

« Security is becoming more and more critical as
more and more systems have security
ramifications (e.g., private data, nonrepudiation
needs, valuable assets)

« Reusable software (e.g., COTS) often does not
adequately address security

» Security must be architected into systems, not
added on afterwards

 Reused components have:

« Different or nonexistent security requirements
 Different, nonexistent, or incompatible security
controls

o,
Fu®y

— Idll "._--III"l
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

Carrsegie Mellon
= Software Engineering Institute

Testability

» Testability — the degree to which an application
or component facilitates the creation and
execution of successful tests

* A function of:

* Observability
 Controllability

* Directly at odds with security

 Typically low with blackbox components not
delivered with test cases and test harnesses

 Limited to blackbox component testing, system
iIntegration testing, system testing, and quality
~requirements testing

S Idll_l.-_.'ll.l
icse@s I'|k| M © 2005Software Engineering Institute

28

Carrsegie Mellon
= Software Engineering Institute

Summary of Risks

« Reusable component is built to different quality
requirements than current system.

« Components often have incompatible
architectural approaches to support achieving
important quality requirements.

« Difficult and expensive to verify achievement of
quality requirements by reusable components

» Difficult to obtain safety and security
certifications for reused components and
resulting systems

* Glue code is neither always adequate nor
~lnexpensive.

. |“I"..--I|"I
icse@5 '11ﬂ| (i © 2005Software Engineering Institute

29

Cavrnegie Mellon

=— Software Engineering Institute

Risk Mitigation 1

Do not assume that reuse will necessarily be
cheaper, faster, or better.

Negotiate quality requirements with ranges as
well as hard thresholds if practical.

Demand credible evidence from supplier to
support reusability analysis.

Talk to users of the reusable components to
learn from their experiences.

—

o,
Fu®y

. Idll "._--III"l
icse@S phfin © 2005Software Engineering Institute 30

Cavrnegie Mellon

=— Software Engineering Institute

Risk Mitigation :

* Do not overlook quality requirements / attributes
when assessing the appropriateness of
“reusable” components.

« Perform major reuse readiness assessment of
the reusable components that includes
verification of quality requirements:

« Technical analysis
 Prototyping
» Testing

 Plan for the significant cost (schedule, effort,
expense) of performing a real readiness
assessment.

Fu®y

. Idll "._--III"l
icse@s '11ﬂ| g © 2005Software Engineering Institute 31

—

e el lon
=— Software Engineering Institute

Conclusion

If you are not concerned, you have probably not
paid sufficient attention.

. £l 2 ey
icse@5 l'lklrlll[-lﬂr' © 2005Software Engineering Institute

32

	 Achieving Quality Requirements with Reused Software Components: Challenges to Successful Reuse
	Topics
	Introduction
	Introduction - 2
	Reusing Software
	Scope of Reuse
	Types of Reusable Software
	Characteristics of Reusable Software
	Characteristics of Reusable Software - 2
	Characteristics of Reusable Software - 3
	Component Quality Requirements
	Quality Models
	Quality Models - 2
	Quality Factors
	Quality Requirements
	Some Important Quality Factors
	Availability
	Capacity
	Performance
	Performance - 2
	Reliability
	Robustness
	Safety
	Safety - 2
	Safety - 3
	Security
	Security - 2
	Testability
	Summary of Risks
	Risk Mitigation
	Risk Mitigation - 2
	Conclusion

