Sets, Bags, and Rock and Roll*
Analyzing Large Data Sets of Network Data

John MCHugh!

Cert Coordination Center, Carnegie Mellon University, Pittsburgh, PA 15313, USA,
jmchugh@cert.org

Abstract. As network traffic increases, the problems associated with
monitoring and analyzing the traffic on high speed networks become in-
creasingly difficult. In this paper, we introduce a new conceptual frame-
work based on sets of IP adresses, for coming to grips with this problem.
The analytical techniques are described and illustrated with examples
drawn from a dataset collected from a large operational network.

1 Introduction

It is not unusual for relatively modest networks today to exhibit trans border
flows on the order of megabits per second. Monitoring even a small network
with a few hundred hosts can generate many gigabytes of TCPDUMP data
per day. Capturing only headers can reduce the volume somewhat, and more
compact formats based on abstractions such as Cisco’s NetFlow can reduce the
volume further. Even so, the volume of data collected is sufficient to overwhelm
many analysis tools and techniques. In general, the problem is one of grouping
and classifying the data in such a way that uninteresting phenominae can be
pushed aside, allowing the investigator to extract and further scrutenize tata
that is of interest. Recently, CERT has been involved in the analysis of large
sets of NetFlow data. To support this effort, they have developed a set of tools,
collectively known as the SiLKtools'. In the remainder of the paper, we begin
by sketching our thesis and analysis approach. We then digress to describe the
NetFlow data collected, noting that the analysis can be applied equally well to
tcpdump or other data forms with a bit of preprocessing. The basic functionality
of the SiLKtools suite and some of the extensions made in support of our analysis
efforts are then described. The remainder of the paper will present examples of
the analyses that we can perform using the tools suplemented by relatively simple
programs to characterize and organize the reduced data. The paper concludes
with a discussion of our plans for further extensions of the tools and additional
analyses.

* The mantra “Sex, Drugs, and Rock and Roll” enjoyed currency in the 1960s. To the
ears of an older generation, Rock and Roll was just a particularly unpleasant form
of noise. Since the general theme of this paper is separating signal from noise in
network data, the title is not too strained.

! The SLK are the initials of the late Suresh Konda who was instrumental in the initial
development of the tool set.

2 The Thesis and Approach

Sets and set theory are abstractions that facilitate reasoning about many classes
of problems. We have been exploring the use of sets to provide a compace way
of describing and reasoning about the internet and about traffic observed at
various points on it. For example, it is useful to consider such things as the
set of hosts on a given network that are active during a given time interval.
It might also be useful to consider the set of external hosts that are observed
performing a questionable activity such as scanning during such an interval.
Similarly, one might want to identify the set of users of some service provided
by the local network to the outside world (e.g. web services) during the interval.
In the case of the first set, the set of active machines, we could attempt to
obtain the answer by asking the system administrators, by examining the state
of the DHCP server responsible for leasing IP addresses to the network, by
consulting the responsible DNS server, or we could approximate the result by
observing those hosts within the network that either originate traffic or respond
to connection requests. If we can observe the traffic passing in and out of the
network at some border point such as a border router, the observations may
coinstitute a reasonable approximation of the active set? of hosts. The set of
active hosts, can be used to partition incoming traffic into that addressed to
active hosts (hits) and that which is not (missses). Arguably, the later partition
consists of a mix of malicious traffic, indirect evidence of malicious traffic, and,
possibly, some amount of benign, but misdirected traffic. This partition can
be further processed to identify interesting classses of senders. For example,
originators attempting TCP connections will send packets containing a SYN
flag. If we select flows containing SYN flags and count the number of flows per
source address using a “bag®”, we can sort the bag and identify high volume
scanners. It is not uncommon see a single host performing scans of an entire
/16 network in the course of a relatively few minutes. Having identified such
a scanner, it is trivial to find the flows from the scanner to the active or hit
partition and create the set of active machines included in the flow. At that
point, it is useful to determine if any of the targets responded to the scanner,
and, if so to examine the traffic between the scanner and the target (and the
subsequent behavior of the target) to determine if the target has changed its
behavior in ways that might indicate that it has been compromised.

As can be seen from the example of the previous paragraph, the use of sets
and bags, combined with simple filtering based on properties of the data records
themselves allows the clustering of data with some particular security (or other)
propertys in common. Since we are dealing with many thousands of flows per

2 We assume that all traffic in and out of the monitored network passes through an
observation point. Multiple border crossing points are possible. For the moment,
we assume that hosts within the monitored network do not spoof addresses and
that multiple responders such as honeypots are not deployed within the monitored
network.

3 A bag is a counted set or multiset in which the number of occurances of each member
of the basis set is recorded.

minute on large networks, the constructions of sets and bags allows us to abstract
from individual behaviors to clusters of activities. As the paper develops, we will
elaborate on this thesis and develop the tools and techniques that we need in
more detail, however, we have a number of utilities available including:

— An efficient set representation that allows us to represent IPv4 address sets
directly in memory. There is also a compact disk representation that can be
read and written efficiently

— An extension of the set representation, a bag, that allows a 32bit counter to
be associated with each IP address. It too has an efficient disk representation.

— Routines that allow set unions and intersections to be computed, producing
additional set files.

— Routines that allow sets and bags to be created from files containing network
flow data.

— Routines that allow sets and bags to be created from ascii lists of IP addresses
in both “dotted” form (possibly containing wild cards), and in unsignede
integer form.

— Routines to list the contents of sets and bags at various levels of detail,
including the network structure (subnet relationships) of a set.

These are sufficient for our initial analysis, though we plan to add other programs
to the suite as the need for them becomes clear.

3 NetFlow and other data sources

NetFlow was developed by Cisco as a mechanism for gathering traffic statistics
to support billing and network management. NetFlow operates on routers and
switches to report traffic statistics on a per interface basis. Although it is not
standardized, it is supported in more or less compatible ways by a number of
other router and switch manufacturers. According to Cisco®, the detailed traffic
statistics collected by NetFlow include:

— Source and destination IP addresses

— Next hop address

— Input and output interface numbers

— Number of packets in the flow

— Total bytes (octets) in the flow

— First and last time stamps of packets that were switched as part of this flow

— Source and destination port numbers

— Protocol (and flags as appropriate)

— Type of service (ToS)

— Source and destination autonomous system (AS) numbers, either origin or
peer (present in V5 and select V8 datagrams)

4 http://www.cisco.com/en/US/products/sw/netmgtsw/ps1964/products_user_
guide_chapter09186a00801ed569.html

— Source and destination prefix mask bits (present in V5, V7, and V8 data-
grams)

Note that NetFlow records include one or more packets, and represent unidi-
rectional flows. As such, NetFlow lies somewhere in between tcpdump records
which contain data about individual packets and connection records which would
abstract an entire tcp session to a single record. Because NetFlow is resource
intensive, there is a limit to the number of open flow records that the router
can maintain at one time. New records are created whenever a new flow is seen.
A flow is deemed to be new if it contains a (source/destination/protocol®) set
that is not currently being monitored. A flow is closed if it has been inactive
for a prescribed period of time(typically some seconds), if it has been explicitly
closed (TCP FIN or RST), or if it has been open and active for a prescribed
period of time (typically some minutes). Note that this has the effect of break-
ing up long, steady TCP sessions as well as intermitant TCP sessions with long
pauses. It also creates pseudo sessions from sequences of UDP packets as might
be associated with streaming media.

The individual flow records are aggregated and sent in batches encapsullated
in a UDP packet to a central collection point for processing. In our case, the
processing point stores the flow records in a compact format that can be sequen-
tially searched and extracted based on times and a number of match criteria as
discussed in the next section. Since our tools operate from this format, it is worth
considering whether other forms of data might be stored in the same format and
processed with the tools. The answer is a qualified yes. It would be trivial to
extract most of the required data from packet based sources such as tcpdump
or Argus records. Since packet data is typically captured on a link, router spe-
cific information such as interfaces, AS numbers, and next hop addresses are not
available, but these seldom appear in our analysis. If we were to aggregate data
from a number of collection points, these fields could be used to indicate the
collection point and directionality of the packet.

Degenerate flow records could be constructed on a packet by packet basis.
This would obviate the space efficiencies of the flow aggregation paradigm, but
would be trivial to implement, either in real time or for prerecorded data.. For
prerecorded packet header data where real time performance is not critical, flow
aggregation could be done by implementing the NetFlow aggregation or a varia-
tion thereof. Given the availability of large amounts of ram, the rules for closing
flows could be relaxed somewhat, and a low memeory garbage collection mech-
anism implemented that would preferentially close least recently updated flows
when memory became low. This should lead to the optimum of one flow per
session for most well formed TCP flows. We hope to add packet to NetFlow
conversion code top the SiLKtools suite in the near future.

5 In the case of TCP and UDP, ports are included.

4 The SiLKtools suite and its extensions

According to the SiLK website®:

SiLK, the System for Internet-Level Knowledge, is a collection of
netflow tools developed by the CERT/AC to facilitate security analysis in
large networks. SiLK consists of a suite of tools which collect and examine
netflow data, allowing analysts to rapidly query large sets of data. SiILK
was explicitly designed with a tradeoff in mind: while traffic summaries
do not provide packet-by-packet (in particular, payload) information,
they are also considerably more compact and consequently can be used
to acquire a wider view of network traffic problems.

SiLK consists of two sets of tools: a packing system” and analysis
suite®. The packing system receives Netflow V5 PDU’s and converts
them into a more space efficient format, recording the packed records
into service-specific binary flat files. The analysis suite consists of tools
which can read these flat files and then perform various query opera-
tions, ranging from per-record filtering to statistical analysis of groups
of records. The analysis tools interoperate using pipes, allowing a user
to develop a relatively sophisticated query from a simple beginning.

The vast majority of the current code-base is implemented in C, Perl,
or Python. This code has been tested on Linux, Solaris, Free/OpenBSD,
ATX and Mac OS X, but should be usable with little or no change on
other Unix platforms.

The SiLK software components are released under the GPL.

The project is the fruits of work done at the CERT Coordination
Center (CERT/CC) that is part of the Software Engineering Institute
at Carnegie Mellon University.

The analysis suite includes a number of applications and utility programs we
discuss in some detail only those that are used in the examples below, however,
manual pages for the entire suite are available from the web site. For convinience,
we refer to the packed data files used by some of the programs as “rwdata”
files. In most cases, input can come from stdin or from a rwdata file and it is
posssible to associate an output of most programs with stdout, allowing chains
of programs.

5 http://silktools.sourceforge.net/

" The SiLK Packing System is a server application that receives Netflow V5 PDU’s
and converts them into a more space efficient format, recording the packed records
into service-specific binary flat files. Files are organized in a time-based directory
heirarchy with files cover an hour at the leaves.

8 The SiLK Analysis Suite is a collection of command-line tools for querying packed
netflow data. The most important tool is rwfilter, an application for querying the
central netflow data repository for netflow records that satisfy a set of filtering
options.

rwfilter is the frontend for the system. It extracts a subset of the centrally
stored rwdata based on a number of aggregation and filtering criteria or ap-
plies filtering data to a previously extracted rwdata file. Although it is much
more general than the usages we show, our typical use starts by selecting
data based on some time interval and possibly some range of network ad-
dresses. This data will be stored in a single file and subsequently refiltered
based on other criteria. The program can be used to partition data based on
the filtering criteria. Thus, TCP data could be extracted to a file in one pass
with other protocols going to different file (or piped to another invocation
of rwfilter to extract UDP, etc. for as many levels as desired.) Since sets
of ip addresses can be used as filter criteria, traffic whose source (and / or
destination) addresses appear in given sets can be extracted or partitioned.

rwcut lists selected fields from an rwdata file. The records are listed one per line
in the field order specified on the command line. This allows the extraction
of specific fields for subsequent analysis. In addition to the explicit fields,
rwecut supports a dynamic library feature that allows derived quantities or
selection criteria to be specified. As an example, rwdata files contain total
bytes and packet count fields, but it is often more useful to spesk in terms of
bytes per packets when extracting scan data. A dynamic library to support
this usage exists.

rwset creates sets of ipaddresses from rwdata files. In its original form, the user
specifies whether the set should contain source or destination addresses. We
have extended this to support the additional functionality described under
rwsuperset.

rwsuperset can create multiple sets and bags from rwdata files. It is possible to
greate sets containing source addresses, destiunation addresses, or both. Sim-
ilarly, bags can be created based on source addresses, destination addresses,
or both. An additional feature allows a diminished set of the input data to be
passed to one or both of two additional outputs associated with the source
and destination addresses, respectively. If one of these outputs is specified, a
set is created for the source or destination as specified and data is passed to
the output only if its source (destination) address already appears in the set.
This creates a set of addresses that appear one or more times in the input
stream and an output stream containing addresses that appear two or more
times. As we will see, the address frequency is often skewed towards small
numbers of occurences and this mechanism allows sets (requiring about 1 bit
per entry) to be used for large numbers of addresses with small counts while
bags (requiring 32 bits/entry) are reserved for addresses with larger counts.
Experience shows that 9 sets with steadly diminishing size can reduce the
space required for the remaining bag (counts of 10 or more) by more than
99%. As currently implemented, the data structure used for a set consists of
an array of 2'6 pointers to blocks of 2!6 bits. The latter are only allocated
when an address in the range of the pointer matching the appropriate /16
network block is seen. If every /16 has at least 1 IP, the set will occupy a
bit over a half a gigabyte, not unreasonable in machines with 4 gigabyte ad-
dress spaces and at least that much physical memory. The bag has a similar

structure, but an additional level of indirection, 2'6 pointers to 2% pointers
to blocks of 28 32 bit counters. Again, secondary pointers and blocks are
allocated only as needed. A fully populated bag would require a little over
16 gigabytes on memory, so we resort to the cascaded set representation de-
scribed above. The disk representation of both structures contains a list of
32 bit headers containing a /24 network prefix followed by a block of either
256 bits or 256 32 bit counters, as needed.

readset reads in a set file and lists its contents in various ways. by default, it
simply lists the set size. It can also list the members of the set, in dotted
or unsigned integer form, and it can list the network structure of the set in
terms of any or all of /24, /16, and /8 prefixes with or without host counts
and summaries.

readbag is similar to readset, but will only enumerate the bag, listing each
nonzero IP address and its corresponding count. IPs can be printed either
in dotted or unsigned integer form and the count can be printed first to
facilitate sorting as in listing the 10 IP addresses with the highest count
(pipe readset to sort to head)

buildset builds a set file from a list of IP addresses. Wildcards are permitted, so
giving buildset the single line “10.1.x.x” would create the set from “10.1.0.0”
to “10.1.255.255” inclusive. Sets constructed in this fashion can be used to
extract a subnet of interest from a set file created from rwfilter output. In
one case, we were able to identify misrouted data in a large tcpdump trace by
forming a list of destination addresses from the data, converting them into
a set with buildset, creating another set describing the monitored network
and differencing them.

buildbag is like buildset except that it counts the number of occurances of each
IP address in its input list. It also accepts wild cards, so the inputs “10.1.0.x”
and “10.1.0.0-127” would create a bag with counts of two associated with
the first 128 addresses of 10.1.0.x” and a count of 1 associated with the
remaining 128.

setintersect performs intersection operations on set files. It also can perform
intersection with the complement of a set file. The command line allows the
user to specify one or more “add files” which are intersected and one or more
“subtract files,” the union of which is complemented and intersected® with
the result of the intersection of the add files. The output is another set file,
a list of IPs, or both. If the list is produced, it may be in either dotted or
unsigned integer form.

rwsetunion performs the union of two or more set files.

rwcat concatenates multiple rwdata files into a single file or stdout stream.
Many of the programs in the suite will only work from a single file or stream
and this provides a mechanism for combining files. Because rwdata files have
a self describing header, the system “cat” utility is not applicable here. An
example might be to join hourly files in order to perform an analysis at the
daily level.

9 In the implementation, entries in each subtract file are removed from the set resulting
from the intersection of the add files if they are present in it.

rwsort provides the ability to sort rwdata files based on address, size or start
time fields. Note that data enters the rwdata archives as flows are closed
and thus is not ordered by start time unless it is sorted this way. rwsort
performs a memory sort and is limited to files with 5 * 107 or fewer records.
No rwmerge program is available at the present time.

rwstats can provide a variety of statistics about the contents of an rwdata file.

5 Examples and sample analyses

In this section, we illustrate our analysis techniques with two examples. One
is a brief data sample from a large cross section of networks that have been
aggregated together. the other represents a detailed view of a weeks activity on
a /16. In all cases, no real IPs are contained in the analyses.

IP Source Analysis

100.0% ~

80.0%

60.0%
—=— Miss set - 36.1% > 9 flows
—— Hit set - 4.1% > 9 flows
40.0% \
20.0%

0.0%

Percent of total IPs

N

Flows per Source

Fig. 1. Reduction in IP Source Set Sizes as a Function of Number of Flows

5.1 A brief examination of a large sample

We obtained data from a cross section of monitored networks for a small interval
of time. Data leaving the networks was monitored for an interval began slightly

before interval used for data entering the network and extended slightly beyond
it. This insures that the internal hosts that responded to traffic from the out-
side are included in the sample even in the incoming clocks are not perfectly
synchronized with the outgoing clocks'® or internal hosts respond only after a
small delay. The set of active hosts in the internal network is approximated by
creating the set of source addresses observed in the outgiong traffic during the
covering interval. This set is then used to partition the data entering the network
into flows directed to active hosts and those directed to inactive or non-existant
hosts. About 2/3 (65.4%) of the flow records are directed at nonexistant targets,
the remaining 1/3 (34.6%) are directed at active hosts. Further partitioning by
protocol simplifies subsequent analysis. As expected, the vast majority of the
data is TCP. We further analyze the TCP data by creating bags for source and
destination addresses for the hit and miss partitions. The fall off in set size is
illustrated in Figures 1 and 2. Note that hit and miss sizes follow similar, but
distince patterns. The big differences are between source and destination behav-
iors. About 36% of the destination IPs that do not hit an active host have ten
or more flows associated with them.

IP Destination Analysis

100.0%

80.0%

60.0%
—&— Miss set - 0.1% > 9 flows
—A—Hit set - 2.4% > 9 flows
40.0% \\
20.0%

0.0%

Percent of total IPs

1 2 3 4 5 6 7 8 9
Flows per Destination

Fig. 2. Reduction in IP Destination Set Sizes as a Function of Number of Flows

10 The data is aggregated from a number of routers. In some cases, separate routers
handle incoming and outgoing traffic.

10

(39) 1lip $ readbag --count --print jcm-tcp-s-10+.bagl| sort -r -n | head
12994 AAA.BBB.068.218
6598 CCC.DDD.209.215
5944 EEE.FFF.125.117
5465 GGG.HHH.114.052
5303 IIT.JJJ.164.126

A closer look at the top address is interesting. Filtering for this address in
the miss file (jem-tep.rwf) extracts some 400K of records. The destination set
for this contains 12994 hosts, all from the same /16, XXX.YYY.x.x. The hit
set also contains entries from XXX.YYY, 7 in all. All the flows sent to these
addresses are 48 byte SYN packets addressed to port 4899 (listed as a “radmin”
port by TANA, with other possible usages reported as ChiliASP and iMesh). An
inspection of the outgoing traffic to this network indicates no responses to the
connection attempts.

The second entry is somewhat different. The traffic from this address scans
a different /16. looking for responses on port 7100!! (X Font service according
to IANA). Some 112 responses are seen from hosts SSS.RRR.QQQ.1-78,120-
131,224-254. The contiguous ranges ans the consistency of responses on a rela-
tively obscure port may indicate the presence of a honeypot or a similar decoy.
In all cases, the connection seems to have been broken after the probed host’s
SYN/ACK reply.

The third and fourth entries are scans of portions of other /16s, this time
looking for service on port 20168. This appears to be associated with the “Love-
gate” worm which binds a shell to this port on infected machines.

The fifth entry is a scan of a portion of yet another /16, this time looking
for service on port 3127, listed by IANA as the CTX bridge port, but also
in the range used by the ChiliASP module in Apache servers acccording to
www, portsdb.org. This is currently being used by the “MyDoom.C” worm on
Linux!?

At the other end of the spectrum, there are 3335 external hosts that sent
exactly one tcp flow into the monitored network during the analyzed time inter-
val. Of these, only two port and flag combinations appear more than 100 times.
SYN probes for port 88662 are seen 449 times. SYN probes for port 25 (SMTP -
email) are seen 271 times. The vast majority of the remainder are SYNs to a va-
riety of ports, mostly with high portnumbers. There are a number of ACK/RST
packets which are probably associated with responses to spoofed DDoS attacks.

" http://www.cert.org/advisories/CA-2002-34.html describes a vulnerability in
the X font service on solaris. It is likely that the scanner was looking for machines
that could be attacked.

12 http://www.linuxworld. com/story/43628.htm

13«32 Beagle.B@mm is a mass-mailing worm that opens a backdoor on TCP port
8866. The worm uses its own SMTP engine for email propagation. It can also send
to the attacker the port on which the backdoor listens, as well as a randomized 1D
number.” according to http://securityresponse.symantec.com/avcenter/venc/
data/w32.beagle.b@mm.html

11

5.2 A week in the life of a /16

We obtained hourly flow data from a /16 within the monitored network for the
one week period from 11 - 17 January 2004. plus two additional days, 26 and 27
January. The data set consists of nearly 400Mb of data divided into hourly files
for inside to outside traffic and for outside to inside traffic. The inside to outside
traffic was analyzed and a set of IP addresses computed that represent all the
hosts that were seen to be active during the initial week. The observed network
structure is shown in Table 1.

Table 1. Network Structure for a /16

MMM.NNN.24.x 66 hosts MMM.NNN.25.x 60 hosts
MMM.NNN.26.x 46 hosts MMM.NNN.27.x 49 hosts
MMM.NNN.28.x 57 hosts MMM.NNN.29.x 7 hosts
MMM.NNN.30.x 70 hosts MMM.NNN.31.x 67 hosts
MMM.NNN.32.x 54 hosts MMM.NNN.33.x 62 hosts
MMM.NNN.34.x 50 hosts MMM.NNN.35.x 4 hosts
MMM.NNN.120.x 2 hosts MMM.NNN.127.x 1 host
MMM.NNN.140.x 1 host MMM.NNN.251.x 4 hosts
Network Summary

600 hosts (1.4 % 107°%) of 232

1 occupied class /8 (0.4%) of 256

1 occupied class /16 (0.002%) of 65536

16 occupied class /24s (9.5 * 107°%) of 22*

The set of active addresses seen during the week is an optimistic estimate
of the active host set for this network since activity on several subnets was not
observed until late in the week. The set includes all hosts seen to be active during
the additional days, as well. This set was used to partition each outside to inside
hourly data set into hit and miss portions as described earlier. Since these files
consist of a small amount of header data and fixed length records, the file sizes
are a good surrogate for the number of flows observed.

Figure 3 shows the hit and miss file sizes for the base week of the data. It is
interesting to note that many more flows miss than hit during most hours. We
have looked at a few of the peaks in detail.

12 January 21:00 Two fairly complete scans of the entire /16, one for port
2000 TCP (61018 flows) and one for port 20168 TCP (60978 flows) with
a total of 62616 unique IP addresses hit. Both scans came from a single
IP address. As noted above, port 20168 is associated with the Lovegate
worm. Port 2000 appears to be associated with a number of Windows remote
administration tools (e.g. RemotelyAnywhere).

14 January 15:00 Two scans from different networks, each targeting port 80
TCP. One targets 58394 hosts, the other 53032.

12

4500000
4000000
3500000
3000000
o
N
]
2 2500000
3 | \ \ Inbound Hits
E i Inbound misses
> 2000000 T "
5 I
] | l
I i .
1500000 f
il f
’ l ;‘ |
1000000 4 + i i Tt
i ‘ i \ 1
500000 R “{ i A I." i \ i
i [H | PR J J, \ N /
[| AL \ \. U
. *>\J_/\f\/ e W N A
11-Jan 12-Jan 13-Jan 14-Jan 15-Jan 16-Jan 17-Jan 18-Jan

Date and Time

Fig. 3. Hourly flow file sizes for incoming hit and miss flows

15 January 00:00 Two fairly complete scans from two distinct source ad-

14

dresses, one for port 4000 TCP, the other for 5308 TCP, each from a separate
source.

Port 4000 appears to be used by the remote administration utility Remote-

Anything from TWD Industries (http://www.twd-industries.com/en/index.

htm).

Port 5308 is associated with cfengine, a configuration and administration

mechanism. !4

“Cfengine, or the configuration engine is an autonomous agent and a middle to high

level policy language for building expert systems which administrate and configure
large computer networks. Cfengine uses the idea of classes and a primitive intelligence
to define and automate the configuration and maintenance of system state, for small
to huge configurations. Cfengine is designed to be a part of a computer immune
system, and can be thought of as a gaming agent. It is ideal for cluster management
and has been adopted for use all over the world in small and huge organizations
alike.” according to http://www.iu.hio.no/cfengine/.

13
6 Enhancements and Extensions
7 Conclusions

A The bag script

This script is used to create counts of flows occuring in a raw data file. The ten
level set creation usually reduces the size of the final bag to a manageable level.

#!/bin/bash

take a raw data file and create 9 levels of set files followed by a

bag file for the residue

$1 is the file root (.rwf assumed)

$2 is either s or d, depending on whether the bagging should be

done on source or destination ips

rwsuperset —-p —-$2-s=$1-$2-1+.set --$2-d=stdout $1.rwf |\

rwsuperset —-p --$2-s=$1-$2-2+.set --$2-d=stdout |\

rwsuperset —-p --$2-s=$1-$2-3+.set --$2-d=stdout |\

rwsuperset —--p --$2-s=$1-$2-4+.set --$2-d=stdout |\

rwsuperset —-p --$2-s=$1-$2-5+.set --$2-d=stdout |\

rwsuperset —--p --$2-s=$1-$2-6+.set --$2-d=stdout |\

rwsuperset —-p --$2-s=$1-$2-7+.set --$2-d=stdout |\

rwsuperset —-p --$2-s=$1-$2-8+.set --$2-d=stdout |\

rwsuperset —-p --$2-s=$1-$2-9+.set --$2-d=stdout |\

rwsuperset —-p --$2-s=$1-$2-10+.set --$2-d=$1-$2-10+.rwf \
--$2-i=10 --$2-b=$1-$2-10+.bag

