

Volume 6 | Number 1 | First Quarter 2003

http://www.interactive.sei.cmu.edu

In This Issue

columns

Defining the Terms Architecture,
Design, and Implementation 1

Cruisin' the CMMI Web Site 8

Assumption Management 15

Can You Prove It? 20

Components As Products 25

Some Programming Principles -
Requirements 31

features

The Good News About COTS 38

The Acquisition Support
Program 41

OCTAVESM Users’ Forum:
Helping to Build a Community
of Practice 44

Taking the Road Less
Traveled: The CMMI®
Continuous Approach 48

Messages

Features

Columns

From the Director i Defining the Terms
Architecture, Design, and
Implementation 1

Cruisin' the CMMI
Web Site 8

Assumption
Management 15

Can You Prove It? 20

Components As Products 25

Some Programming
Principles - Requirements 31

The Good News About
COTS 38

The Acquisition Support
Program 41

OCTAVESM Users’ Forum:
Helping to Build a
Community of Practice 44

Taking the Road Less
Traveled: The CMMI®

Continuous Approach 48

2003 by Carnegie Mellon University

The Software Engineering Institute (SEI)
is a federally funded research and
development center sponsored by the U.S.
Department of Defense and operated by
Carnegie Mellon University.

® Capability Maturity Model, Capability
Maturity Modeling, Carnegie Mellon,
CERT, CERT Coordination Center,
CMM, and CMMI are registered in the
U.S. Patent and Trademark Office.

SM Architecture Tradeoff Analysis
Method; ATAM; CMM Integration;
COTS Usage Risk Evaluation; CURE;
EPIC; Evolutionary Process for
Integrating COTS Based Systems;
Framework for Software Product Line
Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat,
Asset, and Vulnerability Evaluation;
Options Analysis for Reengineering;
Personal Software Process; PLTP;
Product Line Technical Probe; PSP;
SCAMPI; SCAMPI Lead Assessor;
SCAMPI Lead Appraiser; SCE; SEI;
SEPG; Team Software Process; and TSP
are service marks of Carnegie Mellon
University.

TM Simplex is a trademark of Carnegie
Mellon University.

news@sei interactive, 1Q03 http://interactive.sei.cmu.edu i

From the Director

At this year’s Software Engineering Process Group (SEPGSM) Conference, held in
Boston on February 24- 27, 1,550 attendees came together to share their insights and
experiences. Compared with previous SEPG conferences, SEPG 2003 included increased
numbers of presentations by users and adopters of Capability Maturity Model®
Integration (CMMI®) and Team Software ProcessSM (TSPSM) from the United States,
Europe, and Asia, evidence of the growing impact of these methodologies in the global
community of software engineers.

On display in the exhibit hall at SEPG 2003 was a new book in the SEISM Series in
Software Engineering, CMMI: Guidelines for Process Integration and Product
Improvement. As described in the book, CMMI best practices are viewed in two different
representations, staged and continuous. Those with continuous experience say this newer
and less-documented path to software process improvement is transforming software
businesses and yielding significant results. To learn more, read “Taking the Road Less
Traveled: The CMMI Continuous Approach.”

As part of their efforts to improve their development and maintenance practices, many
organizations pin their hopes for improving software systems on commercial off-the-shelf
(COTS) software products. Although the use of COTS products can be problematic, Lisa
Brownsword and Ed Morris of the SEI provide examples of successful adoptions of
COTS-based systems in “The Good News About COTS.”

As network connectivity becomes an essential feature of more and more software-
intensive products and systems, cyber security is an increasingly important requirement.
The SEI has developed a security risk evaluation methodology for organizations, called
the Operationally Critical Threat, Asset, and Vulnerability EvaluationSM (OCTAVESM)
method. As with Capability Maturity Models and other tools, techniques, and methods,
the SEI has begun to support the development of a worldwide community of the users of
OCTAVE. Among the many benefits of such communities of practice is that they help to
inform ongoing development and evolution. To learn more, see “OCTAVE Users’
Forum: Helping to Build a Community of Practice.”

Increased demands for cyber security, as well as the need to integrate COTS components
into systems, require an increasingly sophisticated set of skills for the acquirers of
software-intensive systems. To help acquirers of systems identify and characterize the
complexity associated with acquiring today’s systems, the SEI has initiated an
Acquisition Support Program (ASP). You can learn more about the ASP in the article.

ii http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

We hope you find these articles useful and informative, and we look forward to seeing
you next year in Orlando for SEPG 2004!

Stephen E. Cross
SEI Director and CEO

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 1

The Architect

Defining the Terms Architecture, Design, and
Implementation
Rick Kazman and Amnon Eden

Introduction

Over the past 10 years many practitioners and researchers have sought to define software
architecture. At the SEI, we use the following definition:

The software architecture of a program or computing system is the structure or
structures of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.

Definitions of software architecture abound. We’ve been collecting definitions from
visitors to our Web site (http://www.sei.cmu.edu/architecture/definitions.html) and
already have received dozens. However, we are interested not only in understanding the
term “software architecture” but in clarifying the difference between architecture and
other related terms such as “design” and “implementation.” The lack of a clear distinction
among these terms is the cause of much muddy thinking, imprecise communication, and
wasted, overlapping effort. For example, “architecture” is often used as a mere synonym
for “design” (sometimes preceded with the adjective “high-level”). And many people use
the term “architectural patterns” as a synonym for “design patterns.”

Confusion also stems from the use of the same specification language for both
architectural and design specifications. For example, UML is often used as an
architectural description language. In fact, UML has become the industry de facto
standard for describing architectures, although it was specifically designed to manifest
detailed design decisions (and this is still its most common use). This merely contributes
to the confusion, since a designer using UML has no way (within UML) of distinguishing
architectural information from other types of information.

Confusion also exists with respect to the artifacts of design and implementation. UML
class diagrams, for instance, are a prototypical artifact of the design phase. Nonetheless,
class diagrams may accumulate enough detail to allow code generation of very detailed
programs, an approach that is promoted by CASE tools such as Rational Rose and
System Architect. Using the same specification language further blurs the distinction
between artifacts of the design (class diagrams) and artifacts of the implementation

2 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

(source code). Having a unified specification language is, in many ways, a good thing.
But a user of this unified language is given little help in knowing if a proposed change is
“architectural” or not.

Why are we interested in such distinctions? Naturally, a well-defined language improves
our understanding of the subject matter. With time, terms that are used interchangeably
lose their meaning, resulting inevitably in ambiguous descriptions given by developers,
and significant effort is wasted in discussions of the form “by design I mean…and by
architecture I mean…”

Seeking to separate architectural design from other design activities, definers of software
architecture in the past have stressed the following:

1. “Architecture is concerned with the selection of architectural elements, their
interaction, and the constraints on those elements and their interactions…Design is
concerned with the modularization and detailed interfaces of the design elements,
their algorithms and procedures, and the data types needed to support the architecture
and to satisfy the requirements.”

2. Software architecture is “concerned with issues...beyond the algorithms and data
structures of the computation.”

3. “Architecture…is specifically not about…details of implementations (e.g., algorithms
and data structures.)…Architectural design involves a richer collection of abstractions
than is typically provided by OOD” (object-oriented design).

In suggesting typical “architectures” and “architectural styles,” existing definitions
consist of examples and offer anecdotes rather than providing clear and unambiguous
notions. In practice, the terms “architecture,” “design,” and “implementation” appear to
connote varying degrees of abstraction in the continuum between complete details
(“implementation”), few details (“design”), and the highest form of abstraction
(“architecture”). But the amount of detail alone is insufficient to characterize the
differences, because architecture and design documents often contain detail that is not
explicit in the implementation (e.g., design constraints, standards, performance goals).
Thus, we would expect a distinction between these terms to be qualitative and not merely
quantitative.

The ontology that we provide below can serve as a reference point for these discussions.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 3

The Intension/Locality Thesis

To elucidate the relationship between architecture, design, and implementation, we
distinguish at least two separate interpretations for abstraction in our context:

1. Intensional (vs. extensional) design specifications are “abstract” in the sense that they
can be formally characterized by the use of logic variables that range over an
unbounded domain. For example, a layered architectural pattern does not restrict the
architect to a specific number of layers; it applies equally well to 2 layers or 12
layers.

2. Non-local (vs. local) specifications are “abstract” in the sense that they apply to all
parts of the system (as opposed to being limited to some part thereof).

Both of these interpretations contribute to the distinction among architecture, design, and
implementation, summarized as the “intension/locality thesis”:

1. Architectural specifications are intensional and non-local
2. Design specifications are intensional but local
3. Implementation specifications are both extensional and local

Table 1 summarizes these distinctions.

Table 1. The Intension/Locality Thesis

Architecture Intensional Non-local

Design Intensional Local

Implementation Extensional Local

4 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

Implications

What are the implications of such definitions? They give us a firm basis for determining
what is architectural (and hence crucial for the achievement of a system’s quality
attribute requirements) and what is not.

Consider the concept of a strictly layered architecture (an architecture in which each layer
is allowed to use only the layer immediately below it). How do we know that the
architectural style “layered” is really architectural? To answer that we need to answer
whether this style is intentional and whether it is local or non-local. First of all, are there
an unbounded number of implementations that qualify as layered? Clearly there are.
Secondly, is the layered style local or non-local? To answer that, we need only consider a
violation of the style, where a layer depends on a layer above it, or several layers below
it. Since this would be a violation wherever it occurred, the notion of a layered
architecture must be non-local.

What about a design pattern, such as the factory pattern? This is intensional, because
there may be an unbounded number of realizations of a factory design pattern within a
system. But is it local or non-local? One may use a design pattern in some corner of the
system and not use it (or even violate it) in a different portion of the same system. So
design patterns are local.

Similarly, it is simple to show that the term “implementation” refers only to artifacts that
are extensional and local.

Conclusions

Since the inception of architecture as a distinct field of study, there has been much
confusion about what the term “architecture” means. Similarly, the distinction between
architecture and other forms of design artifacts has never been clear. The
intension/locality thesis provides a foundation for determining the meaning of the terms
architecture, design, and implementation that accords not only with intuition but also with
best industrial practices. A more formal and complete treatment of this topic can be found
in our paper, “Architecture, Design, Implementation.” But what are the consequences of
precisely knowing the differences among these terms? Is this an exercise in definition for
definition’s sake? We think not. Among others, these distinctions facilitatedetermining
what constitutes a uniform program e.g., a collection of modules that satisfy the same
architectural specificationsdetermining what information goes into architecture
documents and what goes into design documentsdetermining what to examine and what
not to examine in an architectural evaluation or a design walkthroughunderstanding the

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 5

distinction between local and non-local rules (i.e., between the design rules that are
enforced throughout a project versus those that are of a more limited domain, because the
architectural rules define the fabric of the system and how it will meet its quality attribute
requirements, and the violation of architectural rules typically has more far-reaching
consequences than the violation of a local rule).

Furthermore, in the industrial practice of software architecture, many statements that are
said to be “architectural” are in fact local (e.g., both tasks A and B execute on the same
node, or task A controls B). Instead, a truly architectural statement would be, for instance,
for each pair of tasks A,B that satisfy some property X, A and B will execute on the same
node and the property Control(A,B) holds.

More generally, for each specification we should be able to determine whether it is a
design statement, describing a purely local phenomenon (and hence of secondary interest
in architectural documentation, discussion, or analysis), or whether it is an instance of an
underlying, more general rule. This is a powerful piece of information.

References

[Bass 98] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in Practice. Reading,
MA: Addison Wesley Longman, Inc., 1998.

[Booch 99] Booch, G.; Jacobson, I.; & Rumbaugh, J. The Unified Modeling Language
Reference Manual. Reading, MA: Addison-Wesley, 1999.

[Eden 03] Eden, A. & Kazman, R. “Architecture, Design, Implementation.” Proceedings of
the 25th International Conference on Software Engineering (ICSE 25), Portland,
OR, May 2003.

[Garlan 93] Garlan, D. & Shaw, M. “An Introduction to Software Architecture,” 1–39.
Advances in Software Engineering and Knowledge Engineering, Vol. 2. Edited
by V. Ambriola and G. Tortora. New Jersey: World Scientific Publishing
Company, 1993.

[Kazman 99] Kazman, R. “A New Approach to Designing and Analyzing Object-Oriented
Software Architecture.” Invited talk, Conference On Object-Oriented
Programming Systems, Languages and Applications (OOPSLA), Nov. 1–5, 1999,
Denver, CO.

6 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

[Monroe 97] Monroe, R. T.; Kompanek, A.; Melton, R.; & Garlan, D. “Architectural Styles,
Design Patterns, and Objects.” IEEE Software 14, 1 (January 1997): 43–52.

[Perry 92] Perry, D. E. & Wolf, A. L. “Foundation for the Study of Software Architecture.”
ACM SIGSOFT Software Engineering Notes 17, 4 (1992): 40–52.

[Popkin Software 00] Popkin Software. System Architect 2001. New York, NY: McGraw-Hill,
2000.

[Quatrani 99] Quatrani, T. Visual Modelling with Rational Rose 2000 and UML, Revised.
Reading, MA: Addison Wesley Longman, Inc., 1999.

[Schmidt 00] Schmidt, D. C.; Stal, M.; Rohnert, H.; & Buschmann, F. Pattern-Oriented
Software Architecture, Vol. 2: Patterns for Concurrent and Networked Objects.
New York, NY: John Wiley & Sons, Ltd., 2000.

About the Authors

Rick Kazman is a senior member of the technical staff at the SEI, where he is a technical
lead in the Architecture Tradeoff Analysis Initiative. He is also an adjunct professor at
the Universities of Waterloo and Toronto. His primary research interests within software
engineering are software architecture, design tools, and software visualization. He is the
author of more than 50 papers and co-author of several books, including a book recently
published by Addison-Wesley titled Software Architecture in Practice. Kazman received
a BA and MMath from the University of Waterloo, an MA from York University, and a
PhD from Carnegie Mellon University.

Dr. Eden is a faculty member in the Department of Computer Science at the University of
Essex and a research scholar at the Center for Inquiry. His research focuses on
formalizing the informal narrative describing software design and architecture. He
received a Ph.D. in 2000 from Tel Aviv University, and has substantial industrial
experience in object-oriented analysis and design and C++ programming. He has held
positions at the Tel Aviv College of Management, Technion—Israel Institute of
Technology (Israel), Uppsala University (Sweden), and Concordia University (Canada).

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 7

8 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

CMMI in Focus

Cruisin' the CMMI Web Site
Mike Phillips

Several recent telephone chats about CMMI have reminded me how difficult it can be to
find information when you need it. I have frequently received calls from people who have
questions about CMMI and don’t know that the information they seek is on the CMMI
Web site1. This issue’s column is dedicated to helping you navigate the CMMI Web
pages to take advantage of the wealth of information found there.

If you want to navigate along as you read, you might want to either print the column or
open the CMMI Web site in another browser window. To begin at the beginning, we’ll
first go to the CMMI Main page.

CMMI Main Page

As you scan the CMMI main page1, notice that there are several elements to help you
besides the links to the other CMMI Web pages. The CMMI News section highlights the
most recent and significant events related to CMMI. The Working With Us section
provides an opportunity for those of you who want to work with the SEI as you adopt
CMMI to contact someone who can describe and arrange for SEI transition services.
Finally, the CMMI Search section enables you to search the CMMI Web site for
information. This facility is a quick way to find specific information without wading
through the menus.

CMMI Models Page

One of the primary destinations on the CMMI Web site is the CMMI Models2 page,
where the various models and their representations can be downloaded. Each of the
models is available in both PDF and Microsoft Word format. The PDF files are the
official versions of CMMI models. These files always print consistently and are locked to
ensure that the integrity of the model is preserved. The Word versions are provided so
that you can tailor the material to support the internal process improvement efforts in
your environment.

1 http://www.sei.cmu.edu/cmmi/

2 http://www.sei.cmu.edu/cmmi/models/models.html

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 9

Organizations often want to cut and paste elements of the model and its supporting
information (the early chapters and the glossary or other appendices) for use in a
particular project or functional area. This is possible using the Word format of the
models. This format also allows teams to add notes or “organizational amplifications”
that are helpful. I’ve imagined that various global replacements might be made to
accommodate those who use non-American English spelling. This is not a “translation”
per se but an effort to make readers more comfortable with the material.

“Errata” sheets for each model, in PDF format, are also available from this page. These
sheets list the minor errors that are difficult to fully remove before publication. As the
new Addison-Wesley book, CMMI: Guidelines for Process Integration and Product
Improvement1, was being prepared, we found a few more errata items. These errors are
documented in these Web pages to ensure that the most accurate documentation is always
available.

CMMI General Information and Background Pages

Other Web destinations include the CMMI General Information2 page, which has some
valuable information for those new to the concept of CMMI. The CMMI
Background3page allows you to view the “A” Specification, which determined the design
of CMMI, and the Concept of Operations, which describes how inclusion of further
disciplines in CMMI models might occur under the guidance of the CMMI Steering
Group. However, most of you are reading this because you are either considering or
beginning the upgrade to CMMI, so the remainder of this column will concentrate on the
CMMI Adoption page4.

1 http://www.sei.cmu.edu/products/publications/process-improvement.htm

2 http://www.sei.cmu.edu/cmmi/general/general.html

3 http://www.sei.cmu.edu/cmmi/background/background.html

4 http://www.sei.cmu.edu/cmmi/adoption/adoption.html

10 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

CMMI Adoption Page

The information on this page is most valuable to those of you researching the reasons for
adopting CMMI. The contents of this page include pointers to information developed by
CMMI users, others interested in CMMI, and the SEI.

Technical Notes

In the previous issue’s column, I mentioned some of the technical notes in which authors
have helped us explain or interpret the CMMI material from various perspectives. One,
for example, describes how a CMMI model might be effectively interpreted in an
operational environment. Another elucidated the compatibility between the guiding
principles for Earned Value Management and CMMI best practices. A third highlights
how a product-line focused organization can apply the guiding principles for product-line
practices1 within a CMMI framework (or vice versa). There are technical notes in most of
the categories on the CMMI Adoption page; look for “technical note” and a date
following the report title.

Useful Contacts

The Useful Contacts2 section links to information about events, forums, and other ways
to contact those already using CMMI. This section has several links that bear mention.
The first is the link to the National Defense Industrial Association, the co-sponsor of our
annual CMMI Technology Conference and User Group. This link lets you check the
plans for this year’s conference and peruse the briefings from the November 2002
conference. If you browse through the 2002 briefings, you’ll find much useful
information about adopting CMMI and how different organizations approached that task.
Other briefings provide practical CMMI adoption advice or focus on appraisals.

One briefing describes the long-term value of having gathered process improvement
indicators, as those will help to guide future improvement. Another noted the relatively
small additional effort (about 22 staff days) to provide this enhanced picture of the
process improvement effort. Another noted the enhanced business case for CMMI over
the SW-CMM, because applying process discipline across the rest of the development
organization multiplied the reduction of test time and defects.

1 http://www.sei.cmu.edu/plp/plp_init.html

2 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#useful

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 11

Another important link from the Useful Contacts takes you to a page that lists the
organizations that have volunteered to be listed as CMMI Early Adopters, with a point of
contact for each. As the CMMI user community grows, you may find that you will want
your organization to be listed as well. We often are asked where assistance can be found
in addition to the SEI. The SEI Transition Partners link displays listings of instructors and
appraisers for the CMMs and CMMI.

Both the Software Engineering Information Repository (SEIR) link and the Yahoo
Discussion Groups link allow you to find places to ask questions of people from other
active organizations about areas of concern for you. Both require a sign up, but neither
have fees associated with membership. Both allow access to documents that have been
provided by discussion group members.

As our focus moved forward from development to adoption and upgrade, we began
accepting documents from a variety of sources that the CMMI Implementation team
determined would be helpful to the leaders of organizations beginning the CMMI
journey. The BSCW Shared Workspace site contains a variety of documents and
presentations that have proven valuable in initial efforts. For example, one organization
found it helpful to provide a Microsoft PowerPoint summary of the required and expected
elements of a CMMI model. Another found it better to prepare a Microsoft Word table
version that would help before and during a SCAMPI appraisal. Another company
performed a study on the potential return on investment of CMMI-based process
improvement. Each of these is found on this site, as well as a variety of presentations that
may provide useful material for your internal briefings.

One file that we have made available on the BSCW site requires some explanation: the
Draft Practice Implementation Indicator Documents (PIIDs). As we sought to move
orientation of the SCAMPI appraisal method from discovery to verification, we realized
that we needed some form of data capture to organize the information more effectively.
The PIIDs are templates that organizations can use to record data pertinent to an
appraisal. They are described in the SCAMPI Method Definition Document V1.1
(MDD), and we initially considered providing the documents themselves as part of the
MDD. But we have discovered that an example provided in our documents often gets
interpreted as a requirement. Therefore the PIIDs are offered separately as a tool that
might help organizations gauge their readiness for any progress review such as a full
SCAMPI.

12 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

Overview of CMMI

The Overview of CMMI1 section is a good place for those relatively new to CMMI to
read detailed information about the CMMI concept and learn how CMMI can benefit
their organizations.

CMMI Appraisals

The entries in the CMMI Appraisals2 section cover appraisal-related information,
including a summary of appraisal results, discussion of appraisal methodologies, details
of the SEI Appraiser Program, and lists of SEI transition partners.

Adoption and Transition

The Adoption and Transition3 section contains case study information and guidelines for
upgrading from the SW-CMM or EIA 731 to CMMI. A particularly valuable link in this
section is the link to the results of “The Road to CMMI” workshop, containing
information shared by organizations that have adopted CMMI.

Learning Resources

The Learning Resources section4 points to training courses offered by the SEI and
workshops available to increase your knowledge of CMMI.

Tools and Techniques

The entries in the Tools and Techniques5 section provide practical tools you can use to
ease your adoption of CMMI. A powerful tool that may benefit your organization is the
Generic Database Model, which contains CMMI model framework components in
Microsoft Access format.

1 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#overview

2 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#appraisal

3 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#adoptrans

4 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#learning

5 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#tools

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 13

CMMI Comparisons

The CMMI Comparisons1 section is especially useful for those who want to compare
CMMI to other standards, approaches, or improvement models. Comparisons are made
between CMMI and the SW-CMM, EIA 731, Earned Value Management, product line
practice, LESAT, and Balanced Scorecard.

IPPD

The IPPD2 section introduces the concept of integrated product and process development,
including a bibliography of further reading.

Process Areas

The Process Areas3 section presents information specific to individual CMMI process areas,
including Decision Analysis and Resolution, Measurement and Analysis, Configuration
Management, and Risk Management.

We Want to Hear From You

As time goes on, the character of the CMMI Product Suite will build and develop based on what
you, the CMMI users, find useful about it. The messages you send us will shape how CMMI can
meet organizations’ needs and influence the practice of software engineering throughout the
world. Please let us know your needs and wants concerning CMMI. We’d like to hear from you.
Send email to cmmi-comments@sei.cmu.edu.

1 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#comparisons

2 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#ippd

3 http://www.sei.cmu.edu/cmmi/adoption/adoption.html#process-areas

14 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

About the Author

Mike Phillips is the Director of Special Projects at the SEI, a position created to lead the
Capability Maturity Model Integration (CMMI) project for the SEI. He was previously
responsible for transition-enabling activities at the SEI.

Prior to his retirement as a colonel from the Air Force, he managed the $36B
development program for the B-2 in the B-2 SPO and commanded the 4950th Test Wing
at Wright-Patterson AFB, OH. In addition to his bachelor’s degree in astronautical
engineering from the Air Force Academy, Phillips has masters degrees in nuclear
engineering from Georgia Tech, in systems management from the University of Southern
California, and in international affairs from Salve Regina College and the Naval War
College.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 15

The COTS Spot

Assumption Management
Robert C. Seacord

Introduction

Recently, I attended a tutorial on software evolution by Emeritus Professor Manny
Lehman from Middlesex University. While the overall tutorial was very valuable to our
work in COTS-based systems and legacy system modernization, Lehman’s remark that
most of the defects discovered in existing systems were probably caused by invalid or
changed assumptions struck a chord. When I was a programmer at the Data Systems
Division of IBM, we always included a section called “Assumptions” in our design
documentation. Writing this section was always reason for reflection. What were the
assumptions upon which the design was based? And what would happen if these
assumptions were wrong, or were changed? These design documents were inevitably
scrutinized by an inspection team, and the assumptions would be reviewed, discussed,
and possibly refined. Although we took some time to consider assumptions at this point
in the process, there was no further formal consideration of assumptions through the
remainder of the process. This does not mean that assumptions no longer play a role in
the construction and test of the software.

Of course, assumptions have a much longer history. Parnas [Parnas71] characterized
interfaces as the assumptions that elements could make about each other, and most of his
software engineering contributions involve that observation one way or another. Garlan’s
architectural mismatch paper [Garlan 95] essentially rediscovered this, but nevertheless
brought assumptions into the modern vocabulary.

Why Do We Have Assumptions?

For most large information systems the operational domain is essentially unbounded. No
matter how many observations or properties are identified and associated with the
domain, it is always possible to add more. The software, on the other hand, having human
creators, is finite. The software system is, therefore, intrinsically incomplete. The
resultant gap between the system and its operational domain is bridged by assumptions,
explicit and implicit [Lehman 00]. These assumptions fill in the gaps between the system
and the documented and validated requirements of the operational domain.

Additionally, the real-world domain and the application itself are always changing. Even
supposing that the initial assumption set was valid, individual assumptions will, as time

16 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

goes on, become invalid with unpredictable results or, at best, with operation that is not
totally satisfactory [Parnas 94].

Requirements and Assumptions

An argument can be made that nothing in a software system should be assumed, and that
everything should be stated as requirements. Even if this were the case, it would certainly
be true that the requirements were assumed to be valid.

In reality, requirements are only a top-level statement of need, and the road between
requirements and code is paved with assumptions. These assumptions can be validated
and verified along the way, but because we must always deal with some degree of
ambiguity, our confidence in the validity of the assumptions may vary considerably.

In one way or another, assumptions are reflected in the software. In my experience at
IBM, assumptions were tracked, recorded during design, and reviewed by an inspection
team. The inspection team could evaluate assumptions in each design to make sure that
they were valid and consistent with system-level assumptions. Unfortunately, the
assumption management process typically stopped at this point, because no model or
infrastructure was in place to support the tracking of assumptions through
implementation and test.

As a programmer of many years, I believe that any programmer would agree that
assumptions are an inherent part of software implementation. Every time a decision is
made—about how to design an interface, how to implement an algorithm, if and how to
encapsulate an external dependency—assumptions are made concerning how the
software will be used, how it will evolve, and what environments it will operate in. The
unfortunate aspect of software implementation today is that these assumptions are seldom
if ever recorded, although they are instrumental in determining the form the software
product takes. Also, because these assumptions are not recorded, they are seldom
communicated or reviewed. As a result, some assumptions may be incompatible with
assumptions made elsewhere in the code, or incompatible with design- or system-level
assumptions. These incompatibilities may lead to the insertion of defects or, even worse,
post-deployment failures. Furthermore, as was already pointed out, it is likely that
individual assumptions will become invalid as a result of changes in the operational
domain over the life of the system.

When performing change analysis to determine which changes to accept and which to
reject, the configuration control board has no way of knowing which assumptions are
built into the software. For example, there may be a number of complex modules that
assume a particular hardware configuration. A configuration control board may approve a

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 17

change, not understanding that this change invalidates these embedded assumptions. The
effort to implement the change may result in a major rewrite of significant portions of the
system. The least that can be said here is that a lack of assumption management certainly
does not lend itself to predictable schedule and costs.

Assumption Management

Is there a feasible solution to the problem of assumption management? I believe that a
solution may in fact exist, although it will require some additional infrastructure and a
slight culture shift.

From an infrastructure perspective, programmers are unlikely to manage assumptions
independent of source code. The failure of programmers to keep design and other
documentation consistent with evolving source code is an established and well-known
phenomenon. Sun Microsystems has developed a rather ingenious solution to this
problem. One of the unique features of Java is that it supports embedded documentation
comments, which are used to generate the API documentation. While parsing the source
code to create class files (object files), the compiler converts the declarations and doc
comments into HTML documentation [Friendly 95]. This is a user-friendly mechanism
for programmers to update documentation by updating the structured comments within
their source code. This process can be easily performed in manner that is not disruptive to
the coding process.

Perhaps even more closely related to assumption management is the programmatic use of
assertions. At its most basic form, an assertion is simply a procedure that takes a boolean
parameter and reports to the programmer if the boolean is false [Lewis 97]. Assertions
are a form of assumption management, where the assumption can be checked at runtime.
Exceptions reflect another kind of assumption, which are used in many modern
programming languages, including C++, Java, and Eiffel.

Assumption management is a little bit like assertions on steroids. Beyond simple boolean
conditions that can be evaluated by a compiler at runtime, assumption management
allows programmers to record a vast range of assumptions in structured English. These
assumptions can be easily recorded as part of the implementation, and then extracted
from the source code using a pre-processor or aspect-oriented programming language
[Elrad 01]. Recording assumptions in source code alone might prove invaluable, but
extracting them into a searchable repository should allow system architects and lead
designers to more easily review the assumptions of individual programmers to determine
if they are consistent with design and system assumptions. These databases can later be

18 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

used by configuration control boards in change analysis to more accurately determine the
impact of a proposed change.

Summary

Assumption management entails a slight shift in software development culture in that the
assumptions that are being made as part of the development process must also be
recorded in source code and other software artifacts. However, the potential benefit
resulting from this practice may be tremendous in the earlier identification and
elimination of defects, and in improved change analysis for more predictable and cost-
effective software evolution.

References

[Lehman 00] Lehman, M. M. & Ramil, J. F. “Software Evolution in the Age of Component
Based Software Engineering,” 249–255. IEE Proceedings Software, 2000, Vol. 147, No. 6,
December 2000.

[Elrad 01] Elrad, Tzilla; Filman, Robert E.; & Bader, Atef. “Aspect-Oriented Programming.”
Communications of the ACM 44, 10 (October 2001).

[Friendly 95] Friendly, Lisa. “The Design of Distributed Hyperlinked Programming
Documentation.” Proceedings of the International Workshop on Hypermedia Design '95 (IWHD
'95). <ftp://ftp.java.sun.com/docs/javadoc-paper/iwhd.pdf>.

[Garlan 95] Garlan, David; Allen, Robert; Ockerbloom, John, Architectural Mismatch: or Why
It's Hard to Build Systems Out of Existing Parts, Proceedings of the International Conference on
Software Engineering, Seattle, 1995

[Parnas 71] Parnas, D. “Information Distribution Aspects of Design Methodology.” Proceedings
1971 IFIP Congress, North Holland Publishing Company.

[Parnas 94] Parnas, D.L., "Software Aging" in Proceedings of the 16th International Conference
on Software Engineering", Sorento Italy, IEEE Press, 279-287, May 16-21/94.

[Seacord 02] Seacord, Robert; Plakosh, Daniel; & Lewis, Grace. Modernizing Legacy Systems:
Software Technologies, Engineering Processes and Business Practices.
New York, NY: Addison-Wesley, 2003.

[Lewis 97] Lewis, Peter N. “Using Assert().” MacTech Magazine 13, 12 (1997).
<http://www.mactech.com/articles/mactech/Vol.13/13.12/UsingAssert()/>.

[Wallnau 01] Wallnau, Kurt; Hissam, Scott; & Seacord, Robert. Building Systems from
Commercial Components. New York, NY: Addison-Wesley, 2001.

[Lehman 98] Lehman, M. M. & Belady, L.A. Program Evolution: Processes of Software
Change. London: Academic Press, 1985.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 19

About the Author

Robert C. Seacord is a senior member of the technical staff at the SEI and currently leads a
team researching software sustainment. He is coauthor of two Addison-Wesley SEI Series in
Software Engineering books, Modernizing Legacy Systems: Software Technologies, Engineering
Processes, and Business Practices and Building Systems from Commercial Components as well
as more than 40 papers on component-based software engineering, Web-based system design,
legacy system modernization, component repositories and search engines, security, and user
interface design and development. He has more than 20 years of development experience and
was previously a technical staff member at the X Consortium and IBM.

20 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

Security Matters

Can You Prove It?
Larry Rogers

Have you ever received a CD-ROM in the mail, either at home, to be used on your home
computer, or at the office, to be used on one of your company’s systems? How do you
know it came from the company shown on the CD and not from someone else? Also,
how can you even determine that the CD is from where it claims to be from and that its
contents are what was intended?

The answer is that in most cases, you can’t. The CD by itself is just a collection of bits
whose origin and ordering cannot be easily determined. Given that CD burners and blank
CDs are inexpensive and creating CD artwork is straightforward, it seems that someday,
somewhere, somebody will use this technique to send a faked CD to someone as part of
an attempt to break into their computers and even their network. Maybe it’s already
happened.

Let’s take this scenario a little further. Now that you know that creating fake CDs is
possible, what could you do to verify the authenticity of a CD the next time you receive
one?

You could visit the Web site of the organization that created the CD to see if the files are
also available there as a download. If they are, you could do a bit-for-bit comparison
between the files from the web site and the files on the CD. You’d know that the CD is
from that organization and its contents are valid if the comparisons match.

Unfortunately, the Web site for most organizations doesn’t help you verify the
information stored there or on the CD. You are now faced with the dilemma of not
installing either the CD or Web-based version and running the risk of being hacked, or
installing one of them and hoping that the contents are valid. This is a hard choice to
make.

The issues you face here are authentication and integrity. You need to authenticate the
CD’s producer and verify the integrity of the CD’s contents. Authentication and integrity
are two of the fundamental tenetsof computer security.

First, let’s consider authentication. How does one entity prove itself to another? With
most computer-based applications, a login and password pair provides proof of identity.
You’ve used these often to log in to your computer or to access a network email or
merchant account.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 21

We know from experience that the traditional login and password scheme is weak
because it can be easily compromised. Even with strong passwords (i.e., passwords
created using letters, numbers, and punctuation) electronic eavesdropping—called
sniffing—can capture them.

This type of password is called reusable because you use it over and over. The personal
identification number that you use at an automated teller machine is another type of
reusable password.

An alternative to reusable passwords is one-time passwords. One-time passwords expire
after the first time they’re used. Even if they’re captured, they’re no good.

One-time passwords virtually eliminate the eavesdropping problem. However, they add
complexity that has a cost. For example, how do you know which one-time password you
should use next? Perhaps you carry a list with you and cross off the ones you’ve used.
That’s not very safe because a list could be stolen. Also, what happens when you’re out

of the office and you’ve just used your last
one-time password? How do you get more?

Another alternative is biometrics. According to
Webopedia (an online dictionary found at
http://www.webopedia.com), biometrics is an
authentication technique that relies "on
measurable physical characteristics that can be
automatically checked. Examples include
computer analysis of fingerprints or speech."
Though biometrics is in its more formative
stages, usage is expected to grow significantly
as more products come to the marketplace.

Imagine then that your computer has a
fingerprint scanner. You’d place your index finger into the scanner and the computer
would then analyze it to determine who you are. Based on your identity, you’d then be
authorized to do your work.

Unfortunately, even biometric techniques aren’t foolproof. To use a fictional example
from Hollywood, in the James Bond film “Never Say Never Again,” SPECTRE defeated
the retinal scan used to secure the nuclear missiles by implanting a different eye into one
of their agents. Someday this fiction may become fact!

22 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

What’s the answer? The solution you choose means accepting a tradeoff between threats
and the level of complexity and cost that you’re willing to accept. For some computers,
the login and password scheme is appropriate, but for others, even the most sophisticated
biometric techniques may not be enough.

Consider this: what would you be willing to accept as the authentication scheme so that
you could use your home computer to vote for a United States presidential candidate in
the next election? In light of what happened in the 2000 elections, many have been
thinking about this problem and have proposed solutions. Would a login and password be
good enough? How about using a credit card-sized device and a reader with your
computer? When you swipe this card through the reader and provide a passphrase (a
sentence, for example), only the correct combination would authenticate your identity
and thereby allow you to vote. Are you comfortable with this scheme? What happens
when someone loses their card or forgets their passphrase? Is this method any better than
simply signing the voting register as most of us do now? These are all good questions
without easy answers.

Authentication is a significant issue when it comes to security, computer and otherwise.
There’s no practical, inexpensive, and hard-to-foil scheme just yet, but research continues
and new products are being developed and used. There’s certainly a need, and need
usually leads to a technological breakthrough. For now, logins that use one-time
passwords and biometrics are the best practices.

Next, let’s think about integrity. How do you determine that a collection of information -
a file for example - is what was intended by its author? The answer here is called a
checksum. As defined again in Webopedia, a checksum is “a simple error-detection
scheme in which each transmitted message is accompanied by a numerical value based
on the number of set bits in the message. The receiving station then applies the same
formula to the message and checks to make sure the accompanying numerical value is the
same. If not, the receiver can assume that the message has been garbled.”

To create a checksum, you’d look at all of the bits in a message and do some mathematics
on them. For example, you could add them together. Unfortunately, a scheme that simple
isn’t very effective in determining if something has changed, because many different
combinations of bits can give the same sum when added together.

The point is that not just any old checksum scheme will do. The mathematics used in the
checksum computation must be sufficiently complex so that it is virtually impossible to
find two files that have the same checksum value. Only with such a scheme can you
determine if a file has been changed.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 23

Integrity is another significant security issue, again both computer-related and otherwise.
Knowing that information has changed is essential to e-commerce and other businesses
that use the Internet to exchange information. Fortunately, there are checksum products
available in the marketplace that can detect changes as small as a single bit no matter the
size of the information being checked.

So let’s go back to the original problem of trusting the CD we got in the mail. One
candidate solution to this problem is called digital signatures. Digital signatures contain
authentication information so that you know who created the content and integrity
information (checksums) so that you can verify that the content hasn’t changed. Had the
organization that made the CD digitally signed every file on that CD, you would have
been able to determine that the CD came from them and that the files contained what they
intended. You would have been able to install its contents and sleep well that night!

There are many products available that create and use digital signatures. Some are free
and some are commercial. Examples are Pretty Good Privacy (PGP) and
Secure/Multipurpose Internet Mail Extensions (S/MIME). While their specifics differ,
both use digital signatures to authenticate and verify information.

Digital signatures go a long way toward answering the question, Can you prove it? when
verifying the authenticity and integrity of information. With today’s technology, the
security of tasks such as verifying electronic mail and making purchases through the
Internet can be significantly improved. When the technology matures so that additional
biometric attributes convey an even higher degree of confidence for authentication
purposes, you can expect these technologies to be widely used.

There may come a day when you no longer need a credit card or driver’s license to make
a purchase or even identify yourself at the airport ticket counter. Your fingerprint and a
glance into a retinal scanner may be all it takes to prove who you are!

About the Author

Lawrence R. Rogers is a senior member of the technical staff in the Networked Systems
Survivability Program at the Software Engineering Institute (SEI). The CERT®
Coordination Center is a part of this program. Rogers’s primary focus is analyzing system

24 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

and network vulnerabilities and helping to transition security technology into production
use. His professional interests are in the areas of the administering systems in a secure
fashion and software tools and techniques for creating new systems being deployed on
the Internet. Rogers also works as a trainer of system administrators, authoring and
delivering courseware. Before joining the SEI, Rogers worked for 10 years at Princeton
University. Rogers co-authored the Advanced Programmer’s Guide to UNIX Systems V
with Rebecca Thomas and Jean Yates. He received a BS in systems analysis from Miami
University in 1976 and an MA in computer engineering in 1978 from Case Western
Reserve University.

This and other columns by Larry Rogers, along with extensive information about
computer and network security, can be found at <http://www.cert.org>.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 25

Software Product Lines

Components As Products
Linda Northrop and John McGregor

Products in a software product line are software products for internal use or for sale.
Common components for the software product line are part of the core asset base. But
what if you are in the software component business? Then each product you build is a
software component. If you have a family of components with many common features
but that vary in some distinct and predictable ways, could you have a product line of
components? And is this a silly idea? Not at all silly, just confusing. In fact, today a
product line of components makes a lot of sense (and for many, a lot of money).

But before we explain, let’s first define what we mean by component. Szyperski gives
this definition [Szyperski 98]:

A software component is a unit of composition with contractually specified interfaces and
explicit context dependencies only. A software component can be deployed independently
and is subject to composition by third parties.

A component is therefore opaque, and it is this opaqueness that allows one company to use
proprietary information and algorithms from another company without detailed access that
would compromise the intellectual property rights of the providing company. The using company
must be able to easily compose the component with other components without special
environments or tools. Standards for specific purposes, such as the Enterprise Java Beans and
CORBA models, provide market strata and architectural constraints that guide and facilitate the
component selection process.

Providing individual software components as products is a rapidly growing business, but not a
new business. Software libraries for domains such as numerical analysis or graphics have been
available for over thirty years. But a number of changes have occurred in the last few years that
have reshaped the component marketplace.

An increased focus on defining interfaces and component models that are defined via interfaces
has made it simpler to identify candidates for a particular use. These candidate components
“almost” fit and the amount of rework required to use them has dramatically decreased. When
you couple this opportunity to eliminate some of the in-house development work with the ever-
growing demand for software—more complex and more challenging software—using some
prefabricated components makes sense. And many have reached that conclusion; the market
demand for components is strong. Moreover, the granularity of commercial components has
grown from small, low-payoff components such as stacks and queues to components that provide
more comprehensive functionality, such as a complete voice recognition engine. These new

26 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

larger, more sophisticated components command a healthy price that results in an attractive
return on development investment—an incentive for the component developer. In response,
electronic marketplaces such as flashline.com have made it possible to offer small individual
components for sale at affordable but profitable prices.

Consider a hypothetical (but close to real) example from the domain of telecommunication
protocols. Our hypothetical company, Protocols-R-Us, is a company founded by a small group of
managers and developers who all worked for the same multinational telecommunications
corporation. The company has begun production of “protocol stack” software components, which
are used to parse signals coming into a communications device, to do error detection and retry,
and to deliver the signal to the platform software.

As a small company, Protocols-R-Us moved carefully to define their market. Their original
business plan was narrowly scoped to address only their first product. The company began by
supplying an implementation of a communications protocol to both their former employer and
one other company. As the first product was nearing release, the managers began to consider
other products. Given the depth of technical knowledge of the company founders, they explored
products that could be leveraged from the work done so far. The team determined that their
market consisted of companies that are developing the broad array of communication devices
and add-ons that are being introduced into the consumer market. Each of these devices is capable
of receiving a variety of signals, including voice conversations and data transmissions. Each
device would actually need to “understand” numerous protocols. Which protocols are useful is
information that is changing rapidly, as is the specification of many of the newer protocols.

The company team saw the rapid increase in the creation and release of new protocol standards
as a business opportunity. They could capitalize on this business opportunity only if they could
design and produce implementations of several protocols that could coexist in a single device
and could do so in a way that kept pace with the release of standards updates as protocols were
revised and expanded. The company would also have to be able to keep costs low because the
“shelf life” of a given implementation is extremely short. Client companies would want each
new version of their device to have the latest implementation in order to provide the widest array
of services to their clients. Protocols-R-Us set a goal to meet the protocol processing needs of
customers by providing high-quality implementations of telecommunications protocols and to do
so as quickly and efficiently as possible.

The company’s small staff would need to be enlarged, but given current job market conditions,
the new hires would not have a depth of experience in either software development or
telecommunications. There would have to be a significant increase in productivity among the
experienced personnel or the company would miss most of the benefits of the current
telecommunications explosion.

How could they succeed? They could take a software product line approach. And their products
would be? A product line of components.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 27

As the team began planning for the product line, they had to identify the products that would
constitute the product line (the product line scope). The initial product was an implementation of
the HyperText Transfer Protocol (HTTP) and a HyperText Markup Language (HTML) translator.
If they were to build on their existing client base, it made sense to include protocols that are
related either to the Transfer Control Protocol/Internet Protocol (TCP/IP) or HTTP. However,
these are well-known protocols for which many implementations exist. A new, but somewhat
related, area was the Wireless Application Protocol (WAP) used to provide Internet access from a
mobile phone. This is an emerging area in which it should be possible to establish a presence. As
an initial scope the team identified the following pieces that would be needed for a complete
protocol stack from signal reception to screen presentation:

• Wireless Application Environment (WAE)

• Wireless Session Layer (WSP)

• Wireless Transaction Protocol (WTP)

• Wireless Transport Layer Security (WTLS)

• Wireless Datagram Protocol (WDP)

To offer a “complete solution” the company would also have to provide an implementation of the
Wireless Markup Language (WML). The protocol stack accompanied by the language would
provide support for accessing HTML-based content on the mobile phone.

The team recognized that their most important asset would be the basic architecture from which
all of the products are derived. Since the products will be components, they actually had to
consider two architectures: the architecture of the systems into which the components are
intended to fit, and the architecture for the protocol components—their product line architecture.
They knew that the product line architecture for the components must provide a link between the
standard organization for communication protocols and the individual components to permit
clients, who are familiar with the network model, to easily understand how the Protocols-R-Us
components will fit into their architecture.

The architecture would have to be updated to anticipate the evolution of those components with
which it must interoperate. The company formed strategic alliances with a number of companies
that produced related products. Through these partnerships, Protocols-R-Us hopes to keep up
with the latest design changes and receive advance releases. It will test its products with these
new releases to identify any unintended interactions. The architecture must also be maintained to
remain current with the latest versions of the applicable standards.

28 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

And how will the final products be packaged? Each component will be packaged with a test
component that contains the test cases used to test the protocol component. The component will
also contain technical documentation that includes specification of both the provides and
requires interfaces for the component. Finally, the shrink-wrapped package will also contain
sample designs for integrating sets of the components into different configurations that provide
support for different types of products.

Protocols-R-Us shows that the basic principles of product line development apply regardless of
the nature of the products—even if the products are components. In the case of our component
product line, the main changes in practices are the result of the size of the products and the need
to manage the requirements with limited effort. The major impact on the architecture
development is the need to pay more attention to the architecture of the environment into which
the components will be integrated. There is always some integration between an application and
its operating environment; however, the interface between an individual component and an
application architecture is not as standardized as the OS interface. On the positive side, the
interfaces implemented by a single component are smaller and can be more completely specified
than the interface of an entire application.

And so you can have a software product line where the components are products. In fact, a product line
approach is a promising development paradigm for the component industry for the same reasons it made
sense for Protocols-R-Us.

References

[Szyperski 98] Szyperski, C. Component Software: Beyond Object-Oriented
Programming Harlow, England; Reading, MA: Addison-Wesley, 1998.

About the Authors

Linda Northrop has over 30 years of experience in the software development field as
practitioner, manager, consultant, and educator. She is currently director of the Product
Line Systems Program http://www.sei.cmu.edu/programs/pls/pl_program.html at the
Software Engineering Institute (SEI). Her current publications are in the areas of software
product lines, software architecture, and object technology. She is co-author of the book,
Software Product Lines: Practices and Patterns.

Northrop chaired the first Software Product Line Conference (SPLC1
<http://www.sei.cmu.edu/plp/conf/SPLC.html>) in 2000 and SPLC2
<http://www.sei.cmu.edu/SPLC2/> in 2002. Linda is the OOPSLA Steering Committee
Chair and was the OOPSLA 2001 Conference Chair
<http://oopsla.acm.org/oopsla2001/>. She is also on the Executive Committee of ACM

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 29

SIGPLAN, and is a member of ACM, the IEEE Computer Society, the Computer
Sciences Accreditation Commission, and the ACM/IEEE Joint Committee on Software
Engineering.

Dr. John D. McGregor is an associate professor of computer science at Clemson
University, a Visiting Scientist in the Product Line Systems program at the SEI, and a
partner in Luminary Software, a software development consulting firm. Dr. McGregor
has conducted research for organizations such as the National Science Foundation,
DARPA, IBM and AT&T. Dr. McGregor is co-author of Object-oriented Software
Development: Engineering Software for Reus, published by Van Nostrand Reinhold. Dr.
McGregor is also co-author of A Practical Guide to Testing Object-Oriented Software,
published by Addison-Wesley. He has published numerous articles on software
development focusing on design and quality issues. Dr. McGregor's research interests
include software engineering, specifically in the areas of product development, design
quality, testing and measurement.

30 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 31

Watts New

Some Programming Principles - Requirements
Watts S. Humphrey

In this and the next several columns, I discuss some principles for programming work.
These are principles that, when followed, will consistently produce superior software that
meets the needs of customers and businesses. This column concentrates on the principles
that are inherent in software work because of the nature of software products and their
requirements. These principles also concern the characteristics of the people who use
these products. These programming principles are as follows:

• When we program, we transform a poorly understood problem into a precise set of
instructions that can be executed by a computer.

• When we think we understand a program’s requirements, we are invariably wrong.

• When we do not completely understand a problem, we must research it until we know that
we understand it.

• Only when we truly understand a problem can we develop a superior product to address that
problem.

• What the users think they want will change as soon as they see what we develop.

The Programming Job

As any experienced programmer knows, it is hard for people to be absolutely and
completely precise about anything. However, to produce a usable program, we must
specify exactly what the program is to do under every possible circumstance. The
difficulty of being precise is brought home to me whenever someone gives me directions.

“Go three blocks, turn left at the gas station, then take the third street on the right.”
“But,” I interrupt, “precisely where do I start and in what direction should I face?”

For some reason, the questions that I must ask to get precise directions always seem to
annoy people. Why should this annoy them? Don’t they know that, without precise and
complete information, I might get lost and waste a great deal of time?

32 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

The answer is, no they do not. In fact, even when they know exactly what they want
done, most people are unable to tell you precisely what to do. What is worse, they will
even get annoyed when you press them for the required details. This attitude complicates
the programmer’s job. To work properly, computing systems must be given absolutely
precise instructions. Therefore, to write any program, the programmer must reduce that
problem to a precise form before it can be executed by a computer. This means that we
must somehow persuade one or more knowledgeable users to explain all of the problem’s
details. In summary, there are four reasons why this is hard.

• First, the users will not know how to be precise about their needs.

• Second, they will get annoyed when we press them to be precise.

• Third, we will often think that we understand the problem before we really do.

• Fourth, the users will often misunderstand or not even know what they need.

Programming is and always will be a precise intellectual activity that must be performed
by people. While machines can help us in this work, they can never figure out what we
need, so they can never replace us. The problem is that people are error prone and
programs are extraordinarily sensitive to errors. The programming challenge we face is
to devise processes and methods that will help us to produce precise intellectual products
that are essentially defect-free.

Understanding the Problem

The difference between thinking that you understand a problem and truly understanding it
is like night and day. It is amazing how often I think that I know something but then find
that I really do not. My mother used to explain that being positive was “being wrong at
the top of your voice.” When it matters, like when writing a program, preparing a talk, or
drafting a paper for publication, I try to prove that what I think is true really is true.
When I look at data, consult a reference, or talk to an expert, I often find that my initial
opinion was either wrong or too simplistic. The real story is invariably much more
interesting and often more complex than I had initially realized.

It is easy to settle for half-baked answers. Some years ago, a programming manager told
me about a conversation that she overheard between two of her programmers. They were
developing a new version of IBM’s COBOL compiler and were debating a particular
feature. One of them felt that the users would prefer one approach and the other felt that
a different format would be more convenient. This manager told me that, even though

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 33

neither of them really knew which approach would be best, they ended up agreeing on
some middle ground that they both thought would be OK.

On any large product, there are hundreds to thousands of these minor decisions and, when
programmers don’t really know the proper or most convenient or most efficient answer,
they usually guess. Even if the odds of being right are 50-50, they will make hundreds to
thousands of incorrect decisions. Then, the odds of their producing a convenient and
highly-usable product will be essentially zero.

Researching Problems

There are lots of ways to research problems. For example, I often write about how
people develop programs and the costs and benefits of various programming practices.
Ever since I started my research work on personal and team programming methods over
13 years ago, I have gathered data about my own and other people’s work. I now have a
database of over 11,000 programs that I regularly use to verify some opinion or to answer
some question. Depending on the question or problem, data can be very helpful.

The second approach is to ask someone who knows the answer. The problem here is that,
like the COBOL programmers, you may not have an expert on hand and will often settle
for just getting a second opinion. While it might make you feel better to have someone
agree with your guess, it is still a guess. You can be pretty sure that it will either be
wrong or a simplistic approximation of the true situation.

Often, we cannot find a convenient expert and the time required to get expert help seems
likely to delay the project. However, this is only an excuse. Once you build all of your
guesses into a program’s design, the costs of fixing it later will be vastly greater than any
conceivable delay. So bite the bullet—take the time to get the facts needed to do a truly
superior job. It will invariably pay off.

Getting Informed Input

Some years ago, one of the projects in my organization was developing a very large
programming product. I was convinced that usability was a key need and kept pushing
the project managers to have a panel of experts review their designs. The managers kept
telling me that it was too early to hold such a review. They argued that they had not yet
completed enough of the design work. Then, one day, they told me that it was too late. It

34 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

would now be too expensive to make any changes. I insisted, however, and we held a
two-day review.

I sat in on the meetings with a panel of a dozen user experts. The programming managers
could not answer several of the more detailed operational questions and had to call their
programmers for help. At the end of two days, these managers had agreed to make half a
dozen changes before they shipped the first release. They now agreed that, without these
changes, the product would have been unusable. After I moved on to a different position,
this management team never held another expert review. Since these were very smart
people, I concluded that they must not have appreciated the enormous importance of
getting informed user input.

There are many ways to research requirements questions. Sometimes you will need
experts but often a simple prototype and one trial use will tell you the answer. You can
also get associates or even non-programmer support people to try to use a prototype. By
observing their reactions, you can resolve many usability issues. In other cases, you can
accumulate several questions and build a prototype to try out the most promising
alternatives. Then you can often get some experts to test the prototypes and to give you
their views. In any event, keep track of your assumptions and guesses, and verify them
as soon as you can.

Building Superior Products

During my time as IBM’s Director of Programming, I received a constant stream of
requests to incorporate one or another field-developed program into the IBM product
line. These programs were developed by IBM’s customer support personnel to help their
accounts solve critical problems. We did accept a few of these programs and, in a few
years, these few field-developed programs were consistently at the top of our customer
satisfaction ratings. Their ratings were well above those for the standard products that
had been developed in our laboratories.

In contrast to the company’s “standard” products, these field-developed programs had
been designed by people who were intimately familiar with the users’ environment.
These developers intuitively understood precisely how the product should work and
didn’t have to guess what would be more convenient. They knew. If you want to
develop a superior product, either become intimately familiar with the user’s environment
or have someone with that familiarity readily available to answer your questions. You
will need to consult them almost every day.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 35

Changing Problems and Products

If expert advice were all that was needed, requirements would not be such a serious
problem. However, there are three issues that complicate the story. First, the users will
not be able to tell you what they want. Generally, these are not development people and
they cannot visualize solutions to their problems. They could tell you how they work
right now but they will have no idea how they would work with a new product, even if its
designed were based on exactly how they work today. The second problem is that few
users understand the essence of the jobs they are doing. By that, I mean that they do not
understand the fundamentals of their jobs, so they cannot help you to devise a product
solution that addresses the real operational needs. All they can usually do is help you
define how to mechanize the often manual system that they are currently using. The third
problem is a kind of uncertainty principle. By introducing a new product, you actually
change that user’s environment. Often, this will completely change the way the job
should be done and it could completely obsolete the original requirements.

What these three problems tell us is that your initial definition of the requirements will
almost certainly be wrong. While you must get as close as possible to a usable solution,
you must recognize that the requirements are a moving target that you must approach
incrementally. To produce a truly superior and highly-usable product for a realistic cost
and on a reasonable schedule, you must follow a development strategy and process that
assumes that the requirements will change. This requires that you encourage early
changes and that you develop and test the program in the smallest practical increments.
Also, if possible, get the users to participate in the early testing. Then, when you find
what you did wrong or what your customers could not explain or what the users did not
know, the amount of rework will be small enough to do in a reasonable time. Then you
can quickly take another user checkpoint to make sure you are still on the right track.

These few principles are fundamental to just about every programming job. What is most
interesting is that experienced programmers will generally recognize these principles as
correct, even while they work in an environment that does not apply them. The challenge
that we programmers face is to convince ourselves, our managers, our executives, and
even our customers to devise processes, to plan projects, and to manage our work in a
way that is consistent with these principles. While it might seem simple and easy to
convince people to do something so obvious, it is not. There are many reasons for this,
but the most basic reason is that welcoming early requirements changes exposes our
projects to unlimited job growth, which has historically led to serious schedule overruns.
These are problems that I will address in the next few columns where I discuss the
principles for designing products, guiding projects, leading teams, and training and
coaching the people who do programming work.

36 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For
this column, I particularly appreciate the helpful comments and suggestions of Dan Burton,
Sholom Cohen, Luke Dzmura, Jim Over, Bill Peterson, and Marsha Pomeroy-Huff.

In closing, an invitation to readers

In these columns, I discuss software issues and the impact of quality and process on
engineers and their organizations. However, I am most interested in addressing the issues
that you feel are important. So, please drop me a note with your comments, questions, or
suggestions. I will read your notes and consider them when planning future columns.

Thanks for your attention and please stay tuned in.

Watts S. Humphrey
watts@sei.cmu.edu

About the Author

Watts S. Humphrey founded the Software Process Program at the SEI. He is a fellow of
the institute and is a research scientist on its staff. From 1959 to 1986, he was associated
with IBM Corporation, where he was director of programming quality and process. His
publications include many technical papers and six books. His most recent books are
Managing the Software Process (1989), A Discipline for Software Engineering (1995),
Managing Technical People (1996), and Introduction to the Personal Software ProcessSM
(1997). He holds five U.S. patents. He is a member of the Association for Computing
Machinery, a fellow of the Institute for Electrical and Electronics Engineers, and a past
member of the Malcolm Baldrige National Quality Award Board of Examiners. He holds
a BS in physics from the University of Chicago, an MS in physics from the Illinois
Institute of Technology, and an MBA from the University of Chicago.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 37

The views expressed in these articles are the author’s only and do not represent directly or imply any official position or view of the Software

Engineering Institute or Carnegie Mellon University. This article is intended to stimulate further discussion about this topic.

The Software Engineering Institute (SEI) is a federally funded research and development center sponsored by the U.S. Department of Defense
and operated by Carnegie Mellon University.

® Capability Maturity Model, Capability Maturity Modeling, Carnegie Mellon, CERT, CERT Coordination Center, CMM, and
CMMI are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

SM Architecture Tradeoff Analysis Method; ATAM; CMM Integration; COTS Usage Risk Evaluation; CURE; EPIC; Evolutionary

Process for Integrating COTS Based Systems; Framework for Software Product Line Practice; IDEAL; Interim Profile; OAR;
OCTAVE; Operationally Critical Threat, Asset, and Vulnerability Evaluation; Options Analysis for Reengineering; Personal

Software Process; PLTP; Product Line Technical Probe; PSP; SCAMPI; SCAMPI Lead Assessor; SCAMPI Lead Appraiser; SCE;

SEI; SEI-Europe; SEPG; Team Software Process; and TSP are service marks of Carnegie Mellon University.

TM Simplex is a trademark of Carnegie Mellon University.

38 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

The Good News About COTS
Lisa Brownsword and Ed Morris

You’ve heard the stories. Organizations pin their hopes for improving software systems
on commercial off-the-shelf (COTS) products only to be burned by poor quality, lack of
service, and failures to deliver on time. The propulsion system failure aboard the U.S.
Navy’s guided missile cruiser USS Yorktown is just one example. That failure, which led
to the Yorktown being towed back to port, was attributed to a COTS product that failed
due to a “divide by zero” problem. But it isn’t just the military that has these problems. In
1999, Hershey Food Corporation’s revenue fell 12%, a drop that was largely attributed to
an inability to get products to market in time for Halloween and Christmas. Corporate
insiders blamed the delay on a new installation of a COTS enterprise resource planning
(ERP) system.1

The reaction to these well-publicized failures—particularly in the defense community—is
not unexpected. Programs are hesitant to use COTS products. They don’t want to take the
chance of becoming another sad story.

The truth is, however, that there are a lot of success stories out there. Consider NASA’s
new Control Center System (CCS)—the ground-based command and control system for
the Hubble Space Telescope.2 The CCS unifies the functions for telescope command,
engineering data processing, data archiving, data analysis, spacecraft and ground system
monitoring, and simulation. This replacement system for the original Hubble capability
integrates 30 COTS and GOTS (government off-the-shelf) components with one million
lines of legacy code and one half million lines of custom code.

Because of the ready availability of the COTS and GOTS components, a prototype for
the new system was built in three months. This prototype was invaluable, since it
provided a rapid demonstration of the concepts for the system, the end-to-end flow of
information, and the new user interface. The first production release of the new system
was delivered one year after proof of concept, with many more releases delivered in the
ensuing four years. This represented greater productivity than previous systems. The new
system provides capabilities that the old, primarily custom-coded system could not, while
reducing the number of custom lines of code by more than 50 percent.

1 Hayes, Mary. “Hershey’s Biggest Treat: No Tricks.” InformationWeek. October 29, 2002.

2 Pfarr, T. & Reis, J. E. “The Integration of COTS/GOTS Within NASA’s HST Command and Control System,” 209-221.

Proceedings of the First International Conference on COTS-Based Software Systems (ICCBSS 2002). Orlando, FL, February

4-6, 2002. In Lecture Notes in Computer Science 2255. Berlin: Springer-Verlag, 2002.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 39

NASA has shared a number of factors it considered to be key to its success:

1. NASA established a clear design philosophy favoring the use of COTS products. NASA adopted an
“80-20 rule” that stated that if a COTS or GOTS product met 80 percent of the functional
requirements, it would be adopted pending final approval for deferring the remaining 20 percent of
requirements.

2. NASA employed a soft-ware architecture that supported upgrading or replacing components without
destroying the integrity of the system. NASA accomplished this by encapsulating COTS and GOTS
products behind abstract interfaces that minimize the effect on other system components when a
product or the way it is used changes.

3. NASA developed clear component-selection criteria that allowed it to make COTS and GOTS
selections efficiently, but emphasized hands-on use as the final arbiter for product selection. Products
that passed the initial selection but failed the hands-on evaluation were quickly dropped.

4. NASA hired experts who were knowledgeable about the new products to train personnel in design
and implementation.

5. NASA reevaluates COTS and GOTS products at each product release. The project has found that
some products were successful in the CCS from their initial selection, some were failures and were
replaced, and many fell in between. NASA performs periodic reassessments and reevaluations of
COTS and GOTS products to replace under-performing products with better ones to improve system
capability and long-term viability.

Successful use of COTS products is not limited to the federal sector, either. The Boeing
Company has put together a system to manage its commercial airplane configurations and
parts.1 The system is large and complex, with many interrelationships with other Boeing
business processes and systems. The Boeing system includes several large COTS
applications, COTS infrastructure, plus custom-built integration software and vendor-
supported COTS customizations.

Like NASA, Boeing found that using COTS products changes the way systems should be
built. For Boeing, as for NASA, a strong architecture was a key. Boeing found that it
needed to carefully consider the current and future architectures and direction of COTS
products in making product selections. Boeing also started with a loosely defined,
flexible set of critical requirements—not the carefully detailed set that is often central to
the development of a custom system. The lack of initial rigidly specified requirements
allowed Boeing to use COTS products as is, even when that meant refining requirements
and changing Boeing business processes. Thus requirements were formed through

1 Baker, T. “Lessons Learned Integrating COTS Into Systems,” 21-30. Proceedings of the First International Conference on

COTS-Based Software Systems (ICCBSS 2002), Orlando, FL, February 4-6, 2002. In Lecture Notes in Computer Science

2255. Berlin: Springer-Verlag, 2002.

40 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

negotiation of stakeholder needs and knowledge of the capabilities and embedded
business processes of available COTS products. What also mattered was Boeing’s focus
on identifying rock-solid vendors who offered scalable products that supported Boeing’s
integration standards and were committed to the success of the Boeing system.

NASA and Boeing successfully built complex systems based on COTS products because
they didn’t practice business as usual. They changed their business and engineering
processes to make the best use of the available COTS products. And they recognized the
need for sustained engineering and management effort, such as evaluating new product
releases to determine system impact and actively monitoring emerging technology, to
keep the products and the system current.

These are only two of a growing number of success stories. In fact, even the Hershey
story has a happy ending. A subsequent upgrade to the ERP system has gone smoothly,
with the enhanced capabilities reducing costs and processing times.1 We are always
looking for more success stories, and would appreciate hearing about them from anyone
who is willing to share them with us. If you have a good news story or want to find out
more about the factors that lead to successfully using COTS products, please contact Lisa
Brownsword.

For more information, contact—

Lisa Brownsword

Phone
703-908-8203

Email
llb@sei.cmu.edu

World Wide Web
http://www.sei.cmu.edu/cbs/?ns

1 Weiss, T. R. “Hershey Upgrades R/3 ERP System Without Hitches.” Computerworld, September 9, 2002.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 41

The Acquisition Support Program
By Laura Bentrem

In this era of newly streamlined regulations, everyone involved in U.S. government
acquisition hopes to benefit from a process that is more agile and efficient. Yet the
government’s acquisition, development, and maintenance of software and software-
intensive systems continues to be risky. While some acquisition projects may use
disciplined processes that lead to success, inconsistent software acquisition practices
continue to result in projects that are past due and over budget.

Since its inception, the SEISM has been helping U.S. government acquisition programs in
their efforts to improve their processes and minimize risks. Recently, the SEI formalized
this ongoing support by creating the Acquisition Support Program (ASP), a group
devoted to addressing the unique demands and challenges of acquisition.

The ASP functions as an “experience factory”—a group researching the current state of
acquisition, distilling expertise, documenting best practices, and disseminating results.
Recording the know-how of government acquisition experts is especially crucial today
because many senior government employees will soon be retiring, taking with them
knowledge accumulated through years of experience.

By working directly with key acquisition programs to help them achieve their objectives,
ASP staff members will refine their understanding of the acquisition environment and
improve their ability to characterize that environment for others through best practices
and lessons learned. “Working in this area is not new for the SEI,” says ASP Program
Director Brian Gallagher. “It’s just new to approach it in this way.”

Central to the operation of the ASP are the Chief Engineers, one for the Army, one for
the Navy, one for the Air Force, and one for the Coast Guard. Each Chief Engineer is
responsible for quarterbacking the SEI’s acquisition efforts for their respective service
branch. Equally important, they also are responsible for coordinating across services,
ensuring identification of Department of Defense (DoD)-wide acquisition trends, and
applying common solutions where appropriate.

A second key component of the ASP is the Acquisition Improvement Team (AIT). AIT is
the backbone of ASP, providing the skills and knowledge to execute SEI engagements
with individual programs. Team members leverage their individual specialization and
expertise on cross-service assignments and meet periodically to exchange ideas.

42 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

Rounding out the ASP organization is the Knowledge, Integration, and Transfer team,
whose job is to facilitate the accumulation and dissemination of knowledge through case
studies, lessons learned, courses, and the like.

The ASP’s first task is to establish strategic impact programs (SIPs) with the Army,
Navy, Air Force, and Coast Guard. A SIP is a multi-year program of work, part of the
strategy of a senior acquisition official who is committed to improvement and change
within a particular acquisition community and industry base. The services are eager to
begin work with the ASP. In a November 2002 memorandum, Claude Bolton, currently
assistant secretary of the Army for acquisition, logistics, and technology, announced that
he “chartered the Software Engineering Institute…to be ‘at point’” in a joint effort to
“promote a dramatic improvement in the acquisition of software-intensive systems.”
Bolton was also the keynote speaker at the first annual Acquisition of Software-Intensive
Systems Conference, an SEI-sponsored conference held in Washington, D.C. this past
January.

While the ASP helps acquirers make incremental improvements in the acquisition of
software-intensive systems, it will also benefit SEI technical programs by providing
opportunities to implement and improve new technologies through acquisition pilots. It
has already established such pilots with the Army, Navy, and Air Force. The ASP will
pursue acquisition pilots in cases where the match between an SEI technology and a
government acquisition program presents an opportunity for acquisition-community
learning. Pilots will allow the program to experiment with maturing SEI products and
services in real-world acquirer contexts. Analyzing results and documenting lessons
learned is part of the normal maturation process for SEI technical work, but the ASP also
plans to disseminate these results and lessons to the acquisition community through case
studies, course modules, workshops, publications, technical literature, and conferences.

Some of the ASP’s work will likely be done in conjunction with other organizations that
study acquisition. ASP staff members see opportunities for collaboration with the
Defense Acquisition University (DAU), federally funded research and development
centers, and other organizations working to improve acquisition. Technical staff from the
ASP met with representatives of the DAU early in February 2003 to discuss developing a
community of practice.

The ASP’s broad challenges are to improve the software engineering skills of acquisition
program managers and the acquisition workforce, encourage the use of best practices by
collecting and disseminating lessons learned, and improve the government’s ability to
acquire software-intensive systems. ASP engineers are currently working on
engagements that involve the full spectrum of acquisition activities, from refining the
language in acquisition contracts to continuously identifying and mitigating risk and

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 43

complexity during system development and operational fielding. First and foremost, the
ASP is interested in providing guiding principles for acquisition.

“We’re coming out of an era of process improvement where we’ve gotten quite
disciplined about processes,” said Gallagher. “The challenge is to move in the direction
of reform and embrace these ideas of agility and efficiency, but not throw away the very
discipline that has been so hard won.”

For more information, contact—

Brian Gallagher

Phone
412-268-7157

Email
bg@sei.cmu.edu

World Wide Web
http://www.sei.cmu.edu/programs/acquisition-support/?si

44 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

OCTAVESM Users’ Forum: Helping to Build a
Community of Practice
By Pamela Curtis

Communities of practice—groups of people who share a concern, a set of problems, or a
passion about a topic, and who deepen their knowledge and expertise in that area by
interacting on an ongoing basis1 —are sometimes instrumental in the successful adoption
of a technology. Early adopters may learn as much from sharing lessons learned,
implementation ideas, and other information with one another as they do from the
technology developer. SEISM developers of the Operationally Critical Threat, Asset, and
Vulnerability EvaluationSM (OCTAVESM) method—a method for assembling a
comprehensive picture of an organization’s information security needs—expect this to be
true for its users, particularly because they designed OCTAVE to be highly flexible, and
they encourage users to alter it to meet their needs.

To facilitate interaction among OCTAVE users, the SEI held the first OCTAVE Users’
Forum on September 19–20, 2002, at the SEI offices in Arlington, Virginia. The forum
featured a variety of user presentations highlighting OCTAVE field experience, as well
as SEI presentations on new method artifacts and new and future directions in managing
information security risk.

Thirty-seven representatives from the U.S. Department of Defense (DoD), federal
civilian agencies, academia, and private industry attended this first meeting of the
OCTAVE user community. Attendees included OCTAVE researchers and developers,
people who have implemented OCTAVE in their organizations, OCTAVE transition
partners (organizations that are licensed to provide OCTAVE training and services), and
people who had expressed interest in learning more about OCTAVE. Their organizations
included

• Advanced Technology Institute

• Clark County, Nevada

• Department of Commerce

• Department of Transportation

• General Services Administration

• Library of Congress

1 Wenger, E.; McDermott, R.; & Snyder, W. M. Cultivating Communities of Practice: A Guide to Managing Knowledge. Boston:

Harvard Business School Press, 2002.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 45

• National Center for Manufacturing Sciences

• National Institute of Justice

• Office of the Comptroller of the Currency

• Secure Communications Solutions, Inc.

• Software Engineering Institute

• Sytel, Inc.

• Telemedicine & Advanced Technology Research Center

• U.S. Nuclear Regulatory Commission

• Xceed Consulting

The forum was funded, in part, by the General Services Administration Federal Computer
Incident Response Capability (GSA FedCIRC).

By participating in the forum, attendees met fellow OCTAVE users, heard about the role
of OCTAVE in various sectors, and exchanged ideas about how to tailor the method to
optimize its effectiveness in various organizational contexts. SEI representatives
benefited by obtaining user feedback on OCTAVE.

The forum included moderated sessions on several topics and 10 presentations. Chris
Alberts, lead developer of the OCTAVE method, described the shortcomings that the
OCTAVE team saw in other approaches to security evaluation as it began initial
development of OCTAVE:

• They tend to focus on technology and vulnerability, not on operational risk.

• They don’t make the link among threats, assets, and vulnerabilities and the organization’s
business.

• They don’t provide a single implementation that addresses all operational environments.

These, along with the fundamental problem of information assets being at risk due to
insecure networks and poor organizational practices, became the critical drivers in the
development of OCTAVE.

OCTAVE’s applicability in multiple environments was demonstrated by a panel that
described the deployment of OCTAVE by the Defense Health Information Assurance
Program. According to Jeff Collmann, an associate professor of radiology at Georgetown

46 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

University who is providing project oversight, the goal of the project is to enhance health
information-assurance readiness at all U.S. military treatment facilities. A major element
of the project is DoD compliance with Health Insurance Portability and Accountability
Act (HIPAA) regulations related to the security and privacy of health data. To effect this
extensive OCTAVE deployment, 171 teams from all services and regions have been
trained in the OCTAVE method and have begun performing evaluations at their own
installations. Captain G. Iris Obrams, an M.D. with the U.S. Public Health Service at
Coast Guard Headquarters, described how the Coast Guard’s interdisciplinary teams are
preparing to conduct OCTAVE evaluations at the service’s 32 clinics and 70 afloat and
44 shore-based sick bays. Lieutenant Colonel Ray Green, who leads the DoD HIPAA
data-security effort and is responsible for ensuring that the DoD meets HIPAA
regulations, spoke about his support and sponsorship of OCTAVE as an integral part of
the DoD’s efforts to comply with HIPAA regulations.

Frank Stasa, chief information officer (CIO) for the Pittsburgh Technology Council and
Catalyst Connection, gave a presentation about an OCTAVE-S1 pilot recently completed
by the council. His remarks exemplified how OCTAVE reveals the potential impact of
vulnerabilities on business. The pilot involved the CIO and the chief financial officer
(CFO), as well as key IT staff members. “Including the CIO and the CFO on the team
helped to elevate the importance of information security and make senior management
aware of the critical issues facing us,” said Stasa. Stasa and his team had not been getting
budget increases that they felt were crucial for protecting the council’s information
assets. The OCTAVE program served to demonstrate how compromise of critical
systems would affect the council’s business in areas such as productivity, costs, and
reputation. “As a result, the CFO readily approved the acquisition of critical hardware
that we identified during our workshops,” said Stasa. The needed budget increases were
also approved soon after the pilot.

These and other presentations from the forum are available in PDF format at
http://www.cert.org/octave/forum/agenda.html.

The OCTAVE method’s developers plan to continue to build the community of practice
for OCTAVE. They will be holding the second OCTAVE Users’ Forum within the next
year (details will be posted on the OCTAVE Web site; see URL below) and are
investigating other means of helping OCTAVE users share information. If you have
information you would like to share, please send email to octave-info@sei.cmu.edu and
include the phrase “information sharing” in the subject line.

1 OCTAVE-S is a derivative of OCTAVE that is tailored for small organizations.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 47

For more information, contact—

Bob Rosenstein

Phone
412-268-8468

Email
br@sei.cmu.edu

World Wide Web
http://www.cert.org/octave/

48 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

Taking the Road Less Traveled: The CMMI® Continuous
Approach
By Lauren Heinz

A greater degree of granularity in organizational performance measurement, a more
revealing look at the trouble spots in organizational practices, and a greater focus on
organizational strengths—just a few of the reasons software practitioners give for how a
continuous approach to process improvement is benefiting their organizations.

“It’s like going to a dressmaker and having a dress fitted,” says Mary Anne Herndon, a
process improvement manager for the Aerospace Intelligence and Information Sector
(AIIS) of the Science Applications International Corporation (SAIC). “The continuous
representation tailors easily to an organization’s current state. It helps you figure out
where you are now and where you need to go.”

SAIC’s AIIS represents a growing number of organizations that are selecting the
continuous representation over the staged representation when implementing a Capability
Maturity Model Integration (CMMI) model or performing a Standard CMMI Appraisal
Method for Process Improvement (SCAMPISM) appraisal. Since the release of CMMI
V1.1 in December 2001, approximately one-third of the Introduction to CMMI course
attendees have selected the continuous version of the course and nearly one-third of all
SCAMPI appraisal results reported to the Software Engineering Institute (SEISM) have
been from organizations using the continuous representation.

Although the staged and continuous representations are simply two ways of viewing
CMMI best practices, and the staged approach remains a proven method for achieving
organizational maturity, those with experience using the continuous approach say this
newer and less-documented path to software process improvement is transforming
software businesses and yielding significant results.

Staged Versus Continuous

Generally, organizations new to process improvement prefer a staged approach, which
predefines the process areas required to attain each maturity level (1-5) and thereby
provides a roadmap for institutionalizing best practices. Achievement of a maturity level
is based on achievement of the practices of a set of related process areas. Organizations
that are upgrading from the Capability Maturity Model® (CMM®) for Software, a staged
model, are more likely to prefer staged.

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 49

In the continuous representation, process areas are organized into four process area
categories: Process Management, Project Management, Engineering, and Support. Based
on its business objectives, an organization selects the process areas in which it wants to
improve and to what degree. Instead of maturity levels, capability levels (0-5) are used to
measure improvement. Achievement of a capability level is based on achieving the
practices of a single process area. This also enables an organization to implement process
improvement in different process areas at different rates. For example, an organization
can reach capability level 2 for one process area and capability level 3 for another.

“In moving away from the quest for an overall maturity level,” Herndon says, “the
continuous approach helps an organization focus on its capabilities and meet business
objectives. Concentrating on strengths is a great way to motivate people. Staged tends to
be a one-size-fits-all approach; it’s pass or fail. That doesn’t help you succeed like
knowing what you do well and figuring out how to do it better.”

A Targeted Look

Terry Rout, a manager with the Software Quality Institute at Griffith University in
Australia and chairman of the Australian Committee for Software Engineering Standards,
has been using continuous models for more than eight years. Whether through the CMMI
Product Suite or ISO 15504, Rout says a continuous approach offers the most
enlightening glimpse into how an organization is performing its processes.

“A high degree of granularity occurs naturally from using the continuous framework,”
says Rout, noting that continuous is widely used in Australia and is the preferred standard
for its Department of Defence. “You have to work fairly hard to get those kinds of results
from staged.”

Like most appraisers, Rout presents his findings in an achievement profile—a series of
charts showing the capability levels an organization has achieved in its targeted process
areas. “A well-crafted profile can speak volumes about an organization’s capabilities. A
profile might show that an organization is getting close to capability level 2 in the Project
Management process areas, but is at level 0 in some of the Engineering ones. That’s a
pretty serious warning signal that something needs to change. Otherwise you’re just
establishing great management of rather poor engineering practices,” Rout says. “With
staged, you might very well miss how the weaknesses in your process areas are reflected
across the board.”

50 http://www.interactive.sei.cmu.edu news@sei interactive 1Q 2003

Both Rout and Herndon find value using achievement profiles for discussing problem
areas with upper management. “It makes it very easy to decide where the investments
need to be made, based on the business case,” says Herndon, who is also an authorized
SCAMPI Lead AppraiserSM.

A Case for Using Both

Despite his personal preference for using a continuous approach, Rout says that an
organization may find value in both representations at some point in its improvement
history. “An organization should use the richness of the continuous view, but they should
also consider the priorities of staged,” he said. “In the end, both roads go in the same
direction. It’s just a matter of knowing when to skip back and forth.”

Craig Hollenbach, a technical fellow for the Defense Enterprise Solutions (DES) sector
of Northrop Grumman, sees the reward of applying both principles. “The staged approach
gives you a maturity level, which is easily communicated in the business world,” says
Hollenbach, whose sector was appraised at maturity level 5 at its December 2002
assessment and achieved capability level 5 in nearly all CMMI process areas. “But we
have a lot of projects that perform only a certain part of the life cycle…we have to pare
down the number of process areas we look at and to what extent. This is where
continuous is most appropriate.”

Extending the Continuous Approach

Now that Northrop Grumman DES has reached such a high level of maturity and
capability, Hollenbach is faced with how to keep the momentum going. He anticipates
extending continuous practices to areas outside of the technical arena, such as business
services. “We will keep broadening the scope of improvement,” he says. “In 2000, we
were wondering what to do next. Now that we’re at level 5, we just have to keep using
the tools and processes that got us here to continue to make a difference.”

At SAIC, AIIS is also starting to use the continuous approach as a way to make
connections across the organization, from the technical areas to service units such as
finance and contracts. “Even though the products are different, by applying the same
practices, we are integrating the stovepipes,” Herndon says. “This integration really
promotes communication. Now we have a language that everyone speaks.”

news@sei interactive 1Q 2003 http://www.interactive.sei.cmu.edu 51

Share your Experiences

The SEI is interested in hearing from other organizations that have benefited from using
the continuous (or staged) approach to CMMI. Please contact the SEI to tell us about
your experiences and what you have learned from them.

For more information, contact—

Customer Relations

Phone
412 / 268-5800

Email
customer-relations@sei.cmu.edu

World Wide Web
http://www.sei.cmu.edu/cmmi/?si

