
1
 2005 Software Engineering Institute

Achieving Quality Requirements
with Reused Software Components:
Challenges to Successful Reuse
Second International Workshop on Models and Processes
for the Evaluation of off-the-shelf Components (MPEC’05)

21 May 2005

Donald Firesmith
Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213
dgf@sei.cmu.edu

2
 2005 Software Engineering Institute

Topics

• Introduction
• Reusing Software
• Quality Models and Requirements
• Risks and Risk Mitigation
• Conclusion

3
 2005 Software Engineering Institute

Introduction 1

• When reusing components, many well known
problems exist regarding achieving functional
requirements.

• Reusing components is an architectural
decision as well as a management decision.

• Architectures are more about achieving quality
requirements than achieving functional
requirements.

• If specified at all, quality requirements tend to
be specified as very high level goals rather than
as feasible requirements. For example:

• “The system shall be secure.”

4
 2005 Software Engineering Institute

Introduction 2

• Actual quality requirements (as opposed to
goals) are often less negotiable than functional
requirements.

• Quality requirements are much harder to verify.
• Quality requirement achievability and tradeoffs

is one of top 10 risks with software-intensive
systems of systems. (Boehm et al. 2004)

• How can you learn what quality requirements
were originally used to build a reusable
component?

• What should architects know and do?

5
 2005 Software Engineering Institute

Reusing Software

• Scope of Reuse
• Types of Reusable Software
• Characteristics of Reusable Software

6
 2005 Software Engineering Institute

Scope of Reuse

• Our subject is the development of software-
intensive systems that incorporate some reused
component containing or consisting of software.

• We are not talking about developing software
for reuse in such systems
(i.e., this is not a ‘design for reuse’ discussion).

• The scope is all reusable software, not just
COTS software.

7
 2005 Software Engineering Institute

Types of Reusable Software

• Non-developmental Item (NDI) components
with SW come in many forms:

• COTS (Commercial Off-The-Shelf)
• GOTS (Government Off-The-Shelf)
• GFI (Government Furnished Information)
• GFE (Government Furnished Equipment)
• OSS (Open Source Software)
• Shareware
• Legacy (for Ad Hoc Reuse)
• Legacy (for Product Line)

• They have mostly similar characteristics.
• Differences more quantitative than qualitative

8
 2005 Software Engineering Institute

Characteristics of Reusable SW 1

• Not developed for use in applications / systems
with your exact requirements. For example,
they were built to different (or unknown):
• Functional requirements (operational profiles,

feature sets / use cases / use case paths)
• Quality requirements (capacity, extensibility,

maintainability, interoperability, performance,
safety, security, testability, usability)

• Data requirements (types / ranges / attributes)
• Interface requirements (syntax, semantics,

protocols, state models, exception handling)
• Constraints (architecture compatibility,

regulations, business rules, life cycle costs)

9
 2005 Software Engineering Institute

Characteristics of Reusable SW 2

• Intended to be used as a blackbox
• Hard, expensive, and risky to modify and

maintain
• The following may not be available, adequate,

or up-to-date:
• Requirements Specifications
• Architectural Documents
• Design Documentation
• Analyses
• Source code
• Test code and test results

• Lack of documentation is especially common
with COTS SW.

10
 2005 Software Engineering Institute

Characteristics of Reusable SW 3

• Maintained, updated, and released by others
according to a schedule over which you have
no control

• Typically requires licensing, which may involve
major issues

• Often needs a wrapper or an adaptor:
• Must make trade-off decision that developing

glue code is worth the cost and effort of using
the component

11
 2005 Software Engineering Institute

Component Quality Requirements

• Often overlooked
• Typically poorly engineered:

• Not specified at all
• Not specified properly (incomplete, ambiguous,

incorrect, infeasible)
- Specified as ambiguous, high-level quality goals

rather than as verifiable quality requirements
• Must be analyzed and specified in terms of

corresponding quality attributes
• Requires quality model to do properly

12
 2005 Software Engineering Institute

Quality Models 1

• Quality Model – a hierarchical model (i.e., a layered
collection of related abstractions or simplifications) for
formalizing the concept of the quality of a system in terms
of its:
• Quality Factors – high-level characteristics or attributes of a

system that capture major aspects of its quality (e.g.,
interoperability, performance, reliability, safety, and usability)

• Quality Subfactors – major components of a quality factor
or another quality subfactor that capture a subordinate
aspect of the quality of a system (e.g., throughput, response
time, jitter)

• Quality Criteria - specific descriptions of a system that
provide evidence either for or against the existence of a
specific quality factor or subfactor

• Quality Measures – gauges that quantify a quality criterion
and thus make it measurable, objective, and unambiguous
(e.g., transactions per second)

13
 2005 Software Engineering Institute

Quality Model 2

Quality Model

Quality SubfactorQuality Factor

System-Specific
Quality Criterion

Quality
Measure

measures
provides

evidence for
existence of

System

describes quality of

is measured
using

provides
evidence for
existence of

14
 2005 Software Engineering Institute

Quality Factors

Quality Factor

Defensibility

Safety Security Survivability

Quality Model

Dependability

Availability Reliability Robustness

Correctness InteroperabilityCapacity Performance Utility

15
 2005 Software Engineering Institute

Quality Requirements

Quality Requirement

Quality Model

Quality SubfactorQuality Factor

System-
Specific
Quality

Criterion

Quality
Measure

with Threshold

measures

provides evidence
for existence of

System

provides evidence
for existence of

describes
quality of

Quality requirement – a mandated combination
of quality criterion and quality measure threshold
or range

16
 2005 Software Engineering Institute

Some Important Quality Factors

• All quality factors may have requirements that
reusable components must meet.

• Today, we will briefly consider the following:
• Availability
• Capacity
• Performance
• Reliability
• Robustness
• Safety
• Security
• Testability

17
 2005 Software Engineering Institute

Availability

• Availability – the proportion of the time that an application
or component functions properly (and thus is available for
performing useful work)

• Measured/Specified as the average percent of time
that one or more functions/features/use cases/use
case paths [must] properly operate without
scheduled or unscheduled downtime under given
normal conditions.

• Becomes exponentially more difficult and expensive as
required availability increases (99% vs. 99.999%)

• Many possible [inconsistent] architectural mechanisms
• Requires many long-running tests to verify
• SW dependencies makes estimation of overall availability

from component availabilities difficult, even if known

18
 2005 Software Engineering Institute

Capacity

• Capacity - the maximum number of things that
an application or component can successfully
handle at a single point in time
• Measured/Specified in terms of number of users,

number of simultaneous transactions, number of
records stored, etc.

• Cannot be indefinitely large
• Solutions require both hardware and software

architectural decisions that may be inconsistent
with those of the reusable components

• Reasonably straight-forward to test if required
capacity is achieved, but not actual system
capacity

19
 2005 Software Engineering Institute

Performance 1

• Performance – the execution time of a function of an
application or component. Subfactors include:

• Determinism – the extent to which events and
behaviors are deterministic and can be precisely and
accurately predicted and scheduled

• Jitter – the variability of the time interval between an
application or component’s periodic actions

• Latency – the time that an application or component
takes to execute specific tasks (e.g., system
operations and use case paths) from end to end

• Response Time – the time that an application or
component takes to initially respond to a client request
for a service or to be allowed access to a resource

• Throughput – the number of times that an application
or component is able to complete an operation or
provide a service in a specified unit of time

20
 2005 Software Engineering Institute

Performance 2

• Measured and specified in many different ways

• Not all functions need high performance

• Although certain performance subfactors are vital for
safety and security certification and for real time
scheduling analysis, these performance subfactors
are rarely considered by product suppliers and other
developers

• Architectural mechanisms include real-time OS, cyclic
executive, no automatic garbage collection, repeated
hardware, etc.

• Requires significant analysis and testing to verify

21
 2005 Software Engineering Institute

Reliability

• Reliability – the degree to which an application or
component continues to function properly without failure
under normal conditions or circumstances

• Measured/specified as the:
- Mean time between failures (MTBF) during a given time

period under a given operational profile, whereby MTBF
is defined as the average period of time that the
application continues [shall continue] to function correctly
without failure under stated conditions.

- [Maximum permitted] number of failures per unit time
• Becomes exponentially more difficult and expensive as

required reliability increases

• Many possible [inconsistent] architectural mechanisms
• Requires many long-running tests to verify

22
 2005 Software Engineering Institute

Robustness
• Robustness – the degree to which an application or

component continues to function properly under
abnormal conditions or circumstances during a given
time period:
• Environmental tolerance (e.g., vibration or power)
• Failure tolerance (fail safety, fail softness –

degraded mode)
• Fault tolerance (presence of defects/bugs)
• Error tolerance (erroneous input)

• Becomes exponentially more difficult and expensive as
required robustness increases

• Many possible [inconsistent] architectural mechanisms
(e.g., fault detection by heartbeat vs. ping/echo vs. exception)

• Requires many difficult and expensive tests to verify
• SW dependencies makes estimation of overall robustness

from component robustness difficult, even if known

23
 2005 Software Engineering Institute

Safety 1

• Safety is the degree:
• Of freedom from:

• Accidental (unintentional) harm to valuable assets
• Safety incidents (accidents and near misses) that

can cause accidental harm
• Hazards that may cause safety incidents
• Safety risks (max. harm times probability)

• To which the following exist:
• Prevention of accidental harm
• Detection of safety incidents
• Reaction to safety incidents
• Adaptation to avoid accidental harm in the future

24
 2005 Software Engineering Institute

Safety 2

• Safety is becoming more and more critical as
more and more systems have safety
ramifications.

• Reusable software (e.g., COTS) often does not
address safety.

• Safety Integrity Levels (SILs) in the
requirements require proportionate Safety
Evidence Assurance Levels (SEALs) regarding
the development of components to achieve
certification:
• Architecture as well as design, coding, and

testing

25
 2005 Software Engineering Institute

Safety 3

• Reused components have:
• Different or nonexistent safety requirements
• Different, incompatible, or nonexistent

safeguards
• Poor (inappropriate, incomplete, missing)

requirements are the cause of roughly 40% of
accidents.

• Therac-25 (6 deaths) and Ariane-5 ($500
million) examples of accidents due to reuse

26
 2005 Software Engineering Institute

Security 1

• Security is the degree :
• Of freedom from:

• Malicious harm to valuable assets from attackers
• Security incidents (successful attacks, unsuccessful

attacks, probes) that can cause malicious harm
• Threats that may cause security incidents
• Security risks (max. harm times probability)

• To which the following exist:
• Prevention of malicious harm
• Detection of security incidents
• Reaction to security incidents
• Adaptation to avoid security problems in the future

27
 2005 Software Engineering Institute

Security 2

• Security is becoming more and more critical as
more and more systems have security
ramifications (e.g., private data, nonrepudiation
needs, valuable assets)

• Reusable software (e.g., COTS) often does not
adequately address security

• Security must be architected into systems, not
added on afterwards

• Reused components have:
• Different or nonexistent security requirements
• Different, nonexistent, or incompatible security

controls

28
 2005 Software Engineering Institute

Testability

• Testability – the degree to which an application
or component facilitates the creation and
execution of successful tests

• A function of:
• Observability
• Controllability

• Directly at odds with security
• Typically low with blackbox components not

delivered with test cases and test harnesses
• Limited to blackbox component testing, system

integration testing, system testing, and quality
requirements testing

29
 2005 Software Engineering Institute

Summary of Risks

• Reusable component is built to different quality
requirements than current system.

• Components often have incompatible
architectural approaches to support achieving
important quality requirements.

• Difficult and expensive to verify achievement of
quality requirements by reusable components

• Difficult to obtain safety and security
certifications for reused components and
resulting systems

• Glue code is neither always adequate nor
inexpensive.

30
 2005 Software Engineering Institute

Risk Mitigation 1

• Do not assume that reuse will necessarily be
cheaper, faster, or better.

• Negotiate quality requirements with ranges as
well as hard thresholds if practical.

• Demand credible evidence from supplier to
support reusability analysis.

• Talk to users of the reusable components to
learn from their experiences.

31
 2005 Software Engineering Institute

Risk Mitigation 2

• Do not overlook quality requirements / attributes
when assessing the appropriateness of
“reusable” components.

• Perform major reuse readiness assessment of
the reusable components that includes
verification of quality requirements:
• Technical analysis
• Prototyping
• Testing

• Plan for the significant cost (schedule, effort,
expense) of performing a real readiness
assessment.

32
 2005 Software Engineering Institute

Conclusion

If you are not concerned, you have probably not
paid sufficient attention.

	 Achieving Quality Requirements with Reused Software Components: Challenges to Successful Reuse
	Topics
	Introduction
	Introduction - 2
	Reusing Software
	Scope of Reuse
	Types of Reusable Software
	Characteristics of Reusable Software
	Characteristics of Reusable Software - 2
	Characteristics of Reusable Software - 3
	Component Quality Requirements
	Quality Models
	Quality Models - 2
	Quality Factors
	Quality Requirements
	Some Important Quality Factors
	Availability
	Capacity
	Performance
	Performance - 2
	Reliability
	Robustness
	Safety
	Safety - 2
	Safety - 3
	Security
	Security - 2
	Testability
	Summary of Risks
	Risk Mitigation
	Risk Mitigation - 2
	Conclusion

