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Abstract
To study rapidly evolving populations of Internet threats under views from multiple watch lists,

we propose a hierarchical Bayesian model we call Continuous-Time List Capture (CTLC). Method-
ologically, CTLC is related to survival analysis under competing risks, in which individuals under
study admit as many survival curves as there are sources of watch list data. We suggest a Weibull
model for the lifetime of a file from birth to appearance on a watch list, and we propose a Markov-
Chain Monte Carlo method for simultaneous estimation of birth times for individuals, Weibull rate
parameters for lists, and the effects of heterogeneity in behavior or traits among lists and individuals.
We describe a population study of unique malware files under the CTLC framework, and present a
preliminary simulation study as well as future work.

Key Words: Population estimation, Mark-recapture models, Hierarchical models, Network secu-
rity, Risk analysis

1. Introduction

As the Internet grows larger and more complex, it is becoming harder to secure a sys-
tem against every possible attack. It is increasingly important to have an understanding of
the relative risk of threats and the associated costs of exploits. The idea of network se-
curity as risk management has been around for some time, as espoused by Blakely et al.
(2001), but the foundations of principled risk analysis– security metrics and robust estima-
tion methodology– remain elusive. As recently as April 2007, Geer’s address to the Con-
gressional Subcommittee on Emerging Threats, Cybersecurity and Science and Technology
stressed the need for security metrics as a first priority. As an overall threat assessment, re-
searchers are often interested in measuring the size of various malicious populations, such
as malware files, machines in a collection of compromised hosts (botnet), or phishing sites.

A difficulty in measuring internet population sizes comes from the sheer speed and
adaptability of Internet phenomena, in terms of both location and heterogeneity. With
the advent of botnets, fast flux web hosting, cloud computing and proxy or peer-to-peer
networks, the IP address is becoming a much more ephemeral measure of location for
phenomena (Abu Rajab et al., 2007; Lemos, 2007). But blacklisting IP addresses is still
often the first line of defense from attack. Also, as the Internet matures, the number of
unique files of all types, including malicious files, grows steadily larger. This growth is
exacerbated by hackers’ use of self-changing, orpolymorphic, code to defeat signature-
based anti-virus software (Stepan, 2005; Grimes, 2007).

Not only does data consist of short-scale, temporal events, but often it is available only
in fragmented views of the whole. Internet threats such as malicious files, open proxies and
phishing sites, are reported publicly by third parties as temporalwatch listsavailable for
example through a daily or weekly web feed. Private sources such as volunteer reporters
or honeypots can also be available for those interested in developing catalogs. Though
Internet watch lists are not bound by spatial and geographical location in the same way that
observers of physical phenomena are, the Internet is subject to shortest routes, Autonomous
systems, and cultural and language diversity that can tend to localize views. This can
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all lead to watch lists providing smaller “telescopes” into the overall view of large-scale
threats.

In this research approach we look at statistical analyses for temporal list data, with the
following goals:

1. Leverage multiple network viewpoints to evaluate the scope of what is observed by
providing a population estimate.

2. Evaluate data sources according to their coverage and their ability to discover hidden
threats.

3. Track factors that make individuals (eg. IP addresses hosting phishing scams or open
proxies; malicious files; bots) easier or harder to find.

Mark-recapture or multiple-recapture models (Lohr, 1999, ch 12) are often applied to
population estimation and relative catchability comparisons using data from multiple lists.
But much of the literature focuses on estimating population sizes under the conditions of
no births or deaths occuring during the interval of observation (aclosedpopulation). Open
populations are often considered under the context of ordered, repeated sampling, allowing
for migrations only between sampling periods (Schwarz and Arnason, 1996; Muthuku-
marana et al., 2007; Dupuis and Schwarz, 2007).

Because of the speed of propagation of Internet phenomena, the scale over which a
population can be assumed closed is usually short, relative to the scale at which inference
is desired. Under this constraint, a more pertinent goal might be

4. Estimate the time from inception or “birth” of an individual until that individual
appears on a watch list.

To address these goals, we propose a hierarchical Bayesian model we call Continuous-
Time List Capture (CTLC). Methodologically, CTLC is related to survival analysis under
competing risks (Beck, 1979), in which individuals under study admit as many survival
curves as there are sources of watch list data. We suggest a Weibull model for the lifetime
of an individual from birth to appearance on a watch list, and we propose a Markov-Chain
Monte Carlo method for simultaneous estimation of birth times for individuals, Weibull
rate parameters for lists, and the effects of heterogeneity in behavior or traits among lists
and individuals. This is a preliminary report of continuing work.

Section 2 describes the components of the CTLC model. Section 3 discusses prior
work. Section 4 formulates a population study for malware files within the CTLC frame-
work. Section 5 presents a preliminary simulation study, and Section 6 discusses some
future directions and caveats.

2. Continuous time list capture

2.1 Model background and notation

Suppose a set ofJ sources maintain watch lists of individuals related to a particular threat.
Suppose a total ofN individuals are observed during an interval[t0, tM ]. We can associate
with each individuali and each listj a variableWij defined as:

Wij =

{
1, individual i is observed by listj
0, otherwise.

In addition toWij , temporal informationTij ∈ [t0, tM ] is collected that records the time
at which individuali was observed by listj. The valueTij is subject to right-censoring,



in thatTij = tM whenWij = 0. Note that individuals for whomWij = 0 for all j are
unobserved in the study.

We can re-express the capture-recapture goals in this temporal framework. Each indi-
vidual i has an associated birth timeBi, in which it is released “into the wild” and becomes
a target for capture by various lists. In pure birth processes, a population estimate can be
obtained by estimating the number of individuals existing in[t0, tM ] that remain unseen by
all lists throughtM .

Heterogeneous catchability among lists or individuals can also be expressed in terms
of time. A “wily trout” (Kadane et al., 1999) is an individual that takes longer to be seen
than a conspicuous one. A good watch list finds individuals quickly with little depen-
dence on other available lists in the study. We express heterogeneity among individuals
by associating each individuali with a vectorXi of descriptive covariates. For example, a
malicious file may be characterized by the operating system on which it can be deployed,
the type of behavior it exhibits such as keylogging or scanning, or a descriptive “family”
name assigned by an AV-vendor (“Virut”, “Zlob”, “Allaple”, etc). Note that the covariates
Xi are a way to link the temporal CTLC model with results from previous (non-temporal)
descriptive analyses. The outputs of cluster analysis, feature analysis or other descriptive
and exploratory analyses are used as inputs for the CTLC model, in the form of the vector
Xi associated with each individual.

Similarly, we can associate each watch listj with a vectorZj of descriptive covariates.
These can be identifiers such as country of origin, size and scope of the operation, method
of collection, and others. Another layer of heterogeneity can be a baseline catchability rate
αj for the list across all individuals. The covariates for lists and individuals, as well as the
baseline list catchability rates, all provide information about the associated catch timesTij

and censoring variablesWij . We use a Poisson process based on individual covariates to
describe the birth process, and a Weibull process (one for each list) to describe the amount
of time individuals “survive” before appearing on a list.

The valuesXi andZj are used as covariates in a generalized linear model of “trait
effects” as follows. Letg(X,Z) be a function that maps any pair(Xi,Zj) to the K-
dimensional space{(0, 1)}K . We can think of this as essentially askingK “yes or no”
questions about individuali and listj that are answerable from their respective covariate
vectors.

2.2 Formal model

Figure 1 shows the relationships between individuals, lists, catch times and censor variables
as a directed graph. Round solid boxes represent unobserved parameters that are estimated
based on observed values. Square solid boxes represent observed data values. Dotted solid
boxes indicate replication byJ , N , across both values, or across the dimension of the fea-
ture spaceK. The diamond box represents the deterministic relationship due to the link
function for the GLM. Arrows between square and round boxes indicate a probabilistic re-
lationship between the elements, which will be described in terms of a distribution function
p(child|parents).

The top right corner of the graph describes the birth process. The functionπ(Xi, Bi) is
a Poisson generating process of individuals, which is application-dependent. For example,
for families of related individuals (for example, packed or polymorphic variants of one
virus), the birth process should be defined in two steps:

• Birth of the first occurrence;

• Birth of subsequent occurrences given birth of the first occurrence
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Figure 1: Graphical representation of the CTLC model. Round-edged boxes are unob-
served parameters, and square boxes are observed data values. The diamond represents a
deterministic relationship.



This specification allows for a “bursty” effect in births of similar individuals. The top left
corner of the graph describes the characterization of watch lists, which are treated as fixed
effects in the model.

The survival time of interest is the time from individuali’s birth until capture by listj.
In our notation, this lifetime is equal to:

Lij = Tij −Bi.

The linear predictor

β′g(Xi,Zj) =
∑

g(Xi,Zj)k==1

βk

is the sum of trait effects for individuali and listj. Define the link function

ηij = e−β′
g(Xi,Zj).

The survival time of individuali on listj with baseline rateαj is modeled as a Weibull(αj , ηij)
variable:

p((Tij −Bi)|αj , ηij , Bi,Wij = 1) =
αj

ηij
(Tij −Bi)αj−1e

−
(Tij−Bi)

αj

ηij . (1)

The trait effectsβk act to raise or lower the probability that an individual will survive past
a certain timet before appearing on a list (see Figure 2).
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Figure 2: Trait effects acting on a Lifetime model.

The graph in Figure 1 is overly optimistic in considering all values(Tij ,Wij) as ob-
served, because the individuals for whichWij = 0 for all j are in fact unobserved. The



likelihood for an individuali unobserved by listj through at leasttM is given by the cu-
mulative probability

p((Tij −Bi)|αj , ηij , Bi,Wij = 0) = e
− (tM−Bi)

αj

ηij

Thus, for each individuali and listj:

p((Tij −Bi)|αj , ηij , Bi,Wij) =

[
αj

ηij
(Tij −Bi)αj−1e

−
(Tij−Bi)

αj

ηij

]Wij [
e
− (tM−Bi)

αj

ηij

]1−Wij

Suppose that individuals are grouped into one of a set ofC “families” where it is presumed
that multiple births are not independent. LetXc be the characteristic vector associated with
each subclassc, and letBc be the first instance of a birth for subclassc.

We define the birth rate priors:

(Bi,Xc|Bi = Bc) ∼ Pois(h0(Xc))
(Bi,Xc|Bi > Bc) ∼ Pois(h1(Xc, Bc)).

Functionsh0 andh1 are determined by the properties of individuals under study. Letσ, κ
andτ be hyperparameters. We define the remaining priors:

βk ∼ N(0, σ)
αj ∼ Gamma(κ, τ).

Let Nu be the set of individuals that are unobserved by any list. LetNo be the set that
are observed by at least one list. LetXu be the matrix of covariates associated with all
unobserved individuals. The product likleihood is described by:

L(B,α,β, σ, κ, τ,Nu,Xu|T,W,X,Z) =

No∏
i=1

J∏
j=1


[

αj

ηij
(Tij −Bi)αj−1e

−
(Tij−Bi)

αj

ηij

]Wij [
e
− (tM−Bi)

αj

ηij

]1−Wij


×


Nu∏
i=1

J∏
j=1

[
e
− (tM−Bi)

αj

ηij

]
This formulation can be used in an MCMC framework for simultaneous parameter

estimation.

3. Prior work: capture-recapture, survival analysis and generalized linear models

Capture-recapture population estimation is so named for its genesis in wildlife population
studies. The simplest form, dating to Petersen (Petersen, 1896), requires repeated inde-
pendent samples (J = 2) of a closed, homogenous population: no births or deaths occur
between samplings, and the probability of sampling individuali is constant across all in-
dividuals. Table 1 shows an example. Capture profiles{Wij : j = 1, 2} for individuals
are summarized as countsmj in a 2 × 2 table, with the entrym00 equal to the (unknown)
number of individuals not observed in either sample.



In Sample 1?
No Yes

In Sample 2?
No m00 m01

Yes m10 m11

Table 1: Arrangement of counts for a 2-way simple capture-recapture study into a 2x2
table. The cell labeledm00 is the (unobserved) number of individuals that were not captured
in either sample.

Peterson’s estimate of the total populationn = N + m00 is equal to

n̂ =
m+1m1+

m11
,

where+ indicates a row or column summation.
The natural extension to multiple independent samples(J > 2) for closed, homoge-

nous populations followed through the early 20th century (Schnabel, 1938). For depen-
dence among samples, Fienberg (Fienberg, 1972, 1980) introduced the use of the log-linear
model, which was echoed by Cormack (1989). ForJ independent lists in a homogenous
population, the probability of a binary capture profilej = (j1, · · · , jJ) does not depend on
the individuali, and can be written as a product of capture probabilities associated with
each list,

p(j) =
J∏

`=1

π`j`

Aggregating across individuals, the expected cell countsµj of the2J -way table of aggre-
gated countsmj can be written as a linear combination of parameter values on the log
scale;

log µj =
J∑

`=1

u`j`

This model can be seen as a multiplicative model of main effects. Accounting for list
dependence equates to adding interaction terms into the log-linear model for the cell counts.

Applications to list data first arose in the mid-20th century in the context of human
health studies, where researchers had access to records from multiple institutions for track-
ing individuals. Sekar and Deming (1949) used multiple lists to track birth and death rates
as well as registration. Multiple ordered sampling methods such as dual-system estimation
and post-enumeration survey have a history of use in the US Census dating back to the
1940s for example with Shapiro (1949).

Heterogeneity of individuals is typically modeled as covariate information in a gen-
eral GLM framework when groups or distinguising features are known. Sekar and Deming
demonstrate that population estimates based on aggregations across correlated sub-strata
are biased toward an undercount of the true population. Seber (1982) provides general re-
sults describing bias as a function of correlation among capture probabilities of individuals,
with the intuition that correlation of capture probabilities would generally be positive and
would lead to consistent underestimation of populations, a particular form of Yule’s asso-
ciation paradox (Yule, 1903). Kadane et al. (1999) formalize this argument by providing
necessary and sufficient conditions under which this is the case.



In the unknown case, latent class or latent trait models are used. Darroch et al. (1993)
present a multiple-recapture approach to heterogeneity of capture in the Census, using or-
dered repeated random samples to generate multiple views. They introduce the latent trait
Rasch model (Rasch, 1980) to incorporate multiplicative heterogeneity in individuals and
lists. The Rasch model describes the probability of capture,πij = Pr(Wij = 1) as a linear
relationship on the logit scale:

log

[
πij

1− πij

]
= βj − θi,

whereθi is a random effect for individuals andβj is a random effect for lists. Fienberg et al.
(1999) explored the link between multiple list capture models, the Rasch model for hetero-
geneity of individuals, and a hierarchical Bayesian formulation of the Rasch model that
explicitly calculates posterior distributions for individual parametersθi and list parameters
βj .

In networking and Internet characterization applications,Bradlow and Schmittlein (2000)
apply a Bayesian model of heterogenous catchability in a closed population to explore the
relative performance of six search engines, as well as to obtain population estimates of web
pages characterized by key words. Briand et al. (2000) evaluate the use of capture-recapture
models for estimating the number of errors or bugs in software applications.

Chan and Hamdi (2003) use capture-recapture methods to estimate the extent of total
network resources in queue management schemes for routers. They apply both a homoge-
nous capture-recapture model and a heterogenous model based on the Jackknife estimator
(Burnham and Overton, 1978), that treats individual capture probabilities as nuisance pa-
rameters. In both cases, repeated samplings are modeled as independent draws over a
closed population. Mane et al. (2005) use a capture-recapture method based on random
walk sampling to estimate the number of nodes in a closed peer-to-peer network, assuming
homogeneity among nodes, with motivations toward the study of open networks.

Extensions of capture-recapture methods to open populations generally focus on exper-
iments where the sampling periods themselves are ordered in discrete time intervals, and
assuming births, deaths and migrations occur between samplings, for example in Schwarz
and Arnason (1996) and Dupuis and Schwarz (2007). But in the case of watch list data, all
lists are active over the same time period, with births and deaths occurring throughout.

Defining population and catchability in terms of the time until visibility suggests a
survival analytic approach, as opposed to the traditional multiple-recapture methodology.
EachWij can be considered a binary indicator of observation in the multiple-recapture
framework, but also as an indicator of right censoring in a survival model. In this frame-
work, watch lists act in continuous time over an open and evolving population.

Parametric survival analysis can be considered a branch of generalized linear models in
which the outcome of interest is a strictly positive distribution; traditional choices are expo-
nential, Weibull or extreme value distributions (McCullagh and Nelder, 1989). Typically,
non-temporal traits are modeled as multiplicative effects, estimated using partial likelihood
or EM algorithms. An exponential model with unknown birth times and latent list param-
eters can be seen as a variant of the Rasch model using a complimentary log-log link as
opposed to a logit link; Rasch also introduced a similar latent trait multiplicative poisson
model with the logit model (Rasch, 1980). Cox (1972) introduced the widely-used non-
parametric proportional hazards model, in which the survival curve is defined only where
deaths occur.

In security analysis, Chen et al. (2006) use a survival model to quantify an economic
analysis of the relative hazards of various vulnerabilities relative to the release of exploits;



they observe a “herding” behavior that indicates certain vulnerabilities are more attractive
to hackers than others.

Analyses that allow for more than two states (alive or dead) were first proposed by La-
gakos (1976) and later generalized to competing risks models by Beck (1979). Competing
risks can be seen as a set of time-dependent covariates associated with each individual, that
may increase or decrease the risk of capture. In the CTLC model, the capture or evasion
of each watch list can be seen as a set of states that incur competing risks. Identifiability
of regression parameters and states for competing risks models is discussed in Abbring and
van den Berg (2003).

4. Applications to malware watch lists

The termmalwareis a portmanteau of “malicious software”. Definitions vary among in-
dividuals and institutions, but a consensus is that a piece of malware is a program or file
that damages or disrupts a computer system. Viruses, worms and Trojan horse programs
are all malware. Malware can also refer to programs designed to corrupt or compromise a
system for the gains of the designer; for example programs that install spyware, key loggers
or back door controls (bots) to a system can also be considered as malware. Malware can
propagate via standard network mechanisms such as email or through web browsing on the
Internet. Malware files are collected by many different researchers, who maintain separate
catalogues of files “captured” from the wild.

The number of unique malicious files found on web sites and on compromised hosts is
increasing exponentially. In the past, analysts have catalogued these malicious files keyed
by a unique hash of the bytes in the file. Signature-based detection from anti-virus (AV)
vendors also relies on matching unique bit strings to known patterns. But new hacking
trends are making organization by unique file difficult. For example, polymorphic viruses
change as they replicate, and a single outbreak can result in thousands of unique individual
files. Similar file structures do not translate to similar hash values, which makes it difficult
to study trends in behavioral threats and attribution solely using hashes.

One way to analyze large-scale trends in the population is to categorize malware into
families and variants based on behavioral traits. This imposes some structure and relation-
ships on the ever-growing number of unique files, and engenders analytical questions such
as:

• How much harder is it to find a key logger than a worm?

• Which watch list is the best at finding new browser exploits?

• What percentage of existing Allaple variants have all sources found?

This analysis requires two stages. A descriptive, non-temporal stage is required to
label malware files with relavent family names and features, grouping them into related
categories. Weaver and Sisk (2008) developed software tools for extracting these kinds of
features as well as family names, from the names given to files by various anti-virus (AV)
vendors, as well as methods for measuring agreement among vendors for family names.
When a feature set is determined, the temporal stage of the analysis uses the CTLC model
to make statements about the life cycle and catchability of these categorized files.

5. A preliminary simulation study with a simple survival model

Before formally addressing population estimates based on the CTLC model, the GLM and
rate parameters were tested for basic identifiability using a simulation study. A simple



simulated population was devised using malware files as inspiration. An overdispersed
Poisson distribution was used to simulate the births of832 individual malware files from
fifteen different families, over the course of90 weeks. For the linear predictor, each fam-
ily c, c = 1, · · · 15, is associated with a baseline trait effect,βc ∼ Normal(2.5, 1). Two
malware traits were also specified independently for each file:

• Is the file described as a keylogger?

• Is the file described as a Trojan horse?

Keyloggers are programs that are designed to passively log user keystrokes, and to pe-
riodically update external servers. On the other hand, Trojan horse programs are designed
to disable or damage computers once they have been downloaded and executed. This sug-
gests that Trojan horse programs may be easier to find via user reports than keyloggers. To
model these effects, the keylogger effectβ16 was set to−0.5 as compared to the Trojan
effectβ17 = 0.5, encoding the fact that keyloggers are more “wily” than Trojans. Figure 3
displays the population of malware files used in the simulation study.
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Figure 3: Simulated data for release of malware files from fifteen different families over
the course of 90 weeks.

Three lists were simulated capturing files from this population, with capture probabil-
ities independent across lists. The list baseline ratesαj were set equal to1.5, 2.0, and2.5
for j = 1, 2, 3, respectively. Trait effects were assumed homogenous across lists, resulting
in the basic additive linear predictor

β‘g(Xi) =
15∑

c=1

βc1i∈c + β161keylogger+ β171Trojan.



List 1 Caught List 1 uncaught
List 2 List 2

caught uncaught caught uncaught
List 3 caught 175 34 List 3 caught 30 36

uncaught 40 47 uncaught 37 433

Table 2: Overall capture profile of 832 simulated malware files for three independent lists.

Table 2 summarizes the capture profiles of the three lists for the832 simulated malware
files.

As a simplifying assumption, birth times were assumed known for all captured indi-
viduals. In real-world data, some information on births may be extracted from analysis of
malware files captured in the wild, but births will generally be represented as prior distribu-
tions possibly subject to hard constraints based on expert knowledge. Diffuse priors were
used forαj , while the true Normal(3, 1) family prior was used as a prior for both family
trait effects and the Keylogger and Trojan effects.

An MCMC chain using Metropolis-Hastings sampling with Normal or truncated Nor-
mal proposal steps was run for 3000 iterations to examine parameter estimation and iden-
tifiability for the CTLC model in this simple setting. Figures 4 and 5 show some graphical
output from the chain forαj andβk. Although estimates forαj appear to quickly reach
stable values in the chain, the values appear to universally underestimate the three list rates.
On the other hand, a plot of posterior means vs. true values forβk shows a tendency to
overestimate baseline family trait effects and the additive keylogger and Trojan effects.
However, the differenceβ17 − β16 yielded a posterior mean of1.06, suggesting that while
the baseline effects may suffer from identifiability issues or prior sensitivity, the relative
trait effects are accurate. Future work is needed to determine the effects of this prior sensi-
tivity on the ability of the model to produce accurate population estimates.

6. Discussion and future directions

In the statistical mark-recapture literature, multiple recaptures are generally modeled as the
result of either multiple lists or multiple discrete sampling periods. Because Internet threats
comprise short temporal events in open populations, and they are recorded through a lens
of watch lists, population estimation models for these phenomena need to incorporate both
of these sources of multiplicity. The Continuous Time List Capture (CTLC) model is a
preliminary attempt to devise a formal framework for population estimation in this setting,
using ideas from both mark-recapture models and survival analysis.

The CLTC model is still in its preliminary stages, both in model development and in
applications for measuring populations of internet threats tracked by watch lists. Although
the likelihood has been devised as a generative model for the birth and observation of ma-
licious populations, preliminary analysis suggests that the model may suffer from some
identifiability problems, and may also require subjective expert knowledge in order to pro-
duce trustworthy population estimates. Future work includes:

• Deriving formal population estimates from the likelihood and incorporating overall
population estimation into the MCMC framework;

• Addressing the availability of birth data and the effect of unknown births on the
ability to estimate other parameters (including populations) in the model;

• Addressing issues of model identifiability with increasing complexity in list depen-
dency beyond independence;
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Figure 4: MCMC output (values vs. iteration) for estimation of list rates. Iterations ofαj

show stable list rates with iterations in the chain but severe underestimation of parameters.
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Figure 5: MCMC output (posterior mean vs. true value) for estimation of trait effects
shows evidence of systematic overestimation ofβk.



• Incorporating measures of uncertainty into covariates (for example, conflicting fam-
ily assignments of a file among vendors).
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