
© 2010 Carnegie Mellon University

SEI Proprietary; Distribution: Limited: for Government use only

Selecting Middleware

Technologies

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Tricia Oberndorf, Tom Merendino,
Soumya Simanta
SSTC - April 2010

© 2010 Carnegie Mellon University

SEI Proprietary; Distribution: Limited: for Government use only

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on
the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is
required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission @ sei.cmu.edu.

This work was created in the performance of Federal Government Contract
Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The Government
of the United States has a royalty-free government-purpose license to use, duplicate, or
disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes pursuant to the copyright license under the clause at 252.227-
7013.

3

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Outline

The Selection Problem

The Selection Process

Example Use

Results and Lessons Learned

4

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

The Customer Problem

Our customer has had an open, COTS-based architecture in place for
over 10 years:

• Basic system function is to connect data providers with data consumers

• Middleware technology was used to achieve hardware independence

– Hardware upgrades have been successfully achieved – the scheme works

• Current technology: CORBA

But 10 years is very long in technology time

• Should the program replace the current middleware technology?

– Consider both a 5-year and a 10-year timeframe

• If so:

– when?

– what should the replacement be?

– how should the program go about doing the replacement?

5

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Outline

The Selection Problem

The Selection Process

Example Use

Results and Lessons Learned

6

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Our Basic Evaluation Process

The SEI employs a basic evaluation process when addressing situations
like this:

• Plan the evaluation

• Establish criteria

• Collect the data

• Analyze the data

7

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Process Used for this Study

Planning includes:
• Develop understanding of system and system context

• Develop understanding of system architecture

Establishing criteria includes:
• Conversion of key requirements to criteria

• Prioritization of those criteria with customer team

Collecting data includes:
• Market survey to determine the state of the standards and availability

of products for the timeframes
– Required “big picture” of the technology area (middleware)

Analyzing data includes:
• Includes Cost/Performance Benefit Analysis to determine whether the

CORBA standard should be replaced and, if so, with what

• Also when and how

8

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Outline

The Selection Problem

The Selection Process

Example Use

Results and Lessons Learned

9

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Approach: Filter Followed by Deeper Evaluation

Middleware technologies for

event-based, soft real-time,

distributed systems

Recommendations

Initial “showstopper”
criteria reduce field to
a few for deeper
evaluation

Broader, richer set
of criteria provide
basis for deeper
evaluationCost/Benefit/Risk

analysis of deeper
evaluation results

1

2

3

PECA

10

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

System Attributes

Federated, loosely coupled subsystems

Data centric

• Based on common data groups

• Primary function is data distribution

• No transactions

• Data mostly transient

Soft real time

Uses both event-based (publish/subscribe) and data movement-based
(client /server) interaction patterns

• Will continue to need support for both

Limited/no sharing of subsystem resources

Key quality attributes: performance, fault tolerance, security

PECA

11

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Subsystem Attributes

Each subsystem:

• Internally uses its own middleware implementation(s)

• Has localized the CORBA code

– In most cases, changes to middleware implementation will be localized to
one place in the subsystem

• Is independent of the middleware implementation used (apart from localized
CORBA-related code)

• May use non-CORBA interactions with other subsystems

Note: Subsystems are out of scope. However, this information can be helpful
and may be used in final decisions.

PECA

12

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

System Context Characteristics

Controlled and closed development and run-time environments

Acknowledged system of systems (SoS) at development time

All decisions are made at design/development time

Environment is not dynamically changing

Prevailing attitude and approach of the program is very conducive to
continued success.

PECA

13

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Filter Criteria

The criteria we have used for this filter are mostly a subset of the full set
we will use for the detailed evaluation:

• Whether the technology is platform-specific

• Whether the technology is language-specific

• Whether the technology is standards-based

• Whether the technology is vendor-specific

• Whether the technology has support for events

• The maturity of the technology

• The breadth of adoption of the technology

Adopted a color coding scheme for summary comparison.

PECA

14

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Distributed Systems – Levels of Abstraction -1

Concept : Architectural Styles, Design Elements, Interaction Patterns

Specification – Standards

Implementation – Types

V
e

n
d

o
r s

p
e

c
ific

ity
 in

c
re

a
s

e
s

A
b

s
tra

c
tio

n
 d

e
c

re
a

s
e

s

Orbix ORB

CORBA WS-* DDS DCOM RMI JMS EJB

Enterprise Service Bus (ESB)

Websphere RTI DDS WeblogicTIBCO RV JBoss

Application Server

Implementation – Specific Software Products

ORB Message bus

Central database – data centric

Cloud computing & Grid Computing – resource centric

Distributed Objects Architecture (DOA) – object centric

Event-Driven Architecture (EDA) – event centric

Message Oriented Middleware (MOM) – message centric

Remote Procedure Call (RPC) – function centric

Service Oriented Architecture (SOA) – service centric

PECA

15

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Distributed Systems – Levels of Abstraction -2

Architectural concepts are not disjoint.

• EDA can be implemented using services and SOA can have events

• SOA uses messages and MOM can use services

• Both Grid and Cloud use web services

Each architectural pattern can be implemented using different
technologies.

• Distributed Objects Architecture can be implemented using CORBA or EJB.

The architecture of the system is often a hybrid.

PECA

16

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Filter Results
Technology Platform

specific

Language

specific

Standards

based

Vendor

specific

Support for

Events

Maturity Adoption

Java-RMI

JMS

Web Services

EJB

CORBA

DCOM

DDS

Tibco RV

Facebook Thrift

IBM MQSeries

Protocol Buffers

Cisco Etch

ZeroC ICE

Elvin

AMQP

●

●

●
●

●

●

●

●

● Technologies that are very similar to CORBA

PECA/PECA

17

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Conclusions from Filter

Based on these results, we performed a deeper evaluation on:

• CORBA – as currently implemented and used in the system

• Web Services (WS-*) – taking into account the things that “most”
implementations do or are found in the most popular implementations

• DDS – popular implementations (primarily RTI, PrismTech)

In the detailed evaluation, we did not reconsider these same criteria in
the binary sense.

• In many cases, however, the detailed look examined the degree to which a
particular technology satisfies the criterion and how it does it.

PECA

18

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Final Criteria Considered -1
Alphabetical

Architectural Styles Supported Support for key communication styles

Support for events

Enterprise Architecture Alignment Navy OA

DoD and other enterprise

Environment Support for heterogeneity

Support for development-time federation

Future Education

Marketplace trend

State of research on the technology

Implementations Availability of open source implementations

Strength in marketplace

Complexity of implementation

Quality of available implementations

PECA

19

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Final Criteria Considered -2
Alphabetical

Openness Use of standards

Quality Attribute Requirements Availability

Interoperability

Performance

Scalability

Support for audit

Support for data consistency

Support for security

Upgradability/maintainability

Reuse Preservation of legacy infrastructure

logic/concepts

Future reuse (factoring)

System Constraints Impact on physical system constraints

PECA

20

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Top Ten Priorities
Ordered

Openness Use of standards - Pedigree

Environment Support for development-time federation

Quality Attribute Requirements Performance

Quality Attribute Requirements
Upgradability/maintainability –

ease of change

Quality Attribute Requirements Interoperability

System Constraints Impact on physical system constraints

Implementations Availability of open source implementations

Architectural Styles Supported

Future Marketplace trend

Enterprise Architecture Alignment Navy OA

PECA

21

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Top Ten Criteria Grouped

Runtime

(End Users)

Development time

(Developers)

Future

(Strategic

Decision-makers)

Openness – use of standards

1

Development time federation

2

QA Reqt. - Performance

3

QA Reqt. – Ease of change

4

QA Reqt. – Interoperability

5

Physical System constraints

6

Open source implementations

7

Architecture Style Supported

8

Future Trends
9

Enterprise Architecture Alignment

10

PECA

22

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Relationships Between Top Ten Criteria

Openness – use of standards

1

Development time federation

2

QA Reqt. - Performance

3

QA Reqt. – Ease of change

4

QA Reqt. – Interoperability

5

Physical System constraints

6

Open source implementations

7

Architecture Style Supported

8

Future Trends
9

Enterprise architecture alignment

10

constrains

influences

supports

positively influences

facilitates
facilitates

PECA

23

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

DDS Overview

Design Principles and Key Features

 Data-centric

 Loose coupling in space and time

 Key quality attributes - Performance,

reliability, and scalability

 Configurable QoS parameters

Architecture

 Decentralized peer-to-peer

architecture

 Publish/subscribe many-to-many

asynchronous communication model

Target Systems and Environments

 Designed for distributed low latency

and high reliability systems

 Especially ideal for high-

performance distribution of

event-based messages

 Commercial and open source

implementations available

Standards

 A set of standards by Object

Management Group (OMG)

 Joint submission by RTI , THALES and

OIS and Version 1 adopted in 2004

PECA

24

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

DDS – Core Concepts

S1

S2

S4

S5

S3

S6

Global data space

(logical, not physical)

Publisher /Subscriber

T1

T2
T3

Publisher

Subscriber

Publisher

Subscriber

Publisher

Topic

Topic

Topic

<write>

<read>

<read>

<write>

<write>

<write>

<read>

R
e
p

lic
a
s

PECA

25

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Web Services Overview

Design Principles and Key Features

 XML-based message centric

 Loose coupling in space, time (optional)

 Autonomous

 Key quality attributes - interoperability,

composability, reusability

Architecture

 Client/server and/or centralized bus

architecture

 Synchronous and asynchronous

communication model

Target Systems and Environments

 Designed for integrating

heterogeneous enterprise systems

Widely adopted by web -based

systems on the Internet

 Multiple implementations

 A strong and growing open source

community

Standards

 Loosely coupled interoperable

standards, mostly by W3C and OASIS

 Basic standards and optional

standards addressing specific areas –

security, transactions, reliability

PECA

26

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Web Services – SOA Core Concepts

End User

Application

Service

A

SOA Infrastructure

Enterprise

Information System

Portal

Internet

External

System

Service

B

Service

C

Service

D

Internal Users

DiscoverySecurity
Development

Tools

Legacy or New

Service Code

Internal

System
Service

Consumers

Infrastructure

Service

Implementation

Service

Interfaces

External

Consumer

PECA

27

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

CORBA Overview

Design Principles and Key Features

 Distributed Object Middleware

 Distributed objects appear to be local

 Support for heterogeneous environments

 The standard provides definition of

system services (e.g., Event Channel

Service, Naming Service, etc.)

Architecture

 Client/Server pattern, supporting Remote

Procedure Call-like interactions

 Event Channel w / Push-Pull interactions

 Object Request Brokers (ORBs) – in

charge of component interactions

 Protocols for inter-ORB interaction

 Standardized Interface Definition

Language (IDL) for interface publication

Target Systems and Environments

 Designed for integrating distributed

systems across (particularly)

heterogeneous platforms

 Used in both embedded and

enterprise applications

 Commercial and open source

implementations available

Standards

 A set of standards by Object

Management Group (OMG)

 CORBA 1.0 adopted in 1991, CORBA

2.0 adopted in 1996, CORBA 3.0 adopted

in 2002

PECA

28

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

CORBA - Core Concepts

Source: ETH Zurich (Swiss Federal Institute) Enterprise Application
Integration (Middleware) Course
http://www.iks.inf.ethz.ch/education/ws05/eai/slides/lec5.pdf

Source: Doug Schmidt, Vanderbilt University, “An Overview of CORBA
Event Channel Service”
http://www.cs.wustl.edu/~schmidt/PDF/coss4.pdf

Object-Oriented Remote Procedure Call Event Channel Service

(one of several CORBA system services)

Note: Pull model and push-pull model are

also supported

PECA

http://www.iks.inf.ethz.ch/education/ws05/eai/slides/
http://www.iks.inf.ethz.ch/education/ws05/eai/slides/
http://www.cs.wustl.edu/~schmidt/PDF/coss4.pdf

29

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Technologies Vs. the Top 10 Evaluation Criteria

Criterion DDS WS-* CORBA

Openness – Use of standards – Pedigree

Environment – Support for development-time federation

Quality Attribute – Performance

Quality Attribute – Ease of change

Quality Attribute – Interoperability

System Constraints

Implementations – Availability of open source

Architectural Styles Supported

Future – Marketplace trend

Enterprise Architecture Alignment – Navy OA

PECA

30

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

DDS – Strengths and Weaknesses

Strengths

• Good fit for this class of system

– Designed to optimize movement and sharing of data streams

– Promotes the right qualities (performance, …), data-centric design

• It’s open, and open source implementations are available.

• Alignment with Navy OA and other DoD and Navy programs

– Navy surface community is using DDS

• Does not require dedicated hardware, due to peer-to-peer architecture

Weaknesses

• Small community (today), indicating small demand

• A niche specification

• Provides no direct support for client/server

• Open source implementations are limited and largely unsupported

PECA

31

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

DDS – Risks

• Critical mass

– DDS adoption may not reach critical mass.

– The small community means it could be difficult/expensive to obtain qualified
resources.

• Implementations

– Open source implementations may not yet be in use in production
environments.

– Unknown dependency on a vendor (in case of a non-open source solution)

– Unknown cost and quality of support for the open source implementations

– Implementations may not be of good quality.

• E.g., there is reportedly a problem with reliable multicast

• Complexity

– Uncertain complexity of the DDS programming model

– Configuration of the QoS parameters is complex, with an accompanying steep
learning curve.

– Could be overkill for this system’s requirements

PECA

32

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Cost/Benefit Analysis: DDS

Costs:

• Potential high cost of training and personnel because it’s a niche community
with limited adoption and resources

• Significantly higher licensing cost for a commercial (as opposed to open
source) implementation

– Cost of commitment to support available open source products
because of limited open source community support

• Cost of change: re-architecting/re-engineering, retraining, retooling,
generating and implementing new governance, etc.

• Probably low/no cost for dedicated hardware

Benefits:

• Newer technology than CORBA

• Optimized for this kind of application IF invest in full exploitation of all the
features that DDS offers

• Possibility of “government open source” within Navy?

PECA

33

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

WS-* – Strengths

• “Everybody’s doing it.”

– Large, robust, active community, driven by the Web

– Many vendors (including big ones), many people qualified and familiar

– Many users/adopters using it for mission-critical systems

• Good support for interoperability, reuse, composability

• Many newer distributed computing paradigms (e.g., Grid and Cloud) are
based on service-oriented concepts.

– Service-orientation is the next logical progression in distributed computing.

– The core idea of services is unlikely to go away.

• Open source implementations are available that are tested and widely used.

• Alignment with Navy OA and other DoD programs

– Basic Web Services are sufficient for this system’s purposes.

• It’s open – lots of standards activity.

PECA

34

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

WS-* – Weaknesses

• Lots of standards activity, some overlapping and competing

• May not satisfy real-time performance needs

• Many pieces to coordinate

– Multiple products (and vendors) will be required to cover all the
requirements

– Implies a need for more architecting, system engineering, and integrating

• Several important technical open questions – evolving body of research and
knowledge

• Communication and governance overhead

– The delta from current processes is unknown.

PECA

35

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

WS-* – Risks

• Performance

– May not meet all performance requirements

• Communication/governance overhead

– Possible gap in governance implied by loss of (development-time
recompiled) IDL as a foundation of collaboration and coordination IF ignored

• Flux

– Some WS-* standards are still maturing and evolving

• The high rate of change implies higher frequency of adapting to
changes – and there are a lot of them – very chaotic, many ripple effects

• Integration

– Possible need to integrate large number of products from different vendors

– Fragmentation and churn in products

• Certification

– Unknown implications of NSA treatment of services with regard to C&A
requirements

PECA

36

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Cost/Benefit Analysis: Web Services

Costs:

• Cost of engineering missing quality attributes, especially performance

• Keeping up with change/evolution generated by the WS-* community

• Initial cost of new governance and learning/implementation costs

• New tooling for development and maintenance

• Cost of change: profiling (WS-I profile), re-architecting/re-engineering,
retraining, retooling, generating and implementing new governance, etc.

Benefits:

• Very popular, likely to continue to be so into foreseeable future

– Large community, a lot of effort to leverage

– Many viable options from which to choose, e.g., for vendors and products

– Lower cost of finding qualified staff

• Open source implementations of good quality and mature

PECA

37

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

CORBA – Strengths and Weaknesses

Strengths

• It’s working for you today

• It is open, and you are able to use an open source implementation

Weaknesses

• Need to recompile for changes

• Perceived complexity

• Shrinking community of developers and adopters (unlikely to be used for
developing new systems)

PECA

38

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

CORBA – Risks

• Slowly but surely diminishing resources:

– Diminishing support for open source implementation

– Anticipated shortage of personnel with CORBA background

• Continually increasing investment in legacy assets

– more to move if (when?) change at some point in the future

PECA

39

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Cost/Benefit Analysis: CORBA

Costs:

• Cost of recompiles, which triggers new testing cycle

• Cost of training/mentoring new programmers, cost of attracting/retaining
CORBA experts

• Cost of implementing new features (e.g., history) not provided in current
standard or products

• No costs of change – at least in the short term

Benefits:

• Low/no initial investment – no cost of change (no prototyping, no training,
no licensing)

• Status quo – everything good (and bad) remains

PECA

40

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Cost/Benefit Summary

“No change” from CORBA is a viable choice, at least in the near term.

• The least-cost option initially

• At some point we expect the costs associated with this are likely to start to
overtake the cost of other alternatives.

DDS could do the job, but we do not find a clear benefit within justifiable
cost unless this system commits to utilizing the entire feature set.

• Appears that the cost/benefit ratio on this is the least favorable

WS-* could do the job and affords many opportunities and choices, both
near term and long term.

• Provided the solution can be engineered to meet the performance needs

• Provided the challenges of “herding the cats” can be kept under control

PECA

41

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Security Changes Everything

Runtime

(End Users)

Development time

(Developers)

Future

(Strategic

Decision-makers)

Openness – use of standards

1

Development time federation

2

QA Reqt. - Performance

3

QA Reqt. – Ease of change

4

QA Reqt. – Interoperability

5

Physical System constraints

6

Open source implementations

7

Architecture Style Supported

8

Future Trends
9

Enterprise Architecture Alignment

10

Security

42

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Security Differences

• WS-*

– WS-* has many security-related standards.

– However, we have not looked at how usable they are for this system.

• DDS

– Security was not a quality attribute of focus.

– However, security has become an area of focus for DDS vendors.

A critical decision factor would be how security options provided by each
technology work with the existing security infrastructure.

43

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Outline

The Selection Problem

The Selection Process

Example Use

Results and Lessons Learned

44

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Final Step

The last step in any such evaluation is to put together all the findings of
executing the PECA process into a coherent recommendation.

45

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Results

Should the program replace CORBA?

Yes

If so, when?

No sooner than 5 years – so have to start now

What should the replacement be?

IF Web Services can be shown to provide needed
performance, then it is the best choice as measured by the
program’s evaluation criteria.

How should the program go about doing the replacement?

Incrementally – we have outlined a set of steps and
activities to pursue in our recommendations.

46

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Recommendations

Start to plan your change

• Use this study as a starting point

• Start prototyping and piloting

• Start looking at governance changes for each alternative technology

– Identify changes required to existing processes

– Identify new processes required

– Try them out in pilots

Decide about making a change

Catch up and keep up with your architecture

• Take what we (and other studies?) have done and create the architecture
documentation that will be required for evolution

47

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Should You Change? Bottom Line

You will need to get off CORBA at some point, but you have the luxury
of doing it carefully and through reasoned decisions.

No need to rush into anything

• No technical problem with CORBA today

• However, it is unlikely that any new development will use CORBA.

48

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

If So, When?

Very dependent on the timing of possible future events

• Mission requirements changes

• Other technology changes (e.g., multi-core)

Probably in the next 5 – 10 years

• Fewer ORBs and ORB vendors

• Historical technology trends from introduction to establishment tell us that it
typically takes 13 – 17 years

• Several articles suggest that few/no new developments are going to be in
CORBA

– Further major investment makes little sense

49

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Why Wait?

WS-*

• Moore’s law

– Processing power may be good enough to meet this system’s performance
needs.

• Second adopter’s advantage

– Better insights into limits of using WS-* to meet demands of embedded real-time
systems

– Lessons learned from DoD programs using a WS-* approach

• Publish/Subscribe

– More open source implementations providing better support for publish/subscribe

– Maturity in WS-* standards associated with publish/subscribe

DDS

• Adoption and market place

– Better insights into DDS adoption

• Open source implementations

– Insights into maturity of open source implementations

50

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

What About Further Out in the Future?

Some “truths”:

• Architectural styles won't change.

– Any middleware technology for distributed systems needs to be built on
existing concepts.

– We don't see any paradigm shifts:

• Next generation (WS-*) being built on previous (including CORBA)

– Others on the horizon (e.g., cloud computing) don't seem to affect this
situation.

• Multi-core *might* IF someone discovers the software engineering
approach to truly take advantage of massively parallel processing

We do not find any technologies right now that are likely to radically
change your technology base in the foreseeable future.

• Barring any new disruptive technologies, you should experience evolution,
not revolution.

51

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

If So, to What Should You Change?

A final answer to this question is not possible without more study.

If experiments and prototypes demonstrate the ability of Web Services
to meet performance and security requirements, then Web Services
should be the choice.

• Better ecosystem

– Driven by the Web

– More open source options

– Substantial vendor commitment

– DoD commitments

• Provides better adaptability and flexibility to support evolution of this system

52

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

How Should You Change?

Not “Big Bang” – migration needs to be incremental

We suggest 4 phases in making the change:

1. Technology study

– Started with this activity

– Needs to be followed with prototyping for enhanced decision-making

2. Re-architecting and re-engineering the software system and planning the
migration

– Including training, governance, system structure, acquisition of
hardware/software, retooling, etc.

3. Incremental implementation of the migration

4. Maintenance

53

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Further Studies and Investigations

This evaluation was the first step.

Proposed further investigations in 3 major categories:

• Existing System Analysis

• Market Research

• Prototypes and Experiments

54

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Lessons Learned

PECA is an effective high-level evaluation process

• Created for product evaluation, but equally applicable to technology
evaluation – tailorability provides needed flexibility

Keeping in mind that the half-life of evaluation information is about 6
months …

• Both DDS and WS* have a lot of potential for this class of systems

• CORBA is durable but probably no longer appropriate for new developments

Keys to this system’s success:

• A forward-looking culture

• A basis in open systems

• A robust technology refresh process

Don’t forget: architecture is the #1 system asset

• Never let it get away from you

55

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

QUESTIONS?

56

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

Contact Information

Tricia Oberndorf, Team Lead

ASP

Telephone: +1 412-268-6138

Email: po@sei.cmu.edu

Tom Merendino

ASP

+1 412-268-1154

Email: tjm@sei.cmu.edu

Soumya Simanta

RTSS

Telephone: +1 412-268-7602

Email: ssimanta@sei.cmu.edu

U.S. mail:

Software Engineering Institute

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

mailto:info@sei.cmu.edu
mailto:info@sei.cmu.edu
mailto:info@sei.cmu.edu

57

SSTC, April 2010

Oberndorf/Merendino/Simanta

© 2010 Carnegie Mellon University

