

Volume 5 | Number 1 | First Quarter 2002

http://www.interactive.sei.cmu.edu

In This Issue

columns

The Internet—Friend or
Foe? 1

Architectures for Adaptive Mobile
Systems 5

Building Systems from Commercial
Components: Classroom
Experiences 11

The Future of Software
Engineering: V 15

features

SEI Architecture Practices
Propel Successful Startup 22

Cost Benefit Analysis
Method 26

Information Security
Training and Education 29

The Software Technology
Review 33

Messages

Features

Columns

From the Director i

The Internet—Friend
or Foe? 1

Architectures for Adaptive
Mobile Systems 5

Building Systems from
Commercial Components:
Classroom Experiences 11

The Future of Software
Engineering: V 15

SEI Architecture
Practices Propel
Successful Startup 22

Cost Benefit Analysis
Method 26

Information Security Training
and Education 29

The Software Technology
Review 33

2002 by Carnegie Mellon University

The Software Engineering Institute (SEI)
is a federally funded research and
development center sponsored by the U.S.
Department of Defense and operated by
Carnegie Mellon University.

® Capability Maturity Model, Capability
Maturity Modeling, Carnegie Mellon,
CERT, CERT Coordination Center, and
CMM are registered in the U.S. Patent and
Trademark Office.

SM Architecture Tradeoff Analysis
Method; ATAM; CMMI; CMM
Integration; CURE; IDEAL; Interim
Profile; OCTAVE; Operationally Critical
Threat, Asset, and Vulnerability
Evaluation; Personal Software Process;
PSP; SCAMPI; SCAMPI Lead Assessor;
SCE; Team Software Process; and TSP
are service marks of Carnegie Mellon
University.

TM Simplex is a trademark of Carnegie
Mellon University.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu i

From the Director

In past years, the Software Engineering Symposium has provided us with an opportunity to
present our technical program to key stakeholders within the DoD. We had high hopes for a very
successful symposium in Washington, D.C. on October 15-18, 2001. However, as a result of the
catastrophic events of September 11, we ultimately concluded that we had to cancel this event.

One of our goals for the symposium this year had been to engage with the DoD acquisition
community. In light of the cancellation of our symposium, the SEI hosted a DoD Software
Collaborators Workshop for the DoD acquisition community in our

Arlington, Va. facility on January 22-24, 2002. This event included presentations about the SEI
technical program along with planning sessions with the DoD Software Collaborators
(http://dodsis.rome.ittssc.com) and other DoD personnel. The event provided us the opportunity
to meet with and understand our DoD stakeholders’ needs and to discuss transition and adoption
strategies, success criteria, and outcome metrics with these stakeholders. We intend to continue
to build on the many positive collaborations that were fostered at this workshop.

The success of this workshop, along with the continuing growth and success of other targeted
conferences and workshops that we sponsor, has led us to consider whether there might be more
effective venues than the Software Engineering Symposium for disseminating information about
SEI work. Past symposia have been organized in multiple tracks, with each track representing a
focus area within the overall SEI technical program. However, as the software engineering
community has grown, and as the SEI’s impact has increased, we have found it increasingly
difficult to cover our focus areas in sufficient depth in a single conference.

Over the past few years, the SEI has provided the stimulus for the emergence of focused
communities of interest/excellence in specific areas of software engineering, and has supported
these emerging communities through conferences and workshops. Examples include

• The annual Software Engineering Process Group (SEPG) Conference
(http://www.sei.cmu.edu/sepg)

• The International Conference on COTS-Based Software Systems
(http://wwwsel.iit.nrc.ca/iccbss), to be held for the first time in 2002

• The annual Software Product Line Conference (http://www.sei.cmu.edu/SPLC2)

• The annual Information Survivability Workshop (http://www.cert.org/research/isw/isw2001)

For the reasons I have cited here, we have decided to discontinue our annual Software
Engineering Symposium so that we can focus more of our efforts on these conferences and

ii http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

workshops, which serve specific communities of interest. We believe that this decision will
result in events that more effectively transition best practices within the process, COTS-based
systems, product line/software architecture, and survivable systems communities.

We plan to continue to report on the full body of SEI work through such media as the SEI Web
site (http://www.sei.cmu.edu), news@sei and news@sei interactive
(http://interactive.sei.cmu.edu), and the CERT Coordination Center Web site
(http://www.cert.org). This year for the first time, we are also publishing an annual report for
fiscal year 2001. I also encourage you to get involved in and support your local Software Process
Improvement Network (SPIN). I or my associates at the SEI are always willing to come and
present at a SPIN meeting, as a way of supporting the community in learning more details about
the SEI. If your SPIN would like to schedule a visit from an SEI speaker, please contact SEI
Customer Relations at customer-relations@sei.cmu.edu.

Stephen E. Cross
SEI Director and CEO

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 1

Security Matters

The Internet—Friend or Foe?
Lawrence R. Rogers

The answer to almost any question is probably on the Internet, but there can be risks in going
after it. By posting a query to a newsgroup, for example, you can provide enough information to
an intruder to give him or her strong leads for mounting an attack on your system. Having an
awareness of the kinds of data that intruders can capture and use in perpetrating attacks will
help you stay on friendly terms with the Net.

When I was growing up back in the late 1950s and early 1960s, our local grocery store sold Funk
& Wagnalls encyclopedias, and they gave discounts based on the amount of groceries that you
purchased. It took our family a long time, but we eventually became the proud owners of our
own set of green Funk and Wagnalls. In those days, having your own encyclopedias was one of
the few ways to acquire information, especially the kind we needed to write reports for school.
Plus, they were convenient. If you had them at home, you didn’t have to bother your parents to
take you to the library to do your research.

“It’s On the Internet”

Now the world is vastly different. No matter what the question is, it seems that the answer is “It’s
on the Internet.” Long gone are the Funk & Wagnalls, or anything similar for that matter, from
the grocery store. (In fact, Funk & Wagnalls New Encyclopedia is now available on CD-ROM
for your computer.) As the Internet spreads to more and more households, information that you
were once able to buy or receive in the mail—store catalogues come to mind—will be available
on the Internet, perhaps only on the Internet. If you are on the Internet from your home, you have
instant access, especially if you have a cable modem or a DSL connection. The world is at your
fingertips!

People are also instantaneously accessible, as are archives of discussions on various topics. You
can send a message to anyone with an email address; and if that message goes to a discussion
list, more than likely it will be archived and indexed so that others can benefit. Again, no matter
what the question, the answer is probably on the Internet somewhere. Even finding those answers
is less of a challenge than it was a few years ago. There are many indexing engines that sweep
the Internet and capture what is needed to allow you to search the myriad of sites that are
connected. The information is out there for the taking, and it is becoming easy to find.

2 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

Potholes on the Information Superhighway

But risks go along with this convenience—for home and commercial users alike. Imagine, then,
that you are a systems administrator and you are having some trouble with a piece of technology,
say the integration of a shopping cart application with your Web server under an operating
system. The Internet to the rescue. You peruse the related vendor support Web pages and, failing
to find just what you are looking for, you begin to search the appropriate news groups and
archives of email discussion lists. You find some items that are close to your problem and that
match your configuration, but not exactly.

To make sure you have the right set of circumstances and problem solution, you decide to post
the following to a news group:

From: Joe Sys-Admin joeSA@FledglingEcommerceStartup.com

Date: Mon, 2 Apr 2001 10:08:48 -0600

Subject: Grelnob’s Shopping Cart App on MacroHard’s SSI Server

Dear Fellow Systems Administrators:

I’m trying to install Grelnob’s Shopping Cart Application, Version

The.One.With.Bugs, under MacroHard’s SSI Server, Version

The.One.With.Bugs, on a FarmerInThe platform with 2 processors,

256Mb of memory, and 20Gb of disk. The error I am getting is:

 Cannot find application library

But I know that I have it installed in the same location as the SSI

Server. Anybody else have this problem? Please drop me a line or

give me a call at 1-800-555-1212. TIA!

This certainly seems harmless, doesn’t it?

Consider this: you are an intruder and you have selected Fledgling Ecommerce Startup as your
next target. Normally, you need to do an amount of reconnaissance of your target before you
attempt a break-in. This message from Joe is a gold mine of information, saving you potentially
several weeks of work. Let’s see what could be learned from this message alone:

• In the domain named FledglingEcommerceStartup.com, there is an account named joeSA. Now
all you need is a password, and you may be able to login to one of their machines. You are
half-way home.

• The machine used to send this mail is in the Central time zone (-0600 or 6 hours west of
Greenwich Mean Time), so now you have an idea of the working hours of the staff–when
people are likely to be in and out of the office.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 3

• The software configuration and version of two key components of Fledgling Ecommerce
Startup’s business, namely Grelnob’s Shopping Cart application and MacroHard’s SSI Web
server.

• The hardware configuration of one of their servers.

• The telephone exchange that you could use in a war dialer (automated dialing) attack.

Wow! That’s a lot of information “leaked” to the world at large, and all in the name of solving a
simple problem. And, there’s probably more information encapsulated in the Received and
Message-ID headers that are not shown in this example. A gold mine indeed! To learn even more
about your target, you could search the archives of various news groups and discussion lists to
see if old Joe or anyone else from FledglingEcommerceStartup has posted questions. This may
give more clues about hardware and software configurations and other accounts that may be
available to you when trying to gain access. You could even build on what you already know by
sending Joe a response to his question. You’ll get more information from his inevitable response.
Reconnaissance comes in many flavors.

What should Joe have done? The key point is connecting the configuration information with an
email address and, therefore, with a specific site. By breaking this relationship, Joe could have
asked these same questions and still gotten the information he needed to solve his problem
without leaking extraneous information. One way to achieve this is by using another email site
like hotmail.com or lycos.com, for example, and not Joe’s production site. Unfortunately, the
telephone number is a bad idea no matter what the source of the email. Sorry, Joe, but the
Information Superhighway is littered with potholes.

The Internet is indeed your friend and can significantly speed the flow of information that you
need to solve problems when building cost-effective and secure configurations. However, there
is a cost, and frequently that cost is difficult to recognize, let alone quantify. That’s what makes
it your foe.

The message here is that virtually every time you access another computer on the Internet,
whether from work or home, you are leaking information. Be aware of what is happening and
seek ways to minimize the information that you provide. You never know who’s watching. Now,
where’s my old Funk and Wagnalls?

4 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

About the Author

Lawrence R. Rogers is a senior member of the technical staff in the Networked Systems
Survivability Program at the Software Engineering Institute (SEI). The CERT® Coordination
Center is a part of this program. Rogers’s primary focus is analyzing system and network
vulnerabilities and helping to transition security technology into production use. His professional
interests are in the areas of the administering systems in a secure fashion and software tools and
techniques for creating new systems being deployed on the Internet. Rogers also works as a
trainer of system administrators, authoring and delivering courseware. Before joining the SEI,
Rogers worked for 10 years at Princeton University. Rogers co-authored the Advanced
Programmer’s Guide to UNIX Systems V with Rebecca Thomas and Jean Yates. He received a
BS in systems analysis from Miami University in 1976 and an MA in computer engineering in
1978 from Case Western Reserve University.

This and other columns by Larry Rogers, along with extensive information about computer and
network security, can be found at <http://www.cert.org>.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 5

The Architect

Architectures for Adaptive Mobile Systems
Rick Kazman

The architectural paradigms that have been used to build non-mobile systems do not fit
the needs of mobile systems particularly well. Mobile systems require effective methods
to manage and control their resources, particularly in the face of changing
environmental conditions and user needs. SEI staff members are examining the
application of adaptive architectures to maximize the user-defined utility of mobile
devices within the limits of their available resources.

Introduction

The computational environment that the average person is exposed to is changing rapidly these
days. In particular, we are seeing the widespread commercial presence of mobile systems: cell
phones and personal digital assistants that combine voice and data communication and other
applications on a single device. And this trend towards mobility appears to be steadily
increasing. But the architectural paradigms that we have been using to build non-mobile systems
in the past do not fit the needs of mobile systems particularly well. For one thing, mobile systems
are, and always will be, more constrained with regard to resources than their stationary
counterparts. As a result, the architecture of mobile systems has to be carefully balanced between
the physical size of the system and its computation, communication, and energy capacity. And
resources need to be allocated differently on mobile systems. Currently, resource-allocation
decisions on mobile systems are almost always fixed at the time of system creation. This is partly
due to the very limited resources available on most mobile systems and partly because typical
mobile systems are used for a small set of operations that are well known in advance (e.g., phone
calls, web browsing, short message service, etc.).

Adaptive Architectures

This situation is changing, however, and modern mobile systems are becoming more powerful in
terms of the computation and communication resources that they can call on. At the same time,
as they become ubiquitous, the demands being placed on them are increasing. For this reason,
such systems must have effective methods to manage and control their resources, particularly in
the face of changing environmental conditions and user needs. At the SEI, we are examining the
application of adaptive architectures to maximize the user-defined utility of mobile devices
within the limits of their available resources. The novelty of this approach is that we are making
resource-allocation decisions based upon user-defined notions of utility (essentially a subjective
notion of goodness), as compared with traditional approaches to resource scheduling, which
focused on purely internal or technical notions of goodness, such as throughput, latency, or
resource utilization.

6 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

Mobile systems must be adaptable for a number of reasons: they have limited resources; user
needs are constantly changing as the user’s environment changes; and resource availability
constantly changes as the user moves around, as environmental conditions change, and as time
passes. For example, as users move around, the signal strength that they are receiving will
change. And as time passes, the amount of available energy (battery) normally decreases.

A Utility-Based Approach

We believe that the best way to make adaptive mobile systems is to use a user-defined utility-
based approach to resource allocation. By choosing “utility” as the central concept on which
adaptation rests (rather than, say, more traditional notions such as maximization of CPU
utilization or throughput), we can create systems that adapt in ways that more closely mirror a
user’s needs, which may be changing dynamically. For example, at one moment a user might
want to surf for some files on the Internet, but if an important call comes in from a client, he or
she might want to allocate more resources to that call and less (or even none) to downloading a
file from the Web.

Most common scheduling and resource-allocation approaches rely on relative priorities of
computational elements, such as threads, processes, and programs. However, on a personal
mobile device this approach must be extended to a utility-based resource-allocation mechanism,
where utility is purely user defined. In this view of the world, application services that have a
high utility to the user get a preferential allocation of resources.

A mobile personal-communication device serves multiple purposes. That implies change in user
preferences. User mobility implies inevitable changes in environment, affecting connectivity to
communication and sources of energy. Mobility also leads to change in the dominant use of the
device. Utility-based resource allocation must be dynamically adaptable to these changes. A
direct consequence of this is that mobile applications are expected to be able to run at different
fidelity levels providing a different level of utility to the user and having different resource
requirements. For example, if a user is browsing the Web, different fidelity levels might take the
form of text only, text with minimal graphics, and text with full graphics. Voice communications
might have different levels of fidelity corresponding to different CODECs that run at different
data rates. Video communications might have different resolutions, color depths, and numbers of
frames per minute. And so forth. In each case, the resource requirements for these applications
are different, and the resulting utility that they provide to the user is different. In addition, a
user’s subjective view of the utility of these different levels of fidelity might change depending
on the situation. For example, the user might demand high voice quality for an important
business call with a client, but might be perfectly content with a low voice quality when

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 7

checking sports scores or receiving unsolicited calls. Even within a single run of a single
application, the fidelity demanded by a user might change dynamically.

Clearly the design space in creating such systems is enormous. There may be different
configurations of the hardware and software components, and different quality attributes that the
user may want to optimize (e.g., communication speed, battery life, and performance). This
enormous design space poses a problem for designers—how can they go about comparing
architectural alternatives for such systems without having to go to the expense and risk of
building the systems?

Exploring the Design Space

To be able to conduct research in determining appropriate architectural alternatives for dealing
with all of these complexities, we need to create a simulation test bed. The research questions
that we propose to answer from this simulation test bed can be organized into two broad
categories:

Implementation: Is it possible to build a system that incorporates user preferences and
dynamically optimizes the assignment of resources to maximize user satisfaction? What
are the constraints on building this type of system? What are the resource-consumption
characteristics of various processes (including the optimization process) and how do they
interact?

Architecture: What are the various architectural structures that can be used to provide
dynamic allocation of resources based on user preference? Is it possible to prescribe
architectural designs for different types of mobile devices, based on the desired
characteristics of those systems?

To aid in our research we are building a test-bed simulator that simulates the various components
of a mobile device, the user, and the environment in which the mobile system is operating. The
problem of creating such architectures is challenging because the utility that the user gets from
the system can change with respect to the changing environment. At one part of the day a user
might desperately want to receive the latest download of sports scores or Wall Street numbers
from the web, and at another point this same user might have an important voice call to make
and would like all resources to be diverted from other tasks to be concentrated on this one high-
priority task. For this reason the device has to adapt to the changing needs of the user. For this
reason, it seems crucial to have a simulator in which different architectural choices can be
compared before building the system itself. In the final mobile system, such changing needs
would either require a change in the scheduling algorithm or even a change in the control and
data flow across components; in the simulator they require only a change of an initialization file.

8 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

The purpose of the test bed is manifold:

• to provide a tool through which one can explore methods for incorporating user preferences
on mobile devices to maximize the utility of services provided

• to explore different scheduling strategies

• to do performance modeling

• to explore the impacts of architectural alternatives and their relationship to user preferences
and profiles

As shown below in Figure 1, the test bed allows a variety of resources to be specified (in this
case CPU, memory, network bandwidth, and battery). The test bed further allows a user to
specify an architectural configuration of these resources, along with the tasks that use them. In
this way, changing the architecture of a simulated system is as easy as changing a simple
specification file.

Figure 1: The AAMS Test Bed in Configuration Mode

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 9

During execution, the test bed executes a script, which is also specified by the user, and the
results of the simulation are updated in real time or at any rate that a user specifies. A portion of
a sample run is shown in Figure 2 below.

Figure 2: The AAMS Test Bed Displaying an Execution Log

In addition to scripted events, the test bed supports the generation of stochastic events, such as
changes in environmental conditions and new user requests. This allows test runs to be more
realistic and removes the burden on the user to specify every detail of a simulation.

We feel that this test bed will be a valuable tool in exploring the design space surrounding
adaptive mobile systems. We are currently implementing the test bed and expect to be testing it
on real-world examples within the next four months.

10 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

About the Author

Rick Kazman is a Senior Member of the Technical Staff at the SEI. His primary research
interests are software architecture, design and analysis tools, software visualization, and software
engineering economics. He is the author of over 50 papers and co-author of several books,
including Software Architecture in Practice and Evaluating Software Architectures: Methods
and Case Studies.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 11

The COTS Spot

Building Systems from Commercial Components:
Classroom Experiences
Robert C. Seacord

It often happens that a teacher learns as much in the classroom as his or her students.
Columnist Robert Seacord shares insights he gained from teaching systems engineering
students to integrate commercial off-the-shelf (COTS) and custom components in their system
designs. Seacord anticipates using these insights to improve COTS-based development
processes.

Introduction

There are two points of view regarding software engineering. The first holds that human
intelligence is a constant, and to improve the quality and reduce the cost of developing software-
intensive systems, we must improve the techniques, technologies, process, methods, and tools we
use to build software. The second holds that, if you take an axe away from a simpleton and
replace it with a chainsaw, he will still cut off his leg—only now he will do it more efficiently.
The solution, in this case, does not require that you improve the tools, only that you improve the
users’ ability to apply the tools they already have. Hence, we have software engineering
education.

Armed with the latter philosophy, I set off this spring to teach software engineering at the
undergraduate level. When I took software engineering as an undergraduate in 1983, software
engineering still meant “Ada.” Unfortunately, there was no Ada compiler available for our use at
that time, so we got to scribble our designs on sheets of paper and hand them in for credit. As
this was not my fondest memory of my undergraduate years, I decided not to share this
experience with my students. Instead, I fashioned a software engineering course from Ian
Sommerville’s text on software engineering [1] and my own text, Building Systems from
Commercial Components [2].

While one hopes to fashion young students into future software engineers (and not scare them
away to the fast food industry), I think it is often the case that the teacher learns as much as the
student. In this column, I will discuss one of the lessons I’ve learned from this experience and
how I see this lesson potentially improving COTS-based system processes down the road.

12 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

Software Engineering with Commercial Components

The software engineering course I am teaching consists of two main elements, a semester-long
project developed by teams of students, and the classroom “experience,” which culminates in a
final examination. The project teams are assigned based on the result of a student assessment, in
the hope that balanced teams can be formed.

The actual assignment is to develop an enterprise information system that could be used by car
dealerships for tracking maintenance activity on cars under warranty. Mechanics would use the
system at individual service stations to record all maintenance activity. Senior management
would use the system at an enterprise level to collect and analyze maintenance trends. In addition
to functional requirements, several technology requirements were also imposed, including
requirements that the system be Web-accessible, use Enterprise JavaBeans (EJB) in the middle
tier, and store data in a relational database management system (RDBMS).

Execution of the project was separated into three phases, with milestones established at the end
of each phase identifying required products that must be handed in for grading. Each set of
milestone deliverables was given equal weighting:

First milestone:

1. a Unified Modeling Language (UML) specification/design for the system

2. blackboards for three component ensembles

Second milestone:

1. completed blackboards for all three ensembles

2. risk/misfit evaluation

Third milestone:

1. PowerPoint presentation and demonstration to be delivered in class

2. source code and URL for the working system

 Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United
States and other countries. The Software Engineering Institute is independent of Sun Microsystems, Inc.

 Unified Modeling Language and UML are trademarks of the Object Management Group.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 13

The goal of the project was to model, as closely as possible in a classroom situation, a real-world
development project. In the initial milestone, the students were asked to create a design for the
system, as well as three component ensembles. Component ensembles are groups of compatible
components that can be used to achieve the system objectives. In this case, these components are
all infrastructure components. The students were asked to vary each ensemble at least in the
choice of an EJB server (since the choice of an EJB server, more so than the other components,
drives other component choices). Blackboards are UML-based notation for describing
component ensembles. Component ensembles and blackboards are both subjects of Building
Systems from Commercial Components, and are taught in the classroom.

In the initial set of blackboards, the students are told to identify both “knowns” and “known
unknowns.” These are expressed in terms of credentials (facts associated with a degree of
confidence), postulates (required information associated with a plan to acquire), and constraints
on component interactions. Students are penalized for failing to identify unknowns (“unknown
unknowns”).

The second milestone consists of two deliverables. Postulates in the blackboard are replaced with
credentials, with the overall effect being that the feasibility (or infeasibility) of the ensembles is
demonstrated. Student teams are required to produce at least two feasible ensembles from the
original set of three, so that these ensembles can be evaluated using the Risk/Misfit techniques
also described in Building Systems from Commercial Components. A single ensemble is then
chosen as a result of the evaluation, and this ensemble is driven through to implementation.

A Lesson Learned

One lesson I’ve learned (so far) from administering and evaluating project deliverables is that,
once someone is enmeshed in the field of COTS-based software engineering, it is too easy to de-
emphasize or ignore non-COTS aspects of the development effort. For example, in the first
milestone, the students were required to create both a UML design for the system and a set of
blackboards. Performing these tasks concurrently is a practical necessity for any real-world
development effort as well as a class project, as component compatibility must be accessed while
the system specification is created and custom components are designed. This introduces two
interesting and opposed sets of challenges—incorporating constraints imposed by the component
ensembles on the design while developing a design specification independent of any particular
ensemble.

The solution is a tightrope-walking exercise in integrating common, technology-driven aspects of
the component ensembles with the design, while designing abstract classes not tied to a
particular product for implementation. Some student teams also jumped right off the tightrope
and specified generic sequence diagrams for interactions among technology components. These
diagrams were a reasonably useful extension of the blackboard.

14 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

Once a component ensemble has been selected, it is now feasible (and necessary) to allow
component-specific concerns to influence the design. Still, these designs should be maintained in
a configuration-management system that directly connects the artifacts to the selected design
contingency.

In retrospect, this lesson was evident from the beginning in my choice of two texts for the
course. Eventually, to be done right, this course will need to be taught with a single text that
applies all the traditional areas of software engineering, including software process, project
management, requirements engineering, architectural design, verification and validation, and
software testing with COTS-based development practices.

Summary

Teaching software engineering using commercial components at the undergraduate level
provides a great opportunity to evaluate these processes in a controlled setting, since students in
general are not shy about complaining about all the hardships being forced on them. I hope that
by repetition of this course, combined with refinement of the processes and industry
involvement, a more prescriptive COTS-based development process can be formulated.

References
[1] Sommerville, Ian. Software Engineering. New York: Addison-Wesley, 2000, ISBN:

020139815X.

[2] Wallnau, Kurt C.; Hissam, Scott A.; and Seacord, Robert C. Building Systems from
Commercial Components. Boston: Addison-Wesley, 2002, ISBN: 0201700646.

About the Author

Robert C. Seacord is a senior member of the technical staff at the SEI and an eclectic
technologist. He is coauthor of the book Building Systems from Commercial Components as well
as more than 30 papers on component-based software engineering, Web-based system design,
legacy system modernization, component repositories and search engines, security, and user
interface design and development.

For more information on the book Building Systems from Commercial Components, please visit
this Web page: <http://www.sei.cmu.edu/cbs/bscc/bscc.htm>.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 15

Watts New

The Future of Software Engineering: V
Watts S. Humphrey

In the previous four columns, I discussed application programming, systems programming, and
some of the likely future trends in these areas. In this column, I talk more broadly about the
overall trends in our industry and what we will likely see in the future. In particular, I address the
forces at work on software-intensive businesses and how businesses are likely to change in
response to these forces. I then close with some comments on how software professionals can
better prepare themselves for the challenges of the future.

As I discussed in the previous columns, there are some differences in the forces on the systems,
applications, and middleware businesses, but there are also some commonalities. These common
forces will impact all of us, regardless of what we do. First, to segment the discussion into
manageable chunks, I start by reviewing the principal kinds of software businesses. Then, I
discuss the common forces on our industry. Next, I talk about the implications of these forces on
a software-intensive business. Finally, I explore how these forces will likely change the kind of
work that software people do and what this is likely to mean for each of us.

While the positions that I take and the opinions I express are likely to be controversial, my intent
is to stir up debate and hopefully to shed some light on what I believe are important issues. Also,
as is true in all of these columns, the opinions that I express are entirely my own.

The Kinds of Software Businesses

As I noted in the earlier columns in this series, we can expect the volume of application
development work to continue growing. This work will require people who know and understand
various application domains and are also competent programmers. For such work, skill needs
will span the full gamut from traditional business and accounting applications to embedded
controllers that manage complex devices and processes. On the other hand, systems developers
will principally be concerned with developing, maintaining, and enhancing the operating and
support systems needed by the application development community.

The operating systems community will be split into three rather loosely defined groups: the
software houses like Microsoft and Oracle; the systems businesses like Apple, Sun, and IBM;
and the growing body of open source programmers supporting systems like Unix and Linux.
While it is too early to tell exactly how this business mix will evolve, the fuzzy middleware
boundary between the operating systems and application worlds is where a large body of people
are now developing and marketing software. Their objective is to fill the cracks between the

16 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

operating systems and application domains. As pointed out in Part IV of this series of columns,
this middleware business faces unique challenges, and it is likely to be the principal competitive
battleground for the next several years. This intersection was precisely the focus of Microsoft’s
antitrust lawsuit, and it will continue to be both the legal and competitive focus for some time to
come.

We can also expect the interface between the systems and application worlds to fluctuate in
response to evolving user needs. The development community that most quickly and effectively
satisfies users’ needs is likely to earn a larger share of the competitive pie. While various
suppliers may use contractual or other means to force users to use their products exclusively,
such strategies have only been temporarily effective in the past, so they are not likely to work
over the long term. Of course, the long term could be very long indeed. However, if an offering
is not truly in the users’ best interests, sooner or later it will lose out to the better competitor.
While the fight may take a long time and it may be won either in the marketplace or in the
courts, the final result is inevitable.

The Forces on Software Businesses

There are many forces on software businesses, but the most significant ones I see today are the
following:

• The functional content and complexity of systems is increasing rapidly, as is the size of the
software parts of these systems. As noted in the first column of this series, the size of the
software used for any given function has been growing by roughly 10 times every 5 years. If
software growth continues at this historical rate, this will mean an increase of 10,000 times in
the next 20 years.

• Increasingly, software plays a central role in controlling and managing systems. Software is
not just getting bigger, it is a crucial part of the products and services in almost all industries.

• Most computing systems will be interconnected. The Internet is merely the latest step in the
long progression from stand-alone computing to pervasive computing networks.

• We will see more internal and external threats to our systems. In the past, when our principal
preoccupation was getting systems to work, we assumed a friendly and law-abiding
environment. Now, in the interconnected world, these systems must work, be safe, and stay
secure, even when exposed to attack by criminals and terrorists.

One could write pages on each of these topics but I will just state these forces as facts and deal
with their implications. I next talk about each of these four forces and what businesses should do
about them.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 17

Software Size and Complexity

The principal concern with size and complexity is the scalability of the development process. To
handle the massive increases in system scale, organizations must employ processes that scale up.
To appreciate the scalability problem, consider transportation. Vastly different technologies are
involved in traveling at 3 miles an hour, 30 miles an hour, 300 miles an hour, or possibly even
3,000 miles per hour. You can’t transition from one speed range to the next by merely trying
harder. You need progressively more sophisticated vehicles that use progressively more
advanced technologies.

Unfortunately, we have yet to learn this lesson in software. We attempt to use the same methods
and practices for 1,000 LOC programs as for 1,000,000 LOC systems. This is a size increase of
1,000 times, and the commonly-used test-based software development strategies simply do not
scale up. Organizations that don’t anticipate and prepare for scalability problems will someday
find that they simply cannot get systems to work safely, reliably, and securely, no matter how
much their people test and fix them. When systems hit this wall, you can either test until the
available time or money runs out, or you can scrap the system and do it over again correctly.
Unless you are a Microsoft or an IBM, however, you probably can’t afford to start over. As
systems get larger, we can expect most organizations that keep following their current test-based
processes to face this problem. It is only a question of time until they do.

The Central Role of Software

The second force is software’s now central role in controlling and managing business-critical
systems. This is because much or even all of the functions that customers find attractive about
modern products and services is embodied in their software. And it is just these attractive
functions that make products unique in the competitive marketplace.

Many executives view software as a problem that they don’t understand and have no idea how to
manage. They try to subcontract their software work or to find some other magic solution that
will relieve them of the problems of managing software. This is almost always a mistake. When
management subcontracts the technologies that make their products unique, they lose the ability
to manage their future. I have just published a book that discusses this problem and some of my
experiences with it. It might give you some ideas on what to say to management about the
importance of software in your organization [Humphrey 2002].

Interconnectedness

The third major force on the software industry concerns the growing interconnectedness of
systems. Much like telephone systems, the value of a computing system is increasingly

18 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

determined by the number of other systems to which it can connect. In the past, companies could
focus on something IBM used to call "exclusivity." Now, however, systems that only work with
hardware and software from one vendor are less and less attractive. In the old "exclusivity" days,
IBM would sell, install, service, or support systems only if they were composed entirely of IBM
products. As long as IBM was the dominant supplier of all important offering elements, this
strategy worked quite well. But with the advent of the PC and the rapid introduction of many PC
clones, IBM could no longer force its customers to use its products exclusively.

So, in the interconnected world, the keys to broad market acceptance are compatibility,
interoperability, and interchangeability. Each of us is working on a small part of one enormous,
world-wide, borderless computer-plex, and we are just now glimpsing its implications. While it
is hard to predict what this trend will mean, it is clear that this new environment will force us out
of the comfort and security of single-system thinking. We will need to think in interconnected
ways and to remove any limitations that make it hard to interconnect and to interoperate our
systems. We must recognize that the interconnected systems of the future will be used in ways
that their developers could not imagine. It is precisely this ability of our systems to be used in
new and innovative ways that will make them attractive to the users of the future.

Real-World Threats

The fourth force on the software industry is one we are just now facing. This new world is vastly
different from the closed and comfortable one of the past. It is populated with many wonderful
people but also with a few unpleasant, inconsiderate, and even threatening characters. As long as
our systems were stand-alone, our exposure to the realities of a dangerous and unpleasant world
were limited. But with the Internet, and with the growing interconnectedness of our systems, this
is no longer the case.

This new environment will affect businesses in many ways. In particular, as we increasingly
invoke the law to punish miscreants, those who have been damaged will also seek to recover
damages from the organizations that built unsafe or insecure systems. Soon, secure and safe
systems will be an economic necessity, and users will band together to seek damages from
suppliers who don’t provide such systems. There is currently a movement to modify contract law
to protect software vendors from these problems. It is called UCITA, or the Uniform Computer
Information Transactions Act. While UCITA has been enacted into law in two states (Maryland
and Virginia), there is growing opposition to it and further expansion is unlikely unless it is
substantially changed.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 19

What these Trends Will Mean to All of Us

Regardless of your place in this future, there are some strategies that you should consider, both to
make your organization more competitive and to make your personal employment more secure
and rewarding. The first and broadest consequence of the increasingly central role of software is
that most professional workers will be involved in developing, supporting, marketing, or using
software. As a consequence, the trends that affect the software world will also affect most of us.
The principal challenge is to have the vision and imagination to capitalize on this future world
and to help make it happen in an orderly and useful way.

The most obvious force on our industry is security. We will probably always have criminals and
terrorists, so we must write our programs to operate in a threatening and unfriendly world. To
appreciate what this means, consider that over 90% of the Internet’s software security
vulnerabilities result from common types of software defects. That means that the software
security problem is, at least for now, a quality problem. If quality was not important before, it
soon will be. This suggests that you should examine your personal quality practices and look for
and adopt a set that are demonstrably effective. Then, follow these quality practices religiously.
While you should consider all of the available candidates, my personal recommendation is the
Personal Software ProcessSM (PSP)SM [Humphrey 1995].1

From a project and organizational perspective, you should also look for processes that are
demonstrably scaleable. When you find a scaleable process that fits your organization’s needs,
start a movement to adopt that process. While you might argue that one working-level developer
could not possibly get a business to make such a change, every important change is started by
one person, and that person is rarely a manager or an executive. Usually, it is someone like you
who is close enough to the problem to appreciate its implications. Talk to the people around you,
build a support network, and then start talking to the managers. You will be surprised at what
you can accomplish.

Regarding a scaleable process, my favorite is the Team Software Process (TSP)SM [Humphrey
2002]. However, before you pick your candidate process, look around and see what other
methods are available. Also look for documented evidence of the effectiveness of these
processes. Then, pick up the spear and get this method adopted by your organization. After all, in
the last analysis, it is your job you are fighting for.

SM Personal Software Process, PSP, Team Software Process, and TSP are service marks of Carnegie Mellon
University.

20 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

The Accelerating Pace of Change

To appreciate what these trends mean for each of us, remember that the world is now changing
faster than it ever has before. The accelerating pace of change has been with us for so long that it
seems almost trite to discuss it, but it does mean that the tools and methods we will use in the
future will be vastly different from those that we use today.

In describing what this means to you and me, the best example I can think of is my personal
experience. When I graduated from college in 1949, ENIAC, the first digital computer, had just
recently been demonstrated. After a few years of graduate school and a brief university job, my
first industrial position was designing a digital cryptographic system. Within two years, I was
designing computers, and I have been working with computers ever since. Except for a class that
I took in cost accounting, not one of my other college courses has been directly applicable to my
subsequent work. This does not mean that my education was wasted but just that it was not
enough. In this rapidly changing world, if you do not keep learning and remain open to new
ideas and challenges, you will not play an important or even a very useful role in this challenging
and exciting future.

Some Final Comments

The future of software engineering is quite unpredictable, but we can perceive some trends,
particularly by considering the forces at work on our industry. In the last analysis, it is up to each
of us to continue learning and to continue preparing ourselves for the challenges ahead. Then we
will be prepared to take advantage of whatever opportunities present themselves.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For
this column, I particularly appreciate the helpful comments and suggestions of Don McAndrews,
Julia Mullaney, Mark Paulk, and Marcia Pomeroy-Huff.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 21

In closing, an invitation to readers

In these columns, I discuss software issues and the impact of quality and process on engineers
and their organizations. However, I am most interested in addressing the issues that you feel are
important. So, please drop me a note with your comments, questions, or suggestions. I will read
your notes and consider them when planning future columns.

Thanks for your attention and please stay tuned in.

Watts S. Humphrey
watts@sei.cmu.edu

References
[1] Watts S. Humphrey, A Discipline for Software Engineering, Reading, MA.: Addison

Wesley Publishing, 1995.

[2] Watts S. Humphrey, Winning with Software: an Executive Strategy, Reading, MA.:
Addison Wesley Publishing, 2002.

22 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

SEI Architecture Practices Propel Successful Startup
Bill Pollak

Since 1996, the SEI has focused on software architectures in its Architecture Tradeoff Analysis
(ATA) Initiative, based on two key premises:

1. Desired quality attributes in a system such as performance, modifiability, interoperability,
and reliability depend more on software architecture than on code-level practices.

2. Quality attributes ultimately determine a system’s success.

SEI architecture practices complement the SEI’s well-known work in software process
improvement by focusing on the design and quality of the product itself. A balanced product and
process focus is important regardless of the development context DoD contractor or “dot com”
startup.

Jeromy Carriere and Steve Woods, former members of the SEI technical staff in the Architecture
Tradeoff Analysis Initiative, are two of the founders of Quack.com, a startup company that was
acquired by America Online (AOL) in August 2000. Their story and the story of the company
they helped found demonstrate the broad applicability and utility of the SEI’s work in software
architectures. Jeromy Carriere came to the SEI from Nortel in 1997. Early in his tenure at the
SEI, Carriere was an integral part of the SEI team that supported development of the Control
Channel Toolkit1 for the National Reconnaissance Office (NRO). He also led work at the SEI in
architecture reconstruction and participated in defining the SEI’s Architecture Tradeoff Analysis
Method (ATAM).

“It was this concentration on architecture and the attention to quality attributes
that differentiated them from their competitors and elevated them to a place of
prominence”

After completing a PhD in constraint-based reasoning for reengineering at the University of
Waterloo, Steve Woods did post-doctoral work in Hawaii, where he first met Alex Quilici and
began to explore ideas with Quilici for startup companies. Woods came to the SEI in 1998,

1 See Control Channel Toolkit: A Software Product Line Case Study (CMU/SEI-2001-TR-030),
http://www.sei.cmu.edu/publications/documents/01.reports/01tr030.html.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 23

where he immediately began to work on
architecture reconstruction with Carriere and
began discussing with Carriere some of the
ideas that he and Quilici had been considering:
initially, an Internet radio and other consumer
wireless devices. As the discussions among the
three continued, their ideas evolved first into a
device that could aid a consumer during a
shopping trip, and finally to a product that
would enable speech recognition on a cell
phone. “Eventually it became clear that we
should try to make a go of it,” says Carriere,
“and that’s when we decided to leave the SEI.
All through this, we were developing an
architecture to support our ideas. In those days,
I had been steeped in the SEI ideas about
architecture, a highly structural perspective,
but one driven by quality looking first at
what qualities my system has to achieve, and
then making architectural decisions to achieve
those qualities. Architecture is usually
conceived from a functional perspective what
a system needs to do and then you allocate
functions to components, build those
components, and then cross your fingers and
hope that they work together; and then cross
your fingers again and hope that they meet
your reliability, performance, and flexibility
goals.”

“We were thinking of the qualities first. The
quality that we needed primarily to achieve
was flexibility. And that’s because we needed
an architecture and a set of architectural
principles that were going to be able to adapt
quickly to changing market drivers and
business goals; our architecture enabled us to
be maximally flexible with respect to all of
those things.”

 A Short History of Quack.com from

AOL’s Web Site
2

Quack.com has had a short but exciting

history. Quack was founded in late

1998 by a University of Hawaii

professor (Alex Quilici) and two

Carnegie Mellon University research

scientists (Steve Woods and Jeromy

Carriere). After a few false starts, they

hit on a big idea: Make the best online

commerce and content available to

anyone with a telephone! Just by

speaking. They built a cool little demo

of their idea, and by late summer 1999,

they had convinced a few angels and

early stage VCs to fund them. They

kept cranking away, not only building a

“voice portal,” but building it in a novel

way. They could have just hacked it

together, as just another complex

software application, which was a

challenge in itself. But they decided to

try for something even better. They

were going to build a speech

application publishing platform and

toolkit and then use that to build the

voice portal. That would allow them to

quickly build and maintain a wide

variety of applications and potentially

be the underlying platform for a whole

new industry. By March 2000, only 9

months after raising their first funding,

they released the first Web-based

consumer voice portal. It allowed

people to get information about

weather, stocks, sports, traffic, movies,

and restaurants. And only seven weeks

later, on October 25, 2000, American

Online released AOLByPhone, built by

Quack’s team and using Quack’s

platform and toolkit.

2 The text of this sidebar is taken from

http://www.filmphone.com/aboutquack.html

24 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

Carriere and Woods attribute much of their success with venture capitalists (VCs) and ultimately
with AOL to this quality-driven approach to architecture that was reinforced by their experiences
at the SEI. “In most VC audiences,” says Carriere, “there is someone in the group whose job it is
to see if you are actually going to be able to build what you say you want to build. This
architecture-derived thinking was a core part of our pitch, and it seemed to resonate well with
VCs. I think it served us well right up to the time when we were acquired by AOL. As we were
being examined closely by AOL, we had all this thinking behind us that enabled us to answer the
questions successfully.” In fact,” adds Woods, “AOL now says that they bought us because our
technology was more flexible than anyone else in the space.” Although flexibility was primary,
Carriere and Woods, consistent with the principles of the ATAM, also looked at the tradeoffs
among other key qualities. When the acquisition by AOL changed the focus, making
performance and scalability more important, they knew exactly what tradeoffs they were making.

“AOL is all about scale,” says Woods. “At any given time, there are roughly two million
members online at the same time, which is an enormous number. That’s a kind of scale in
systems that you just don’t see anywhere else. Performance and scalability were key goals of our
architecture from the beginning, even though they were secondary to flexibility. And so we were
prepared to make the transitions that our acquisition by AOL required.”

Carriere and Woods retained their disciplined architecture focus throughout. “I always had the
goal of being rigorous with respect to documentation of the architecture,” says Carriere. “This is
a specific outgrowth of the work with Control Channel Toolkit. What I learned there was the
basis for how I documented the architecture for Quack, and how I still document architecture
today.

Key to Quack’s success, says Linda Northrop, Director of the SEI ATA Initiative, were the
principles that Carriere and Woods applied to the way they engineered products. “They believed
in architecture.” she says, “They focused on the architectural platform that generated products
rather than on any particular product itself. This meant that they did not have to redesign
whenever functionality changed.

“This suggests that our architecture principles can serve any organization that is
concerned about operating in the context of volatile requirements."

The architecture was designed so that functionality changes were local rather than topological;
they abstracted interfaces wherever possible with external systems, and in fact, with systems they
anticipated could be external. So they were able to put out revisions and change their product
focus very quickly. And, it was a relatively quick task to integrate to AOL, which is a big deal
for an acquisition. It was this concentration on architecture and the attention to quality attributes
that differentiated them from their competitors and elevated them to a place of prominence.”

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 25

Northrop says that there is a lesson to be learned by the managers of large DoD systems from the
success of Quack.com. “Architecture does not mean rigidity. The flexibility afforded by careful
architectural design brought success to a small team of folks working in a volatile marketplace in
which the definition of the project is changing on the fly,” says Northrop.

“DoD program managers often express concern about the inability to get requirements set.
Imagine a world in which not only the requirements for a specific product change, but the whole
product you’re building changes over and over again. That was the situation at Quack, and yet
they were able to retain the same architecture. From the start, they had a strong set of
architectural foundations and a reasonably accurate sense of the likely (or at least probable)
change scenarios for the business. In other words, they applied the ATA philosophy. This
suggests that our architecture principles can serve any organization that is concerned about
operating in the context of volatile requirements. A carefully crafted architecture and disciplined
architecture practices provide the necessary grounding.”

Quack.com absorbed some Netscape staff and became AOL Voice Services, which comprises a
platform and any applications that are built on that platform. The AOLByPhone product is
supported by the resources of the AOL Voice Services team. Woods and Carriere had leading
roles on that team. Recently, however, following the completion of the version 2 platform in
voice services, Woods and Carriere have moved to broader positions of impact in the AOL
Technology Department. Carriere is a chief architect in the AOL Systems Infrastructure
organization a team of approximately 600 engineers responsible for building the core AOL
services. Woods is VP, Systems Infrastructure. Both are now involved in a systems-wide AOL
architecture effort.

For more information about the SEI Architecture Tradeoff Analysis Initiative, contact

Linda Northrop

Phone
412-268-7638

Email
lmn@sei.cmu.edu

World Wide Web
http://sei.cmu.edu/ata

26 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

Cost Benefit Analysis Method

A software architecture is an essential part of a complex software-intensive system. For more
than five years, the SEI has been performing software architecture analyses to help software
developers to examine the consequences of architectural strategies before committing
resources to implementing them.

Architecture analysis, using the SEI’s Architecture Tradeoff Analysis Method (ATAM) focuses on
a system’s quality attributes, such as performance, modifiability, usability, and availability. The
ATAM provides software architects, while designing or maintaining a software system, a
framework to reason about the tradeoffs among these quality attributes. But the biggest
tradeoffs in large, complex systems always have to do with economics: How should an
organization invest its resources to maximize its gains and minimize its risks?

The Cost-Benefit Analysis Method (CBAM) picks up where the Architecture Tradeoff Analysis
Method (ATAM) leaves off, adding costs, benefits, and schedule as attributes to be considered
among the tradeoffs when a software system is being planned.

About the CBAM

The ATAM uncovers the architectural decisions that are made (or are being considered) for the
system, and links these decisions to business goals and quality attributes. The CBAM builds on
this foundation by enabling engineers to determine the costs and benefits associated with these
decisions. Given this information, the stakeholders could then decide, for example, whether to
use redundant hardware, checkpointing, or some other method to address concerns about the
system’s reliability. Or the stakeholders could choose to invest their finite resources in some
other quality attribute perhaps believing that higher performance will have a better benefit/cost
ratio.

A system always has a limited budget for creation or upgrade; so every architectural choice, in
some sense, competes with every other one for inclusion. The CBAM does not make decisions
for the stakeholders; it simply helps them elicit and document costs, benefits, and uncertainty and
gives them a rational decision-making process. This process is typically performed in two stages.
The first stage is for triage, and the cost and benefit judgments used here are only rough
estimates. The second stage operates on a much smaller set of scenarios and architectural
decisions (also called architectural strategies), which are examined in greater detail.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 27

Using the CBAM

The CBAM consists of six steps, each of which can be executed in the first (triage) and second
(detailed examination) phases:

1. choose scenarios and architectural strategies

2. assess QA benefits

3. quantify the architectural benefits of the strategies

4. quantify the architectural costs and schedule implications of the strategies

5. calculate desirability

6. make decisions

In the first step, scenarios of concern to the system’s stakeholders are chosen for scrutiny, and
architectural strategies are designed that address these scenarios. For example, if there were a
scenario that called for increased availability, then an architectural strategy might be proposed
that added some redundancy and a failover capability to the system.

In the second and third steps, benefit information is elicited from the relevant stakeholders: QA
benefits from managers (who, presumably, best understand the business implications of changing
how the system operates and performs); and architectural strategy benefits from the architects
(who, presumably, best understand the degree to which a strategy will, in fact, achieve a desired
level of a quality attribute).

In the fourth step, cost and schedule information is elicited from the stakeholders. In step five
these elicited values are used to calculate a desirability metric (a ratio of benefit divided by cost)
for each architectural strategy. Furthermore, the inherent uncertainty in each of these values can
be calculated, which aids in the final step, making decisions.

Given these six steps, the elicited values can be used as a basis for a rational decision-making
process one that includes not only the technical measures of an architectural strategy (which is
what the ATAM produces) but also business measures that determine whether a particular
change to the system will provide a sufficiently high return on investment.

An important feature of the next version of the CBAM will be the ability to perform multiple
iterations, where each iteration adds some information and pares down the space of scenarios
considered. For example, separate iterations will consider the side effects of ASs, and the
correlation between ASs. Jai Asundi, one of the developers of CBAM, says, “If you don’t have

28 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

the resources to do multiple iterations, you can do just one or two, and you’ll still derive
benefits.”

Case Study

The Earth Observing System is a constellation of NASA satellites that gathers data about the
Earth for the U. S. Global Change Research Program and other scientific communities
worldwide. The Earth Observing System Data Information System (EOSDIS) Core System, also
called the ECS, collects data from various satellite downlink stations for further processing. The
ECS consists of about 1.2 million lines of code in 12,000 modules and about 50 customer off-
the-shelf (COTS) products. The SEI and members of the ECS project performed a CBAM,
demonstrating the feasibility of the method for large-scale projects. The CBAM helped structure
an unstructured architecture design problem and offered the project manager a disciplined
process aimed at arriving at a manageable set of architectural solutions to choose from.

For more information, contact

Customer Relations

Phone
412-268-5800

Email
customer-relations@sei.cmu.edu

World Wide Web
http://www.sei.cmu.edu/ata/products_services/cbam.html

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 29

Information Security Training and Education

Over the past two years, the number of security incidents reported to the CERT¨ Coordination
Center has increased sharply. Incidents are occurring more frequently, and the resulting
damage to systems and networks has been increasingly severe.

To help organizations protect themselves from and respond to network security threats, the SEI
offers enterprise-wide training for organizations. The courses incorporate current trends and
developments in network security and computer security incident response.

About the Courses

As opposed to technology-based point solutions, the courses approach information security,
survivability, and risk from a broad perspective to provide a more comprehensive solution.
Courses can be taken individually, or as part of a larger information security curriculum (see
Figure 1).

“These courses address the need to increase the numbers of managers and technical staff trained
to incorporate security practices,” explains Barbara Laswell, manager of practices development
and training. “Collaboration with strategic customers provides valuable real-world examples that
drive development of the course content.”

Incident Response

Five courses derive from the work of the CERT Coordination Center, and provide introductory
and advanced training for technical staff and managers of computer security incident response
teams (CSIRTs):

• Creating a Computer Security Incident Response Team provides a high-level overview of the
key issues and decisions that must be addressed when establishing a CSIRT.

• Overview of Managing Computer Security Incident Response Teams provides insight into
the type and nature of the work that CSIRT managers and staff may be expected to handle. It
also provides an overview of the incident-handling arena, the Internet and CSIRT
environment, intruder threats, organizational interactions, and the nature of incident response
activities.

• Managing Computer Security Incident Response Teams provides current and future
managers of CSIRTs with a practical view of the issues they will face in operating an
effective incident response team.

• Fundamentals of Incident Handling is designed for CSIRT technical personnel with little or
no incident-handling experience. Through interactive instruction and practical exercises, the

30 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

course provides insight into the type and nature of work that an incident handler typically
performs.

• Advanced Incident Handling for Technical Staff is designed for CSIRT technical personnel
with several months of incident-handling experience. Building on the methods and tools
discussed in the fundamental course, this course focuses on practical exercises constructed
around various incidents involving privileged compromises.

Figure 1: Information Security Curriculum

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 31

Broader Internet Security Issues

Three courses focus on broader Internet security issues designed to educate technical staff,
policymakers, managers, and senior executives who are responsible for protecting information
assets that are critical to their enterprise’s mission.

• Concepts and Trends in Information Security provides an overview of security issues,
techniques, and trends related to the confidentiality, integrity, and availability of information
assets on an organization’s computer systems.

• Information Security for Technical Staff provides attendees with practical techniques for
protecting the security of an organization’s information assets and resources. Security issues,
technologies, and recommended practices are addressed at increasing layers of complexity,
starting with data security and progressing to host system security, network security, and
Internet security.

• Survivability: A New Executive Perspective provides participants with a foundation for
understanding the activities and resources required to address the information survivability
needs of an organization.

The NSS Program is also offering a new course in support of the Operationally Critical Threat,
Asset, and Vulnerability EvaluationSM (OCTAVESM) Method.

The OCTAVE Method Training Workshop is designed for interdisciplinary analysis teams that
will lead and perform information security risk evaluations for their organizations. The workshop
covers the OCTAVE Method, preparation for implementing the method, and guidelines for
tailoring the method to meet an organization’s unique needs.

As a result of implementing OCTAVE, enterprises may identify training needs related to the
protection of critical information assets. For example, in one enterprise conducting an OCTAVE,
the need arose to provide a common frame of reference for information security concepts across
the organization. The NSS course Concepts and Trends in Information Security addressed this
need.

Evolving to Meet Future Needs

To date, a variety of organizations from the United States and abroad have participated in the
courses, including representatives from all of the critical infrastructure sectors. The SEI
continues to work with strategic customers to create courses that serve the needs of the greater
community.

Currently, the program is developing a Department of Defense-sponsored introductory level
security and survivability course for system and network administrators. In addition, the program

32 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

is collaborating with partners in law enforcement and the academic community to develop a
computer forensics workshop for managers and technical staff from industry, academic, and law
enforcement organizations. There is an acute need for these sectors to work together to collect,
analyze, and preserve artifacts as well as to develop digital forensics methods related to
electronic crime. Laswell explains, “By transitioning best practices through our courses, we help
organizations protect against today’s threats, mitigate future threats, and improve the information
assurance posture of organizations and their networked systems.”

For more information, contact

Kimberly Lang

Phone
412-268-9564

Email
klang@sei.cmu.edu

World Wide Web
http://www.cert.org/nav/index_gold.html

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 33

The Software Technology Review
Lauren Heinz

When Dan Ialenti’s new job took him from the familiar realm of hardware to the uncharted
regions of reusable software components, he needed a quick reference to get him up to speed
on the latest software tools and practices.

Ialenti looked up the Software Technology Review (STR), a Web-based resource that features
concise and informative summaries on emerging software technologies. Ialenti found
descriptions on middleware and remote procedure call two areas that he needed to evaluate
to develop a technical reference model for a client. “The STR gave me the direct information
that I needed to get a grasp on the various technologies occurring at the integration layer,” said
Ialenti, who is a systems engineer for an information resource center.

Engineers such as Ialenti are part of a growing number of software professionals who regularly
access the STR (http://www.sei.cmu.edu/str/) for up-to-date information on current software
technologies. While project managers might use it to evaluate software risk, maturity, and cost
when selecting a new software system, other software professionals, including students, can
use it to research new and related technologies. Originally targeted for a particular Department
of Defense (DoD) audience, the STR has evolved to serve the diverse needs of both the DoD
and commercial software engineering communities.

A Variety of Uses

The STR was first prototyped in 1997 when the Air Force acquisition community asked the SEI
to create a reference document that would provide the Air Force with a clearer picture of
software technologies. Contributors from the SEI and outside experts from organizations such as
Lockheed Martin helped to populate the Web site and a paper version of the reference was
released.

Today the STR serves the entire DoD acquisition community and is one of the most highly
visited areas of the SEI Web site. An STR board was recently formed to revitalize and expand
the site after some temporary funding shortages. During fiscal year 2001 it experienced nearly 2
million page hits, was viewed by more than 166,000 users in 139 countries, and had more than
18,000 documents downloaded from its Web pages.

While the STR’s mission is to provide the DoD with a better understanding of software
technologies that will enable it to systematically plan for the upgrade and evolution of current
systems, as well as the development of new systems, it also serves commercial project managers
and engineers looking for informative data on software for building or maintaining systems.
Ialenti, for example, spends roughly four hours a week on the STR site, retrieving data on

34 http://interactive.sei.cmu.edu news@sei interactive
 First Quarter 2002

software capabilities, storage, planning, and other issues for his team’s projects. In addition,
software professionals can contribute to the STR by adding descriptions of new technologies that
they have investigated. In most cases, a software professional’s existing documents can be easily
reworked into the STR template. Thorough instructions and guidelines are available on the STR
site for those interesting in submitting new technical descriptions and the STR board can help
authors to fine-tune descriptions for proper placement.

Technical Descriptions

The STR currently features about 70 technology descriptions on a variety of topics, ranging from
virus detection to network management to architecture description languages. STR descriptions
are structured on a template that features a high-level summary of a software technology, an
assessment of its maturity, usage considerations, costs and limitations, links to further
information sources, and other valuable data. Technical descriptions also contain bibliographies
so that users can access source data and further literature on their own.

In addition to a search feature, the STR also includes a taxonomy for navigation. This method is
an effective way to lead users to a set of possible technologies that address their software
problem area without having to read through every description. Using the taxonomies, users can
search by a specific software quality measure (such as reliability), by a particular software use
(such as design or testing), or by the ACM Computing Reviews Classification System, which
categorizes subdisciplines within computer science.

The STR Board

John Goodenough, leader of the SEI’s Performance Critical Systems Initiative, chairs the STR
Board. He describes the STR as an authoritative source for evaluating a software technology’s
strengths, weaknesses, opportunities, and threats. While Goodenough says most online
technology guides tend to focus on a technology’s strengths, the STR provides a more balanced
description of a technology’s overall value. “It’s not just where the technology is now but where
it’s going, how it’s evolving,” he said. “This difference provides an added benefit to managers
who need to evaluate several technologies for their acquisition needs.”

Goodenough and the ten-member STR board meet monthly to discuss new topics for the site and
to review and update existing descriptions. The board is currently addressing ways to increase
contributions and is considering implementation of a new navigation system.

news@sei interactive, 1Q02 http://interactive.sei.cmu.edu 35

Future Plans

Goodenough and the STR Board are working to build participation in the STR over the next
several months in order to create a fuller, and more frequently updated resource. He encourages
more software professionals from outside the SEI to contribute to the STR site by authoring,
updating, or reviewing technology descriptions. If you would like to contribute a technical
description to the STR, please see http://www.sei.cmu.edu/str/feedback/ or contact
str@sei.cmu.edu.

For more information, contact

Customer Relations

Phone
412-268-5800

Email
customer-relations@sei.cmu.edu

World Wide Web
http://www.sei.cmu.edu/str/

