
© 2010 Carnegie Mellon University

Evolution of a Software

Engineer in a SoS System

Engineering World

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Tricia Oberndorf, Carol A. Sledge, PhD
April 2010

© 2010 Carnegie Mellon University

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this presentation is not intended in any way to infringe on
the rights of the trademark holder.

This Presentation may be reproduced in its entirety, without modification, and freely
distributed in written or electronic form without requesting formal permission. Permission is
required for any other use. Requests for permission should be directed to the Software
Engineering Institute at permission @ sei.cmu.edu.

This work was created in the performance of Federal Government Contract
Number FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software
Engineering Institute, a federally funded research and development center. The Government
of the United States has a royalty-free government-purpose license to use, duplicate, or
disclose the work, in whole or in part and in any manner, and to have or permit others to do
so, for government purposes pursuant to the copyright license under the clause at 252.227-
7013.

3

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Essential Characteristics of

Systems of Systems

4

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Maier’s Characterization of Systems of Systems

Autonomous constituents with independent operations and management

• Includes people, organizations, software agents, etc.

• Source of independent actions and decisions

Evolution…

• Independent evolution of each constituent to respond to new technology and
mission needs at its own pace and direction

• Evolution of the whole in response to changing demand

Emergent behavior

• ―Whole is different than the sum of the parts‖

• Indirect and cumulative effects of influences, actions, interactions

Must recognize, manage, and exploit the inherent
nature of these characteristics

5

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Types of SoS*

Directed Acknowledged Collaborative Virtual

* DoD System Engineering Guide for System of Systems Engineering (Version 1.0, August 2008) & Maier

• Integrated SoS,

built and managed

to fulfill specific

purposes

• Centrally managed to

maintain and evolve

• Constituents

independent but

subordinated to

centrally managed

purpose

• Recognized

objectives,

designated

manager and

resources

• Constituents

maintain independent

ownership, objectives,

funding, etc

• Changes based on

collaboration

between the SoS

and the constituent

• Constituents

interact more or

less voluntarily to

fulfill agreed

central purposes

• Lack central

management

authority and

centrally agreed

purpose

• Rely on relatively

invisible

mechanisms to

maintain it

6

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Development Challenges

Increasingly complex net-centric systems-of-systems, with
demands for responsiveness, fast turn-around for changes,
and unprecedented flexibility.

• Demands for increased integration,
interoperability, flexibility, adaptability,
more complex and dynamic capabilities

• Enterprise perspectives/requirements;
sustainment concerns

• Software increasingly replacing hardware and
connecting other systems (e.g., to reduce sensor
to shooter loop)

• Software represents a major risk:
Software is often the long pole
in the tent.

7

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Similarities – Systems and SoS

Multi-contractor teams using different processes; dispersed engineering,
development & operational locations

New technologies create opportunities/challenges;
products change/evolve, organizations mutate

Business/operational needs change - often faster
than full system capability can be implemented

Skill set falls short of what is needed

Cost and schedule constraints limit options

Many proven software development and

management practices, methods, and tools exist for systems,

but far too few projects take advantage of them.

8

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Systems vs. Systems of Systems

Practices & processes are

determined within a single program:

Practices & processes influenced by

the whole SoS context:

Known causes and effects Causes and effects a combination of known,

unknown, and unknowable

Dependencies are mainly in the context of

the particular program or system

Dependencies largely outside your span of

control

Changing dependencies can be controlled Changing dependencies may be managed;

Influence is your only option

Negotiation of information and decisions

reside within the program

Wider collaboration needed to develop

shared understanding – or mitigation if

negotiation doesn’t work

Goal is system capabilities Goal is SoS capabilities – constituent PLUS

Can focus on optimization of capabilities Focus on satisficing for emergent capabilities

New paradigms required due to:
• No central authority in general

• Independent development and evolution of

the constituents

• Focus on needs at enterprise level

9

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Implications for Engineers

We see a lot of these characteristics today, but in SoS they dominate.

The processes, artifacts, and collaborations in systems of systems are
living and dynamic, not static.

• E.g., for an SoS, there is never a well-defined end-stage deployment — only
constant evolution

Success with SoS is not simply a matter of doing more of the same on a
larger scale

• Increased complexity, exponential growth of relationships, increase in cross-
system and cross-organizational issues, etc.

• Net-centricity and other paradigms for the future may be beyond the reach of
today’s software technologies and approaches

Rigor meets agility and innovation

10

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

For SoS, Some Principles Change

Educate SoS staff on SoS software principles

• All software players must be cognizant of SoS software architecture.

• Other domain experts need a ―reading level‖ understanding of SoS and
software.

SoS mandates use of good system & software engineering practices.

• Software (& system) engineering
starts early in life-cycle

• Assurance work begins earlier in life-cycle
AND continues throughout

• SoS engineers must know which ―best practices‖ to apply

SoS engineering demands

• Designated skilled leadership with responsibility AND authority

• Negotiated agreements with appropriate constituent
management and system engineering counterparts

11

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Some Principles Are New

Constituents must be ―self-contained‖ (―safe‖) – no leaks, no
undocumented behavior, all assumptions known (―formal methods lite‖)

Intense involvement of true operational user

Constituents need to take responsibility for some
run-time governance.

It is beyond the capacity of a human brain to grasp the whole SoS, so the
kinds of analyses needed will not be possible without support

• Dictates use of a comprehensive set of systems
and software tools for analysis, working together seamlessly

The SoS Chief Engineer needs to know when (not) to system engineer

• When to accommodate incompatibility, when to demand constituent changes?

12

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

The SoS Engineer

13

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

How Does This Change Life for the Engineer? -1

SoS engineers need:

• A new perspective

• Moving from the “mechanics of the parts” to the “dynamics of the whole”

(Sheard)
• To adjust their ideas of life-cycle

• Design a little – program a little – integrate a little – test a little – spiral

• Make extensive use of modeling and other non-testing analysis
approaches

• To take risk management to a new level

• Cross-cutting risks (across organizational boundaries and constituent
systems): not just managed – also balanced

• A new requirements approach

• Initial discovery of SoS requirements then continuous ―rediscovery‖ as the
SoS (constituents and whole) evolves – top-down AND bottom-up

14

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

How Does This Change Life for the Engineer? -2

SoS engineers need:

• A new understanding of failure and recovery

• What does it mean for a SoS to ―fail‖?

• Can the SoS recover? Fast enough? Will roll back work?

• A new take on evidence and assurance methods

• The processes, artifacts, and collaborations in SoS are dynamic and
ongoing, not static: continual integration and test are necessary

• New approaches to C&A are required

• To make deployment a continuous operation

15

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Prerequisites

Critical thinking skills (having and applying)

• Includes employment of appropriate tools: affinity diagrams, categorization,
methods to evaluate alternatives, organizing tools, just to name a few

Broader vision (capacity for and willingness to apply)

Broader educational background to support broader vision

People skills

• E.g., more emphasis on negotiation and coordination

Broader range of competencies (e.g., gets into legal and contractual)

● E.g., includes knowledge of what data rights exist

16

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

New/Revised Roles -1

Chief SoS Engineer

• Keeps overarching SoS perspective in mind, keeping right things connected

• Technical SoS risk management

• Coordinates with all constituent and all other Chief Engineers

SoS Requirements Engineer

• Co-evolution of SoS CONOPS and SoS capabilities with constituent systems

• SoS requirements experimentation – design/program/integrate/test-a-little

Chief SoS Software Architect

• Coordinate with constituent software architects

• Identifies SoS software quality attributes from critical mission threads

Chief SoS Software Engineer

• Coordinate with constituent software engineers

• Participates in SoS-level trade-offs

17

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

New/Revised Roles -2

Chief SoS Analyst

• Employs modeling and simulation to examine SoS engineering trade-offs and
alternatives and for gathering evidence for the assurance processes

Chief SoS Assurance Engineer

• Develops evidence that SoS will behave as expected

• Oversees development and evolution of assurance cases

• Coordinates with constituent system engineers regarding impacts of changes
on assurance arguments and evidence

• Oversees incremental demonstration of interoperability and SoS capability

SoS Test Engineer

• Devises SoS tests, considering experimental test design and coordination
with large-scale and joint exercises

• Advises Chief SoS Assurance Engineer when modeling will be more effective
than test

• Engineers tests directly into software components for self-healthchecks

18

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

New/Revised Roles -3

Integrated SoS Engineering Environment Lead

• Responsible for engineering environment for SoS development & evolution

– Incorporates virtual, simulated, and actual SoS assets in support of life-
cycle activities

Senior SoS Technical Consultant/Mentor

• Senior organizational Fellow

• Consulting services & advice based on extensive personal SoS experience

• Mentors more junior architects and engineers regarding SoS knowledge and
ability

19

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

New Skills

• SoS knowledge codification &
management

• Application of contract language
for consistency and flexibility
across the SoS

• Creation and management
of relationships

• Trade-offs at unprecedented
levels

• SoS strategic (holistic) thinking

• Negotiation, collaboration,
listening, elicitation, facilitation,
multi-disciplinary team focus

• SoS model-based engineering

• SoS analysis methods and tools

• Technology knowledge &
assessment

• SoS methods for new risk
management, requirements
engineering, and test

20

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

The Way Forward

Each skill we’ve listed/discussed is applicable to a range of engineers

• from junior ones (e.g., need to know what incentives are in a contract)

• to Chief SoS Engineers (e.g., need to frame and negotiate the contract
language for incentives)

Some ideas:

• Lots of mentoring and on-the-job development*, connected with the
engineering through applied, hands-on learning

• Universities will need to strengthen the scientific and mathematical elements
in their curricula

• More emphasis on SYSTEM engineering, including understanding how
software fits into system and how to talk to system engineers

• Longer rotations*

• Licensure could be considered in the future

* Mennell, Ray. Analysis of SEC’s Continuing Professional Education. Presentation to Army Strategic Software

Improvement Program (ASSIP) Meeting, 18-19 February 2009.

21

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Potential Research Questions and Areas -1

Are our universities training/educating their graduates for this?

Are we offering today’s professionals:

• Training in these new SoS (and other relevant) skills?

• Career paths that recognize the new skills for acquisition and development?

How do we make the required knowledge about paradigms and current
SoS best practices available to the SoS architects, engineers, and
acquirers?

What is an initial set of areas for which SoS best practices are needed?

• Such as SoS requirements engineering, SoS test engineering, SoS trade-off
analyses, SoS modeling & analysis, SoS risk management

How do we codify requisite SoS knowledge and practices in the context
of existing and emerging life-cycle processes?

22

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Potential Research Questions and Areas -2

For the SoS things we do NOT know how to do today:

• How do we collect the new best practices as they are discovered?

• How do we explore what we know we do not yet understand –
the known unknowns?

• How do we protect against the unknown unknowns?

23

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

QUESTIONS?

24

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Contact Information

Authors:

Patricia Oberndorf

Acquisition Support Program

Telephone: +1 412-268-6138

Email: po@sei.cmu.edu

Carol A. Sledge, Ph.D.

Research, Technology, and System
Solutions

Telephone: +1 412-268-7708

Email: cas@sei.cmu.edu

World Wide Web:

www.sei.cmu.edu

U.S. mail:

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

USA

mailto:info@sei.cmu.edu
mailto:info@sei.cmu.edu
http://www.sei.cmu.edu/

25

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

References

Lane, Jo Anne, Boehm, Barry. "System of Systems Lead System
Integrators: Where Do They Spend Their Time and What Makes Them
More or Less Efficient?", Systems Engineering, Vol. 11, No. 1, Feb.
2008, pp. 81-91.

M. W. Maier, ―Architecting Principles for Systems of Systems,‖ Systems
Engineering, vol. 1, no. 4, pp. 267-284,1998.

Office of the Secretary of Defense (OSD), DoD System Engineering
Guide for System of Systems Engineering, vers. 1.0. Washington, DC:
DoD, August 2008.

Sheard, S. Practical Applications of Complexity Theory for Systems
Engineers. Systems and Software Consortium, Herndon, VA, 2005.

Weinstock, Charles B., Goodenough, John G., Hudak, John J.
Dependability Cases. CMU/SEI-2004-TN-016, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA. May 2004.

26

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Who We Are

27

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

Software Engineering Institute

Department of Defense R&D Laboratory FFRDC, created in 1984

Administered by Carnegie Mellon University

Headquartered in Pittsburgh, PA; offices and support worldwide

Mission - The SEI advances software engineering and related disciplines to
ensure systems with predictable and improved quality, cost, and schedule.

Stakeholders

• Government, commercial, and academic

• R&D and direct customer support

Areas of Work
• Process

• Network security and survivability (CERT)

• Software/system architecture and SOA

• Systems of systems and net-centricity

28

Evolution of a Software Engineer

Oberndorf and Sledge

© 2010 Carnegie Mellon University

