
NEWS AT SEI

Author

Mario R. Barbacci

This library item is related to the following area(s) of work:

Software Architecture (http://www.sei.cmu.edu/architecture)

This article was originally published in News at SEI on: June 1, 2000

In large software systems, the achievement of qualities such as performance, availability,

security, and modifiability is dependent not only on code-level practices (e.g., language

choice, detailed design, algorithms, data structures, and testing), but also on the overall

software architecture. The quality attributes of large systems can be highly constrained

by a system's software architecture. Thus, it is in our best interest to try to determine at

the time a system's software architecture is specified whether the system will have the

desired qualities.

In previous columns we have written about various components of an emerging

"software architecture practice" by drawing analogies to architectural engineering and

describing approaches to software architecture representation, quality attributes, and

the use of scenarios in architecture evaluations. In this column, I describe one way for

combining several of these components into a process that allows early insight into a

system's architecture, including its quality-attribute sensitivities, tradeoffs, and risks.

Making Attribute Goals Concrete

Quality attributes are interdependent. For example, performance affects modifiability,

availability affects safety, security affects performance, and everything affects cost.

Therefore, achieving one quality attribute can affect the other attributes [Boehm 78].

These side effects reflect dependencies among attributes and can be defined by

parameters shared among attribute models. If we can identify these parameters, the

results from one analysis can feed into the others.

Quality attributes, such as modifiability, performance, and security, are not definitive

enough by themselves either for design or for evaluation. They must be made more

concrete. Using modifiability as an example, if a system can be easily adapted to have

different user interfaces but is dependent on a particular operating system, is it

modifiable? The answer is that it depends on what modifications are expected to the

system over its lifetime. That is, the abstract quality of modifiability must be made

concrete. The same observation is true for other attributes.

For the past two years the SEI has been developing the Architecture Tradeoff Analysis

Method (ATAM). ATAM is based on a set of attribute-specific measures of a

system-some analytic, based on formal models (e.g., performance and availability), and

some qualitative, based on formal inspections (e.g., modifiability, safety, and security).

We now have a stable process for carrying out ATAM analyses. The process includes a

Quality Attribute Workshop

Library

CMU SEI CERT Division Digital Library Blogs

Library | Quality Attribute Workshop

1 of 8

set of steps and a set of reusable architectural styles and analytic models, called

attribute-based architectural styles (ABASs), that we use during an ATAM analysis. The

ATAM process will be covered in a future issue of The Architect, so we will not dwell on

the method here.

The effectiveness of ATAM depends on having a concrete, well-defined architecture to be

analyzed. However, some ATAM benefits can be achieved even if an architecture is not

fully defined. Under some circumstances, an organization might wish to identify

potential architecture risks while developing a system's architecture. With the

sponsorship of the U.S. Coast Guard, we are testing the concept of a "Quality Attribute

Workshop" in which architects, developers, users, maintainers, and other system

stakeholders, such as people involved in installation, deployment, logistics, planning,

and acquisition, carry out several ATAM steps, but focus on system requirements and

quality attributes, rather than on the architecture. The objective of the workshop is to

identify sensitivities, tradeoffs, and risks and use these as early warnings to the

architecture developers.

The workshop is intended as a forum for the discussion of quality attributes and their

evaluation. The workshop does not aim at an absolute measure of "architecture quality;"

rather the purpose is to identify scenarios from the point of view of a diverse group of

stakeholders (e.g., the architect, developers, users, sponsors) and to identify risks (e.g.,

inadequate performance, successful denial-of-service attacks) and possible mitigation

strategies (e.g., replication, prototyping, simulation).

Roadmap Activities

Figure 1 illustrates the Quality Attribute Roadmap, the process we use during the

workshops to discover and document quality attribute risks, sensitivity points, and

tradeoffs in the architecture, where

risks are architecture decisions that might create future problems for some quality

attribute requirement

sensitivity points are architecture parameters for which a slight change makes a

significant difference in some quality attribute

tradeoffs are architecture parameters affecting more than one quality attribute

Figure 1: Quality Attribute Roadmap

During the workshop we conduct several activities aimed at generating various outputs

or products:

Scenario generation takes place during a facilitated brainstorming process;

stakeholders propose scenarios that test the effectiveness of a candidate or

conceptual architecture to achieve specific quality attributes within a specific

Deepwater mission and geographic context. For prioritization, each stakeholder is

assigned a number of votes that she can allocate as desired.

During scenario analysis, for each of the high-priority scenarios, the stakeholders

choose an appropriate architectural style or architectural fragment as an artifact

for analysis, and apply the scenario to the artifact. The purpose of the analysis is to

Library | Quality Attribute Workshop

2 of 8

identify important architecture decisions and sensitivity points. As a result of this

activity, the stakeholders might decide to conduct additional, more detailed or

formal analyses of the scenarios or artifacts, but these activities take place offline,

not during the workshop.

During tradeoff and risk identification, the stakeholders use the results of the

analysis activity to identify and document risks-i.e., potential future problems that

might impact cost, schedule, or quality attributes of the system. Scenarios to

consider include:

a single scenario that involves two attributes explicitly or

implicitly

multiple scenarios about different attributes sharing common

factors (e.g., resources, protocols)

multiple contradictory scenarios

We use various sources as inputs for the activities, including:

architecture documentation

stakeholder points of view

architecture styles

The stakeholders generate, prioritize, and analyze the scenarios, and identify tradeoffs

and risks from their points of view, depending on the role they play in the development

of the system, and their expertise on specific quality attributes. As an additional input

source, we try to identify known architectural styles because they can expedite the

process. Architecture styles are abstractions such as "client/server," "publish/subscribe,"

"shared memory," "layered," and "pipe and filter," which can be used as drivers for the

analysis because they provide "canned" scenarios, known tradeoffs, and likely risks. The

results of the analysis would depend on which architecture styles are used.

Finally, there is a collection of tools and techniques that we use to perform a quality

attribute analysis:

scenarios

quality attribute tables

questions

These sometimes have different labels, such as "screening questions" or "exploratory

scenarios." It is important to be precise in our use of terms to ensure that (a) we share

the same understanding, and (b) we can decide what tools to use and when to use them.

Thus, prior to the workshops, the participants receive a handbook describing the

activities and the tools to be used and as a reminder, they are taken through a short

presentation at the beginning of the meeting. The rest of this article details some of the

tools and the experiences we have had with the workshops.

Scenarios

Scenarios are used to exercise the architecture against current and future situations:

Use-case scenarios reflect the normal state or operation of the system. If the system

is yet to be built, these would be about the initial release.

Growth scenarios are anticipated changes to the system. These can be about the

execution environment (e.g., double the message traffic) or about the development

environment (e.g., change message format shown on operator console).

Exploratory scenarios are extreme changes to the system. These changes are not

necessarily anticipated or even desirable situations. Exploratory scenarios are used

to explore the boundaries of the architecture (e.g., message traffic grows 100 times,

operating system is replaced).

The distinction between growth and exploratory scenarios is system- or situation-

dependent. Anticipated growth in a business application might be a disaster in a deep

space probe (e.g., 20% growth in message storage per year).Table 1 shows several

representative performance scenarios.

Table 1: Performance Scenarios Scenario Type

Library | Quality Attribute Workshop

3 of 8

Scenario Type

The communications network is overloaded.

Missions are reassigned to reduce traffic.

use case

The LAN is overloaded. Tasks are reassigned to

reduce traffic.

use case

The process-to-processor allocation is changed to

balance the load.

use case

Data throughput is doubled. growth

The number of users doubles. growth

Real-time video data is needed by central office. exploratory

Important, but not mission-critical, traffic doubles

in volume.

growth

There are no clear rules other than stakeholder consensus that some scenarios are likely

(desirable or otherwise) and other scenarios are unlikely (but could happen and, if they

occurred, it would be useful to understand the consequences).

Quality Attribute Tables

The handbook used in the workshop describes various quality attributes, characterized

by stimuli, responses, and architectural decisions that link them. Stimuli and responses

are the activities (operational or developmental) that exercise the system and the

observable effects, respectively. For example, a stimuli for the "modifiability" attribute

could be "change the operating system," and the responses could include "effort to

implement" and "number of subsystems affected." The architecture decision in this case

might be "use a virtual machine approach." Each attribute is described by

stimulus/response/mechanism tables, where the level of detail is appropriate to the

state of development and the available documentation. See Figure 2 for an illustration of

a table of architecture mechanisms for the modifiability attribute.

Figure 2: Modifiability Architecture Mechanisms

The attribute tables are used only to suggest stimuli, responses, and mechanisms that

might be of interest. They are just a reminder of the kinds of issues we want the

participants to take into consideration when generating and analyzing scenarios. We

could expect that, depending on the interests of the stakeholders, quality attribute tables

might be added, removed, refined, or pruned, as the participants see fit.

Questions

We use various types of questions to collect and analyze information about current and

future system drivers and architectural solutions.

Screening questions are used to quickly narrow or focus the scope of the

evaluation. They identify what is important to the stakeholders.

Library | Quality Attribute Workshop

4 of 8

Screening questions are qualitative; the answers are not

necessarily precise or quantifiable. The emphasis is on

expediency.

Screening questions can be driven by a quality attribute deemed

important to some stakeholders. Sometimes the attribute is clear

and explicit (e.g., "the service must be continuous" identifies

availability and security as the quality attributes of concern).

Sometimes the attribute is implied (e.g., "life-cycle cost must be

minimal" suggests modifiability and interoperability as the

relevant quality attributes).

Screening questions can also be driven by a subsystem or a

service deemed important to achieve a quality attribute. For

example, once an important attribute is identified by the

stakeholders, screening questions can be used to narrow or focus

on subsets of the architecture that are relevant to achieving the

attribute (e.g., the user authentication subsystem, the message

filtering and distribution subsystem).

Elicitation questions are used to gather information to be analyzed later. They

identify how a quality attribute or a service is achieved by the system.

Elicitation questions collect information about decisions made;

the emphasis is on extracting quantifiable data.

Elicitation questions can be driven by an attribute model. We

ask for quality attribute-specific information when the answer is

a parameter of an attribute model (e.g., message arrival rates are

parameters in a model of throughput, repair rates are

parameters in a Markov model of availability). These elicitation

questions are guided by stimulus/response branches of the

quality attribute tables.

Elicitation questions can also be driven by architecture styles.

We ask for architectural information when the answer is

important to determine the "quality" of a particular architecture

style choice (e.g., individual latencies are required to compute

the performance of a pipe-and-filter architecture). These

elicitation questions are guided by the architecture mechanism

branch of the quality attribute tables.

Analysis questions are used to conduct analysis using attribute models and

information collected by elicitation questions. Analysis questions refine the

information gathered by elicitation.

There is an implied ordering in the questions (i.e., screening > elicitation > analysis)

although questioning can be carried out in breadth-first or depth-first order:

Breadth-first questioning first identifies all important attributes and subsets of the

architecture. Then, for each one, questioning elicits all the information that will be

used later for analysis.

Depth-first questioning dives deeply into an important attribute or subset of the

architecture before other attributes or subsets of the architecture are considered.

Either order can be used, and the decision might be opportunistic. During a discovery or

early analysis exercise, breadth-first might be more appropriate; during an evaluation or

detailed analysis exercise, depth-first might be more appropriate.

For each quality attribute of interest, attribute-specific example questions serve as seeds

for additional questions about stimuli, response, or architecture mechanisms. Table 2

provides an example of a list of specific questions for security.

Table 2: Security Questions

Question Type

Library | Quality Attribute Workshop

5 of 8

Requirements What are the

trusted

entities in the

system and

how do they

communicate?

Screen

Stimulus/Response Which

essential

services could

be

significantly

affected by an

attack?

Analysis

Are there

attacks or

events that

could affect

service across

the entire

integrated

system?

Analysis

Is there a

single point

from which

the entire

system is

controlled?

Analysis

For which

kind of attacks

will recovery

be the most

difficult?

Analysis

Resistance/Recovery/

Recognition

How is user

authentication

and

authorization

information

maintained

for

employees?

Elicitation

How is access

managed for

those people

who are

outside the

network?

Elicitation

What

sensitive

information

must be

protected?

Elicitation

What

approach is

used to

Elicitation

Library | Quality Attribute Workshop

6 of 8

protect that

data?

Which user

actions are

logged?

Elicitation

What kind of

monitoring

and access

controls exist

at network

boundaries?

Elicitation

What

information is

permitted

through or

filtered out?

Analysis

The questions are not meant to be exhaustive; rather they are meant to serve as starting

points and as examples for stakeholders to generate additional questions about the

quality attribute requirements and the system.

Scenarios and questions contain the explicit or implied attribute stimulus/response

/mechanisms that are deemed important. Scenarios and questions might raise doubts or

concerns regarding some aspect of the architecture about which we might have to elicit

further information to conduct a more detailed analysis. They serve to identify potential

risks, such as what risks can arise from decisions made (e.g., choice of middleware), as

well as decisions not yet made (e.g., message encoding).

The generation of scenarios can alternate with the generation of questions. For example,

screening questions can identify regions of stimuli/responses as sources of use-case

scenarios, which in turn might suggest questions about architecture mechanisms

involved in the scenario. For example, a screening question might identify message

throughput as important; a scenario about message throughput would identify the

components involved in the message path. The capacity or speed of some components

might be seen as questionable, prompting further elicitation questions (e.g., time

required to process a message or choice of queuing policy).

Experience with Quality Attribute Workshops

We have conducted a handful of workshops, and the process is still evolving. As

indicated earlier, the intent of the workshops is to encourage an organization to generate

and analyze scenarios about a hypothetical system, not necessarily something under

development. However, we need something to analyze the scenario against! For

example, if a scenario suggests that message throughput is important, we need a sketch

of the components and connections that implement the subsystem that processes the

messages. Because no such decisions are expected to have been made at the time of the

workshop, when we analyze a scenario, the architect can suggest a reasonable or likely

candidate architecture for the purposes of the exercise. The stakeholders are not bound

to that solution and are not "graded" on the effectiveness of a choice made on the spur of

the moment. However, the scenarios, questions, and attribute tables remain with the

organization, and they can repeat the exercise using alternative subsystem architectures.

References

[Deepwater] United States Coast Guard Deepwater Project

[Freedberg 00] Freedberg, S. Jr. Coast Guard uses new model to procure new fleet. Daily

Briefing Column, GovExec.com (http://www.sei.cmu.eduhttp://www.govexec.com

/dailyfed/0400/042400b2.htm) April 24, 2000

[ATAM] The Architecture Tradeoff Analysis (ATA) Method (http://www.sei.cmu.edu

/architecture/consulting/)

[Boehm 78] Boehm, B.W., Brown, J.R., Kaspar, H., Lipow, M., MacLeod, G.J. & Merritt,

Library | Quality Attribute Workshop

7 of 8

M.J. Characteristics of Software Quality. New York, NY: Elsevier North-Holland

Publishing Company, Inc., 1978.

About the Author

Mario Barbacci is a senior member of the technical staff at the SEI. He was one of the

founders of the SEI, where he has served in several technical and managerial positions,

including project leader (Distributed Systems), program director (Real-Time Distributed

Systems, Product Attribute Engineering), and associate director (Technology

Exploration Department). Before coming to the SEI, he was a member of the faculty in

the School of Computer Science at Carnegie Mellon.

Barbacci is a fellow of the Institute of Electrical and Electronic Engineers (IEEE), a

member of the Association for Computing Machinery (ACM), and a member of Sigma

Xi. He was the founding chairman of the International Federation for Information

Processing (IFIP) Working Group 10.2 (Computer Descriptions and Tools) and has

served as vice president for technical activities of the IEEE Computer Society and chair

of the Joint IEEE Computer Society/ACM Steering Committee for the Establishment of

Software Engineering as a Profession. He was the 1996 president of the IEEE Computer

Society. He was the 1998-1999 IEEE Division V Director.

Barbacci is the recipient of several IEEE Computer Society Outstanding Contribution

Certificates, the ACM Recognition of Service Award, and the IFIP Silver Core Award.

Barbacci received bachelor's and engineer's degrees in electrical engineering from the

Universidad Nacional de Ingenieria, Lima, Peru, and a doctorate in computer science

from Carnegie Mellon.

The views expressed in this article are the author's only and do not represent directly or

imply any official position or view of the Software Engineering Institute or Carnegie

Mellon University. This article is intended to stimulate further discussion about this

topic.

For more information

Contact Us

info@sei.cmu.edu

412-268-5800

©2016 Carnegie Mellon University

Library | Quality Attribute Workshop

8 of 8

