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ABSTRACT
Locality as a unifying concept for understanding the normal
behavior of benign users of computer systems is suggested
as a unifying paradigm that will support the detection of
malicious anomalous behaviors. The paper notes that local-
ity appears in many dimensions and applies to such diverse
mechanisms as the working set of IP addresses contacted
during a web browsing session, the set of email addresses
with which one customarily corresponds, the way in which
pages are fetched from a web site. In every case intrusive be-
haviors that violate locality are known to exist and in some
cases, the violation is necessary for the intrusive behavior to
achieve its goal. If this observation holds up under further
investigation, we will have a powerful way of thinking about
security and intrusive activity.

Categories and Subject Descriptors
C.2 [Computer-Communications Networks]: Local and
Wide-Area Networks; C.2.5 [Local and Wide-Area Net-
works]: Internet—observations of traffic characteristics

General Terms
Security

Keywords
Locality, Network Observation, System Behavior

1. INTRODUCTION
Big whorls have little whorls

That feed on their velocity,
And little whorls have lesser whorls

And so on to viscosity.
– Lewis F. Richardson as quoted by George

Gamow in “Creation of the Universe”[7]

Multiscale locality has proven to be a key to understanding
physical a wide variety of physical phenomena. The piece
of dogeral above is quoted in a 1950’s popular cosmology
book[7]. It serves to illustrate the observation that locality,
manifested as clustering, appears at many scales in the ob-
servable universe. In the cosmological world, clusters form
at the scale of planets with their satellites and smaller sys-
tems up to clusters of clusters of galaxies and beyond.

Closer to home, locality of program counter and data ref-
erences turned out to be the key to the design of effective
memory paging systems[4]. In this case, the key locality
concept is the “working set,” i.e a set of memory pages
that, if maintained in the physical memory of the computer
will allow the program (or programs) in execution to make
progress without excessive page faulting. This work was
in response to the observation that, on some time sharing
computers, page faults occurred so frequently that the CPU
was mostly idle, waiting for the page(s) containing the next
data or instructions to be referenced to be loaded into mem-
ory. This phenomenon, termed thrashing, led to a variety
of models of program behavior, the understanding of which
allowed efficient implementation of paged memory systems.
As a side benefit, this area also led to studies that resulted
in efficient data structures and algorithms for dealing with
data whose size demanded organization in virtual memory.

The thesis of this paper is that locality principles are a key
to distinguishing and understanding “normal” behavior in
computer systems that may be subject to attack by out-
siders. We feel that an understanding of normal is an impor-
tant step towards understanding that portion of abnormal
behavior that represents the actions of malicious users of the
system. Our long term goal is to develop a sufficient under-
standing of the systems with which we work so that we can
identify properties that are necessary parts of certain mali-
cious activities, and, with luck, properties that are sufficient
to indicate such activities. As an example, one of the few we
have, a necessary aspect of the behavior of rapidly spread-
ing worms such as Code Red or SQL/Slammer is that they
attempt to make contact with a large number of potentially
infectable hosts in a short period of time.

The individual observations on which the thesis is based are
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Figure 1: The number of unique source IPs that contacted up to 50 unique destination IPs per hour for the
week of 11–17 January 2003. This graph represents all outgoing TCP data.

not unique, but their unification into a guiding principle
is. We note that locality is a fairly broad concept. In gen-
eral, locality is manifest when the behavior of the system
can be represented by relatively compact clusters in some
dimensions of a multidimensional measurement space. The
clustering may appear at various scales, i.e. the time and
amount of data necessary to manifest a cluster may vary
widely. Time, typically the rate at which events are observed
or the intervals between them may be one of the dimensions
along which clustering occurs. If normal behavior exhibits
clustering and abnormal behavior fails to cluster (or clus-
ters in a different way), we have a mechanism that has the
potential for discriminating between normal and abnormal
behaviors. Note that we have not used the terms “benign”
and “malicious” as surrogates for normal and abnormal. In
this context, abnormal means unusual. In some cases, as we
attempt to understand why locality appears to characterize
normal behavior, we may be able to make a case that cer-
tain classes malicious behavior are necessarily abnormal in
that it will necessarily fail to meet the “normal” clustering
criteria. On the other hand, we may not be able to make the
case that all normal activity necessarily satisfies the “nor-
mal” clustering criteria so that failure to cluster is evidence
of malicious behavior, but does not identify such behavior
with absolute certainty.

In the remainder of the paper, we consider a number of
observations in which the locality principle is manifest and
make the case that, at least observationally, they are strong
indicators of normal behavior at an appropriate scale. We
then look at a variety of malicious behaviors that appear
to violate these notions of locality, examining the question

of whether or not the the violation is necessary or fortu-
itous. We conclude by presenting (limited) evidence from
our own data to support the thesis and outline the future
research that we hope will lead to a better understanding of
the paradigm.

It remains to explain the term “outsider” in the title. As
Jim Anderson noted in his 1980 paper on detecting computer
misuse[2], in the limit, the malicious behavior of an insider
is indistinguishable from that of a normal, non-malicious,
user. The phenomena that we are discussing are the result
of activities by outsiders who have not taken care to tailor
there attacks to mimic the behaviors of the normal user
populations of the systems being examined. In some cases,
we are examining purely outside or external behaviors such
as the characteristics of packets that arrive at the border
of an enterprise network. In other cases, the behavior is
internal, e.g. a worm propagating from an infected host,
but we still prefer to characterize it as outsider since the
code that does the propagation originates outside the system
and has not been created with any notion of observing and
mimicking normal users, i.e. it represents the actions of a
visiting outsider who makes no effort to fit in.

2. MOTIVATING EXAMPLES
In this section, we discuss a number of examples in which
locality appears to be a key to describing normal behavior.
The time scales involved range from weeks or days down to
seconds or less.

2.1 Gross Scale Workstation Connectivity



0
10000

20000
30000

40000
50000

60000
70000

Number of Destination IPs 00:00
03:00

06:00
09:00

12:00
15:00

18:00
21:00

00:00

Time

1e-05

0.0001

0.001

0.01

0.1

1

10

Percent of All Source IPs
(LOG scale)

Figure 2: The number of unique source IPs that contacted each number of unique destination IPs per hour
for January 14, 2003. This graph represents all outgoing TCP data.

Hofmeyr observed in his dissertation[8], that, at least in the
context of his network at the University of New Mexico and
with a few exceptions, the set of network addresses with
which an individual workstation makes contact stabilizes
within a period of several weeks after observation starts.
After that point, the addition of new addresses into the set
is relatively uncommon and may be taken as an indication
of misbehavior on the part of the system initiating the con-
nection.

The general conclusion is that most users operate largely
within a closed community of systems with which they make
contact. The exceptions are fairly obvious:

• Workstations belonging to a system administrator whose
job included making contact with a wide variety of
other systems were excluded.

• HTTP browsing behavior was excluded for all users.
The nature of the web where material at one site con-
tains links to a variety of other sites is not likely to
reach closure in most setting. Fortunately, browsing
behavior appears to manifest useful locality on a smaller
scale as we will see in section 2.2 below.

2.2 Fine Scale Workstation Connectivity
Williamson [12] presents a hypothesis that browsing behav-
ior exhibits small scale locality. Based on a limited set of
observations, he concludes that, for populations similar to
his coworkers, a working set containing the 10 most recently
visited IP addresses is a good predictor of the next IP ad-
dress to be visited. Least Recently Used (LRU)replacement

is used to maintain the working set with timestamps that
are updated whenever an address already in the working set
already is accessed. Departures from this locality are rela-
tively frequent, but not persistent. Many of the violations
result from extraneous factors such as references to sites
containing pop up advertising material.

Figure 1 provides a view of a network, providing support
for Williamson’s use of 10 for the size of a working set of
IP addresses. This graph shows the number of source IP
addresses that contacted up to 50 IP addresses per hour,
for data spanning one week in January, looking at outgoing
data produced by Cisco NetFlow for a large network. (This
data consists of flows, not packets, and has no directionality
associated with it. That is, we do not know definitively
whether the internal or external machine started the flow.)
The majority of source IP addresses (nearly 10%) contacted
only 1 IP address per hour. And, looking at any one hour,
at least 94.9

Williamson uses a “soft limit” to react to locality viola-
tions. When an address that are not in the working set
are accessed, the access request is placed in a paced de-
lay queue which limits the rate at which such requests can
be dispatched to one request per unit delay (1 second in
Williamson’s case). When a delayed access is dispatched,
all queued pending requests destined for the same address
are sent immediately in the order in which they were en-
queued and the destination is inserted in the working set,
replacing its least recently accessed address. In this way,
small locality violations are tolerated with minimal delay,
but gross violations encounter ever increasing delays. The
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Figure 3: The number of unique source IPs that contacted each number of unique destination IPs per hour
for January 14, 2003. This graph represents all outgoing TCP data.

system is intended to counter rapidly spreading malicious
codes such as “Code Red”[9]. In this case, queue lengths in
excess of some predetermined size might invoke more drastic
responsive actions such as disconnecting the affected system.

The notion that unusual and potentially malicious behavior
may violate locality properties is demonstrated in Figure
2. In this graph, the number of source IP addresses that
contacted some number of destination IP addresses for each
hour over a typical workday during the month of January
2003 is shown. There is one source IP address that contacted
65,536 destination IP addresses during one hour. In this
case, the source performed a port scan of a class B-sized
network. By definition, a port scan must violated notions of
locality in terms of the number of destination IP addresses
typically contacted by any given source IP, whether server
or workstation, and so can be easily recognized in a well-
mannered network.

We suggest alternative representations for the working set
that obviate the queuing mechanism making for more math-
ematical representations of locality.

Fixed size working set In this representation, the maxi-
mum working set size is fixed. When a new address is
seen, the least recently used1 address is replaced with

1Other replacement policies than Least Recently Used could
be adopted. Investigation of alternate policies is a possible
path for future research. Our intuition is that changes in
policy may result in slight changes in optimal working set
size, but are unlikely to affect the validity of the hypothesis.

the newly referenced one. The measure of locality is
the frequency with which the contents of the work-
ing set changes. In the queuing model, we could look
at the effective working set as the union of the actual
working set and the set of unique addresses currently in
the queue. Based on Williamson’s observations where
queue lengths are seldom more that two, a working set
with a size of 12 (vice Williamson’s 10) might be ex-
pected to see an update frequency of less than 2 per
second. Updates much in excess of this would be con-
sidered as gross violations of locality.

Variable size working set with constant removal In this
representation, the size of the working set is not fixed.
Whenever an address not in the set is seen, it is added.
At fixed intervals, say equal to the delay queue time,
the least recently used entry is removed from the work-
ing set. At any given time, the current size of the
working set represents the locality of the monitored
system. Based on the behavior of the fixed set plus
queue model, we would expect the size of the working
set to be relatively small and stable. If the size ex-
ceeds a threshold , this would be considered as a gross
violation of locality.

Note that, under fixed assumptions on the distributions of
addresses with time, the three models could probably be
shown to be equivalent. Until we have empirical data on
this and some assurance that the actual distributions are
tractable, we choose not to undertake this approach.

The notion that unusual and potentially malicious behavior
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Figure 4: Variations in email message count with a virus

may violate locality properties is demonstrated in Figure
2. In this graph, the number of source IP addresses that
contacted some number of destination IP addresses for each
hour over a typical workday during the month of January
2003 is shown. There is one source IP address that contacted
65,536 destination IP addresses during one hour. In this
case, the source performed a port scan of a class B-sized
network. By definition, a port scan must violated notions of
locality in terms of the number of destination IP addresses
typically contacted by any given source IP, whether server
or workstation, and so can be easily recognized in a well-
mannered network.

2.3 Incoming Traffic
Both of the examples given in the previous section, along
with previous work by Williamson[12], focus on outgoing
traffic. The notion of locality should also apply equally to in-
coming traffic as seen at the border of an enterprise network,
most likely with a larger working set. To test this notion, a
graph of the number of source IP addresses that contacted
some number of destination IP addresses for a week in Jan-
uary for all incoming TCP traffic was generated, and can
be seen in Figure 3. The majority of incoming sources con-
tact a single destination IP address on the target network,
and may represent activities such as contacting a particular
web server, or checking e-mail from a home address. On
the opposite extreme, a small number of sources contacted
a very large number of internal addresses. It is suspected at
this point that these sources may represent events such as
port scans. Thus far, attempts to calculate a working set for
this data have not proven fruitful and there are no obvious
locality violations of the sort seen in Figure 2. Investiga-

tion is on-going to better understand the behaviors shown
in this graph. The dataset used apparently contains a very
large amount of scan and probe data. One of the authors
(Gates) is currently working to identify these scans and we
plan to repeat the attempts to construct a working set with
this data removed. In addition, we do not know precisely
which addresses in the monitored network have computers
assigned to them at any given time. Removal of attempts to
contact non existent machines from the incoming traffic (a
first approximation to the removal of scans) may alter the
picture substantially.

Work at Boeing [6, 5] indicates that locality (as represented
by changes in address entropy) can be observed in network
border or core data. In this case, a stream of border data
that was known to be free of DDoS attacks was examined
and the entropy of the set of the 10,000 most recently seen
source addresses was calculated. The stream was augmented
with a simulated DDos attack that used spoofed source ad-
dresses and the attack was easily recognized by the change
in entropy of the addresses. It is noted, that an attack us-
ing non-spoofed addresses would also be detected by this
mechanism, as well.

2.4 Gross Scale Email Addressing
Beginning with Melissa in 1999, we have seen a number of
wide spread email based viruses. While the detailed behav-
ior of of these viruses is discussed in section 2.5 below, email
viruses exhibit a kind of locality violation, albeit complex,
at an enterprise level. For the purposes of this discussion,
we assume that the email origination and reception behavior
of the enterprise as a whole is easily observable. This will
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Figure 5: First difference of email message counts with a virus

be relatively easy if all email, internal and external passes
through a limited number of (perhaps one) mail servers.

In this case, the locality is manifest in the time dimension.
Under normal circumstances, email transmission patterns
follow a fairly regular pattern that reflects the working hours
of the enterprise in question. A typical email pattern under
normal circumstances can be seen in the left hand side fig-
ure 4. Typical, successful, email viruses spread by sending
copies of themselves to a fairly large number of addressees,
usually obtained from some address repository available on
the account of the user being attacked.

As the enterprise becomes infected, the rate of emission of
email increases, sometimes exceeding historical peaks, as
shown at the right hand end of figure 4. If we plot the deriva-
tive (daily difference) of the email volume, we see that the
slope becomes steeper as the attack starts as shown in figure
5. These two figures are based on the CERT email volume
for the first 8+ months of 2003. The peak in late August
represents the outbreak of a “sobig” email virus. The noise
in the peak represents some anomalous behavior caused by
the excessive mail load.

In addition we may be able to define secondary indications
of locality in email behavior. If we attempt to cluster mail
based on properties such as sender, nature and size of at-
tachments, order of addresses, etc., we think that only virus
messages and those sent to mailing lists are likely to cluster
significantly. Work by Stolfo and his group at Columbia, ad-
dressed at the detection of malicious codes in email attach-
ments, holds promise in this area[11, 10]. Their approach,
based on data mining, builds classifiers for benign and mali-

cious email content based on the learning of discriminators
from labeled data. The result is the establishment of content
based locality measures that cluster normal and malicious
content.

2.5 Fine Scale Email Addressing
Many users maintain address books that are used in the
sending of email. Starting with the Melissa email virus in
1999, a number of email viruses have taken advantage of
these address books to guide their propagation. By defi-
nition, sending email to an address or addresses found in
an address book cannot be considered to be abnormal, per
se. On the other hand, we suspect that most email activity
follows relatively simple patterns that demonstrate consid-
erable locality over a time frame ranging from hours to days.
In observing this locality, it is necessary to distinguish be-
tween receiving an email and reading it. When an email is
read, the reader may perform one or more responsive ac-
tions, including:

• Delete the email.

• Reply to the email.

• Forward the email to one or more individuals.

• Originate an email to another party without including
the provocative original.

• etc.

We believe that observing email behaviors for a cross sec-
tion of users will allow us to build locality models for email
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Figure 6: Temporal and port locality for an email server

connectivity that can be used to distinguish normal activity
from the automatic spread of malicious code via email. It
will be interesting to see what role address books play in
characterizing this activity.

Problematic areas include users who maintain large scale
mailing lists as part of their job and regularly launch large
batches of email with identical content to the lists. We note
that only a specifically targeted malicious email worm would
be likely to provoke activity from the keeper of such lists
without provoking a general flurry of abnormal email activ-
ity from other users.

2.6 Server Considerations
Pure servers can be expected to exhibit locality based on
their intended function. We note, in passing, that a ma-
chine configured as a pure server2 would have an outgoing
locality set with no entries in it and any attempt by such a
server to initiate an arbitrary connection is suspect3. Hy-
brid servers do exist. Systems that do price comparisons
take requests from users and make outgoing connections to
determine the best price for the requested item. We believe
that the outgoing connection sets for such machines are rel-
atively small and stable, though perhaps not as small as
Williamson suggests for workstations.

2by pure server, we mean a machine that only responds
to external requests, but never initiates requests to other
systems.
3Syslog messages being sent to a log server would be the
exception, but the point is that the outgoing connection set
is both small and stable.

For server machines, it is the incoming connection set that
we need to examine for locality behaviors. Fortunately, a
substantial amount of work has been done characterize both
the temporal and spatial locality of web traffic. Motivated
by the need to design appropriate caching mechanisms, Al-
media, et. al. observe[1] that a stack distance model based
on a LRU stack of object references is a good model for char-
acterizing the temporal locality of web page references. Note
that this is quite similar to the workstation locality working
set discussed above. In the case of web page temporal lo-
cality, a stack of page requests is maintained with the most
recently requested page on top. When a page that is already
on the stack is requested, it is moved to the top. For each
request, ri, we can compute a distance di that is the num-
ber of positions up the stack that the requested document is
moved. Thus, a request string r1, r2, . . . rn . . . Can be con-
verted into a distance string d1, d2, . . . dn . . . that preserves
the pattern of activity, but does not depend on document
names. The statistical distribution of the distance values
is a representation of the temporal locality of the request
strings. In practice, popular documents stay near the top of
the stack with relatively small distances.

In addition to temporal locality, web request traces exhibit
spatial locality, defined as the tendency of substrings of re-
quests to be repeated in the overall request trace. This
occurs whenever there is a canonical navigation through a
series of pages in a particular order. It turns out that spa-
tial locality on web references is a fractal property, i.e. it
exhibits detail at all scales[1] showing both short and long
range dependencies among request strings. Note that this is
characteristic of bursty processes in which regions of intense
activity tend to occur at irregular intervals.



Figure 6 shows the temporal behavior of a machine that is
acting almost exclusively as an email server. In this fig-
ure, we see that the outgoing activity consists of approxi-
mately equal amounts of DNS (port 53) and SMPT (port
25) traffic4. Since email addresses are symbolic, they must
be converted to IP form before the delivery connection can
be made. The figure is based on observations made at the
border of a large network and reflects only traffic from inside
to outside, i.e. deliveries within the network are not shown.

We suspect that patterns involving temporal or spatial lo-
cality occur for other services and that further investigation
can lead to ways in which their normal activities can be
characterized.

2.7 Content Locality and Clustering
We recently became aware of work by Cilibrasi, et. al. on
clustering of music[3] based on approximations of its Kol-
mogorov complexity. This might provide an approach for
identifying, for example, members of a polymorphic virus
family. We have not yet had time to investigate this fur-
ther, but hope to do so in the near future.

3. LOCALITY AS A UNIFYING PARADIGM
The examples given above are neither complete nor exhaus-
tive. In many cases, they are based on very limited observa-
tional data and a program of observation and experimenta-
tion is needed to see whether they hold up on a large scale.
Nonetheless, locality appears to be a powerful framework
for unifying many aspects of normal behavior. Why this
should be is not entirely clear. It is likely that some effi-
ciency of action phenomena are involved. In the biology of
motion, small motions involving resonance phenomena lead
to efficiency. Trees in a forest tend to have similar resonant
frequencies allowing them to bend together in response to
wind gusts. People tend to behave in repetitive ways that
exhibit various forms of locality. Perhaps it is only rea-
sonable that human artifacts such as systems of computer
programs should exhibit similar properties.
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