
http://interactive.sei.cmu.edu
Columns

Rethinking the Software
Life Cycle .. 1
Rick Kazman, Robert L. Nord, Mark Klein

Using CMMI: How Is it
Progressing? 7
Mike Phillips

Changing Focus 13
Patricia Oberndorf

Use Care When Reading Email with
Attachments...................................... 17
Lawrence R. Rogers

The Man with the Plan 21
Paul Clements

Some Programming Principles:
Projects ... 25
Watts S. Humphrey

Features

e-RA Method Simplifies Decision Making
for Authentication Requirements 29

New Software Architecture Curriculum
Developed ... 32
Erin Harper

New Acquisition Conference a Hit
with Attendees 35
Janet Rex

A Life-Cycle Approach to
Technology Transition 37
Eileen C. Forrester

Columns: Rethinking the Software Life Cycle
Columns

The Architect

Rethinking the Software Life Cycle
RICK KAZMAN, ROBERT L. NORD, MARK KLEIN

Several architecture-centric analysis and design methods have been created in the past 10 years,
beginning with the Software Architecture Analysis Method, or SAAM. The SAAM inspired the
creation of a number of other methods. The first of these methods created at the Software
Engineering Institute was the Architecture Tradeoff Analysis Method, or ATAM, which has in turn
inspired the Quality Attribute Workshop, or QAW, the Cost-Benefit Analysis Method, or CBAM,
Active Reviews for Intermediate Designs, or ARID, and the Attribute-Driven Design, or ADD,
method.

These methods share not only a common heritage, but also a common set of characteristics aside
from being architecture-centric. For example, they all use scenarios to direct and focus activities in
the methods; and they are all driven by operationalized quality-attribute models. The SAAM was
focused on modifiability. The ATAM focuses on tradeoffs among quality attributes. The QAW
attempts to elicit and accurately document quality-attribute requirements, particularly in the
absence of explicit architecture documentation. The CBAM uses architecture-based information to
determine return on investment of the various architectural strategies being considered. An ARID
looks at the usability of a design. The ADD method shapes design decisions around quality-
attribute considerations. The methods are also all focused on documenting the rationale behind the
decisions made; in this way the rationale serves as a knowledge base on which to base both
existing and future decisions.

In each of these methods there are activities that logically belong to different parts of the
traditional software development life cycle (SDLC). These activities are, however, embedded in
the methods, because the methods have been designed to be performed independently, typically by
a consultant, a quality-assurance group, or a researcher from outside of the developing
organization. Note that being independent is not necessarily a bad thing: many organizations
realize the value of having an outside auditor investigate their internal practices, even when the
auditor’s activities duplicate many of the activities that already take place in the organization. The
outsider brings a fresh perspective, a well-honed set of analytical skills, and is (presumably)
untainted by existing “group-think” or by office politics.

The point here is that these methods have not normally been integrated with each other or
integrated into an organization’s SDLC. As a result of being performed independently, each
method repeats existing effort and must include activities that actually belong, in concept, to
requirements elicitation, or design, or maintenance phases. For example, to analyze an existing
software architecture using the ATAM, one needs to understand the business needs that the system
news@sei interactive http://interactive.sei.cmu.edu 1

Columns: Rethinking the Software Life Cycle
is intended to meet, the requirements, the existing design decisions, and the anticipated changes to
the system that will occur in the maintenance phase. This duplication of effort is appropriate for a
method that is conducted by an outsider, but is inappropriate if the methods are seen as integral to
an organization’s normal development process.

A typical SDLC, as it is practiced in relatively mature software-development organizations, has (at
least) the following activities:

• identification of business needs and constraints

• elicitation and collection of requirements

• architecture design

• detailed design1

• implementation

• testing

• deployment

• maintenance

Of course, this list is not exhaustive, and many of these activities can be broken down into sub-
activities (for example, most of these activities include a documentation sub-activity and an
analysis sub-activity). Also, this list is not to be taken as implying a particular development
process—spiral, waterfall, agile, or any other. The idea here is simply that these are distinct
activities, with their own inputs, outputs, specialists, activities, analysis techniques, and notations
that need to be undertaken in the development of any substantial software-intensive project.

However, as these architecture-centric methods become more widespread, more widely adopted,
and integrated into an SDLC, organizations will inevitably want to tailor them: methods that were
created primarily as single-use insertions by an external organization are not necessarily
appropriate as a part of a stable, ongoing development process. Consequently, organizations that
wish to include elements of quality attribute-based requirements elicitation and gathering, explicit
architecture design, and architecture analysis in their life cycles will be best served if they can do
so “organically”—seamlessly merging appropriate portions of the methods into their SDLCs.

What this means is that the steps and artifacts of the five architecture-based methods listed
above—QAW, ADD, ATAM, CBAM, and ARID—will need to be tailored, blended, and, in some

1. We are using the term “detailed design” here because it is a widely accepted term. It should in no way be taken to

imply that there are no details in architecture design. The architect will definitely have to go into details in some

areas, to specify, for example, the properties of components and their interactions, while detailed design typically is

concerned with algorithms, data structures, and realization.
2 http://interactive.sei.cmu.edu news@sei interactive

Columns: Rethinking the Software Life Cycle

put
cases, removed entirely when the activities of these methods are integrated into an organization’s
existing life cycle.

Merging Methods and Models

In a soon-to-be published technical note,1 we survey the activities of these methods to understand
what they have in common and to propose a means of tailoring the activities so that they can fit
more easily into existing SDLC models.

We can think of the typical life-cycle activities in terms of the five methods mentioned above. In
particular, we want to understand where the activities in the five methods have their major
application and impact. In Table 1, we list which artifacts are inputs to the method, outputs from
the method, or both.

Not surprisingly, the methods focus on the life-cycle stages and artifacts that appear earlier in a
project’s lifetime. This is because these are architecture-based techniques, and an architecture is
the blueprint for a system. Once a project is in implementation, testing, deployment, or
maintenance, the architecture has been largely decided on, either explicitly or implicitly. There is
one exception to this principle: the CBAM may apply to maintenance activities. This is because
substantial changes to the system can be made in maintenance that affect the architecture. The
“Input; Output” annotation under CBAM in this stage indicates this possibility.

Given the information in Table 1, we can now begin to think about placing these methods into a
software development organization’s own life cycle. It is unlikely that any of the methods would

1. Kazman, R.; Nord, R.; & Klein, M. A Life-Cycle View of Architecture Analysis and Design Methods (CMU/SEI-

2003-TN-026).

Table 1:Methods and Life-Cycle Stages

Life-Cycle Stage QAW ADD ATAM CBAM ARID

Business Needs
and Constraints

Input Input Input Input

Requirements Input; Output Input Input; Output Input; Output

Architecture Design Output Input; Output Input; Output Input

Detailed Design Input; Out

Implementation

Testing

Deployment

Maintenance Input; Output
news@sei interactive http://interactive.sei.cmu.edu 3

Columns: Rethinking the Software Life Cycle
be included without alteration because, as stated above, they were meant to be independent
activities performed by outsiders.

Summary

Architecture-based methods can influence a wide variety of activities throughout the SDLC. These
methods have traditionally taken place as independent activities. The relationships between life-
cycle stages and the activities embedded in existing architecture-based methods are summarized in
Table 2.

Table 2:Life-Cycle Stages and Architecture-Based Activities

Life-Cycle Stage Architecture-Based Activity

Business Needs and
Constraints

• Create a documented set of business goals— issues/
environment, opportunities, rationale, and constraints— using a
business presentation template

Requirements • Elicit and document six-part quality attribute scenarios using
general scenarios, utility trees, and scenario brainstorming

Architecture Design • Design the architecture using the ADD method steps

• Document the architecture using multiple views

• Analyze the architecture using some combination of the ATAM,
ARID, and CBAM

Detailed Design • Validate the usability of high-risk parts of the detailed design
using an ARID review

Implementation

Testing

Deployment
4 http://interactive.sei.cmu.edu news@sei interactive

Columns: Rethinking the Software Life Cycle
It might be argued that each of these steps involves additional overhead as compared with the
traditional, non-architecture-aware SDLC. That is true. But the additional encumbrance is more
than repaid by having an architecture that is designed, documented, analyzed, and evolved in a
disciplined way. The alternative to adding these steps to the SDLC is to choose a chaotic approach
to architecture in the SDLC.

For further reading on this topic, including an overview of the five methods and an analysis of how
each one contributes to the SDLC, see A Life-Cycle View of Architecture Analysis and Design
Methods (CMU/SEI-2003-TN-026), which will be published some time this fall.

References

1. Bachmann, F.; Bass, L.; Chastek, G.; Donohoe, P.; & Peruzzi, F. The Architecture-Based
Design Method (CMU/SEI-2000-TR-001). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2000. <http://www.sei.cmu.edu/publications/documents
/00.reports/00tr001.html?si>

2. Barbacci, M.; Ellison, R.; Lattanze, A.; Stafford, J.; Weinstock, C.; & Wood, W. Quality
Attribute Workshops, 3rd ed. (CMU/SEI-2003-TR-016). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 2003.

3. Clements, P. Active Reviews for Intermediate Designs (CMU/SEI-2000-TN-009). Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University, 2000. <http://
www.sei.cmu.edu/publications/documents/00.reports/00tn009.html?si>

4. Kazman, R.; Asundi, J.; & Klein, M. “Quantifying the Costs and Benefits of Architectural
Decisions,” 297-306. Proceedings of the 23rd International Conference on Software
Engineering (ICSE 23). Toronto, Canada, May 12-19, 2001. Los Alamitos, CA: IEEE
Computer Society, 2001.

Maintenance • Update documented set of business goals using a business
presentation template

• Collect use case, growth, and exploratory scenarios using
general scenarios, utility trees, and scenario brainstorming

• Design the new architecture strategies using the ADD method
steps

• Augment the collected scenarios with a range of response and
associated utility values (creating a utility-response curve);
determine the costs, expected benefits, and return on investment
(ROI) of all architectural strategies using the CBAM steps

• Make decisions among architecture strategies based on ROI,
using the CBAM results
news@sei interactive http://interactive.sei.cmu.edu 5

Columns: Rethinking the Software Life Cycle
5. Kazman, R.; Barbacci, M.; Klein, M.; Carriere, S. J.; & Woods, S. G. “Experience with
Performing Architecture Tradeoff Analysis,” 54-63. Proceedings of the 21st International
Conference on Software Engineering (ICSE 21). Los Angeles, CA, May 16-22, 1999. Los
Alamitos, CA: IEEE Computer Society, 1999.

6. Kazman, R.; Abowd, G.; Bass, L.; & Clements, P. “Scenario-Based Analysis of
Software Architecture.” IEEE Software 13, 6 (November 1996): 47-55.

About the Authors

Rick Kazman is a senior member of the technical staff at the SEI, where he is a technical lead in
the Architecture Tradeoff Analysis Initiative. He is also an adjunct professor at the Universities of
Waterloo and Toronto. His primary research interests within software engineering are software
architecture, design tools, and software visualization. He is the author of more than 50 papers and
co-author of several books, including a book recently published by Addison-Wesley titled
Software Architecture in Practice. Kazman received a BA and MMath from the University of
Waterloo, an MA from York University, and a PhD from Carnegie Mellon University.

Robert Nord is a senior member of the technical staff in the Product Line Systems Program at the
Software Engineering Institute (SEI) where he works to develop and communicate effective
methods and practices for software architecture. Prior to joining the SEI, he was a member of the
software architecture program at Siemens, where he balanced research in software architecture
with work in designing and evaluating large-scale systems. He earned a Ph.D. in Computer
Science from Carnegie Mellon University. Dr. Nord lectures on architecture-centric approaches.
He is co-author of Applied Software Architecture and Documenting Software
Architectures: Views and Beyond.

Mark Klein is Senior Member of the Technical Staff of the Software Engineering Institute.
He has over 20 years of experience in research on various facets of software engineering,
dependable real-time systems and numerical methods. Klein's most recent work focuses
on the analysis of software architectures, architecture tradeoff analysis, attribute-driven
architectural design and scheduling theory. Klein's work in real-time systems involved the
development of rate monotonic analysis (RMA), the extension of the theoretical basis for
RMA, and its application to realistic systems. Klein’s earliest work involved research in
high-order finite element methods for solving fluid flow equations arising in oil reservoir
simulation. He is the co-author two books: “A Practitioner’s Handbook for Real-Time
Analysis: Guide to Rate Monotonic Analysis for Real-Time Systems” and “Evaluating
Software Architecture: Methods and Case Studies”.
6 http://interactive.sei.cmu.edu news@sei interactive

Columns: Using CMMI: How Is it Progressing?
CMMI in Focus

Using CMMI: How Is it Progressing?
MIKE PHILLIPS

A central purpose of this column is to keep you updated on the adoption progress we are seeing as
organizations upgrade to CMMI. In this issue, I’ll summarize both what we have seen and what we
see coming in the near future.

Adoption Indicators

One of the difficulties of characterizing the adoption of any SEI technology is to determine what
measures to use. Anecdotal information is commonly used and easy to obtain. For example, one
large aerospace company has banners declaring “CMMI Level 3 in ’03.” But such anecdotes could
lead to the incorrect conclusion that only specific types of organizations are upgrading to CMMI.

The two continuing sources of quality data we have come from our transition partners—qualified
DoD and industry organizations authorized by the SEI to help other organizations adopt new and
improved technologies—and from SEI staff members. Both of these groups provide training and
appraisal services to organizations all around the world and have seen first hand the results of
CMMI use.

I find the most telling measure to be the number of people who have taken the “Introduction to
CMMI” training course. As of the end of July of this year, a total of 8,837 people have taken the
three-day course since its inception a year and a half earlier. This compares with just over 18,000
who have taken the “Introduction to CMM” course, which has been taught for over ten years and
will have its last public offering at the SEI in December. We are pleased with this healthy start in
CMMI course attendance. About 80% of CMMI instruction has been provided by our transition
partners, whose ability to deliver their services at a myriad of sites has had significant impact on
CMMI adoption.

The other indicator provided to the SEI is information about appraisals. The number of SCAMPI
appraisals is also growing nicely, but not at the same rate as course attendance. As of the end of
July, the number of reported Class A SCAMPIs was 133. Last year SCAMPIs represented 13% of
the total SEI-supported benchmark appraisals reported. So far this year, the percentage has risen to
22%. I believe this may slightly understate the pace of transition, since we have de-emphasized the
use of benchmark-scale Class A appraisals early in the process improvement life cycle. Anecdotal
reports of various Class B and C appraisals for initial gap analysis and progress measurement
suggest that the adoption curve is healthy.

We have also begun to examine the appraisal data collected to date. While the information thus far
is based on hundreds rather than thousands of appraisals, the data confirms what we had hoped.
First, the upgrade to CMMI is not a huge hurdle that forces organizations back to a lower maturity
news@sei interactive http://interactive.sei.cmu.edu 7

Columns: Using CMMI: How Is it Progressing?
level. Capability Maturity Model for Software (SW-CMM) users who have achieved a maturity
level and then adopt CMMI typically are able to achieve a CMMI maturity level that matches or
exceeds their SW-CMM maturity-level rating.

Second, the process improvement benefits experienced by those who adopt CMMI typically
exceed, and do not fall below, benefits experienced by SW-CMM users who achieve the same
maturity level.

The amount of data collected thus far is too small to make any similar assertions about the effect of
using CMMI models that include more disciplines, such as integrated product and process
development (IPPD) and/or supplier sourcing. We hope to see evidence that each of these
expansions offers progressively better integration and improved quality.

Some of you have been interested in which of the two representations is used more, staged or
continuous. Data concerning this issue is ambiguous. Those visiting the CMMI Web site select the
continuous representation more often than staged. This pattern suggests that users download the
continuous representation for use. However, the vast majority of appraisals reported to the SEI
have used the staged representation. Most likely this is because the staged approach gives a direct
measure of the familiar maturity level. (While a maturity level is also achieved by using the
continuous representation with equivalent staging, few lead appraisers have reported their findings
that way.) Course attendance is mixed, with a 60/40 split between staged and continuous. I suspect
that the number of course offerings for each representation may cause the only differences, as
attendance seems equally strong in each course offering.

Finally, we’ve found that the CMMI Web site has had 800,000 to 900,000 hits every month for the
past six months. Those hits are originating from countries all over the world—Russia, Indonesia,
Latvia, Argentina, Chile, Italy, Thailand, Israel, and many others—and from a mix of government,
commercial, and academic organizations. One of the most highly accessed Web pages is the page
that provides the Word version of CMMI-SW. Its popularity may result from users viewing it as
the most relevant first step for those upgrading from the SW-CMM.

CMMI Product Suite Updates

When we launched the CMMI V1.1 Product Suite in early 2001, we committed to maintaining the
stability of the current version for at least three years. We maintain our commitment to that
approach. We receive occasional change requests and have regularly updated an errata sheet for
each model that corrects errors found since the model release. There have also been requests to
expand CMMI best practices to cover areas such as safety and security assurance and hardware
engineering. Other requests include expanding best practices to cover more of the product life
cycle, including manufacturing, operations, and disposal.
8 http://interactive.sei.cmu.edu news@sei interactive

Columns: Using CMMI: How Is it Progressing?
To begin considering when and which upgrades should be made to the CMMI Product Suite, we
announced in September a 90-day comment period (http://www.sei.cmu.edu/cmmi
/continuing-improvement.html?si), open to current users of the product suite. Information received
from those using the model today will help guide the plans for corrections and improvements
tomorrow. Besides the input received during the 90-day comment period, we will also consider
change requests submitted since release of V1.1 and input received as part of the CMMI
interpretive guidance project.

If you submitted change requests for CMMI V1.0 or V1.02 and your change requests were not
incorporated, you must resubmit your comments using the public-review process if you continue
to have the same concerns.

The drafting and piloting of proposed changes will take us well into 2005 at the soonest. We
believe that the scope of change for the next update will likely be minor, in which case a version
V1.2 of the model and appraisal method will result. Even if the scope of changes are extensive
enough to result in a V2.0, we are committed to ensuring that these changes will align with the
existing suite so that no repetition of training and deployment, such as those associated with V1.1
and V1.0, will be necessary.

Work in Progress

Initial Coverage for Acquisition
One of the disciplines considered for eventual inclusion in the CMMI Framework is acquisition. In
December 2000, draft process areas in CMMI V1.02d were released as a way of exploring the
possibility of incorporating this discipline. This draft later evolved into the supplier sourcing (SS)
addition to V1.1. The treatment of supplier sourcing consisted of adding a single process area,
Integrated Supplier Management, and informative amplifications of various practices in a few of
the existing process areas. This addition of a discipline increased attention on analyzing and
selecting suppliers and improving customer–supplier interactions. In spite of this step forward for
outsourcing, we determined that further acquisition practices would be needed in the future to aid
the government’s acquisition efforts.

The CMMI Steering Group has recently asked a group to create a document that will provide
broader coverage of acquisition within the CMMI Framework and meet the needs of government
acquirers. This approach will provide opportunities for piloting the best practices in the document
over the next year, so that a future upgrade to the CMMI Product Suite can be considered. As I’ve
mentioned before, this approach allows us to maintain the stability of the V1.1 Product Suite but
expand the communities able to benefit from CMMI.

Technical Notes
It is now easier than ever to find all CMMI-related reports and technical notes on the SEI Web site.
Because of the importance of these reports and technical notes for building the understanding of
news@sei interactive http://interactive.sei.cmu.edu 9

Columns: Using CMMI: How Is it Progressing?
CMMI-related information, we have created a CMMI Web page for CMMI-related reports (http://
www.sei.cmu.edu/cmmi/adoption/reports.html?si).

In the “coming soon” category, we have a few technical notes in various stages of preparation. One
in final editing that may be available very shortly was produced by an organization that provides
engineering services as a major part of its business. The challenges of developing the services,
operating in a dynamic customer environment, and modifying services quickly all make the use of
CMMI practices beneficial, although the existing practices often require some interpretation to
more closely fit the environment of service providers.

Another team is working to characterize the best safety and security engineering practices to
improve the development of safety-critical and security-critical systems. The team has proposed
an approach in which there are two goals in a single process area and amplifications for these two
disciplines that can be added to the informative material in various parts of existing process areas
without changing the goals or practices in those process areas.

Interpretive Guidance
The interpretive guidance project was formed to collect information about how CMMI is being
used by software, information technology (IT), and information systems (IS) organizations.
Information was collected through a variety of channels and sources in the software and IT/IS
communities. An upcoming preliminary report will reveal the data-collection methods used and
the raw data collected. The report will also provide some early insight into the adoption of CMMI
by the organizations that chose to participate.

Some highlights of this report include the following:

• When asked “Has your organization made a decision about adopting CMMI?” 48% of the
respondents stated that adoption was in progress, 15% stated that CMMI was well
institutionalized throughout their organizations, 10% stated that their organizations chose not
to adopt CMMI, and 23% said the decision to adopt had not yet been made.

• When asked if, in their opinion, CMMI is adequate for guiding process improvement, over
77% of respondents agreed or strongly agreed.

• When asked if including both systems engineering and software in a single model has been a
help for them, nearly 65% agreed or strongly agreed with the statement.

The report, titled CMMI® Interpretive Guidance Project Preliminary Report, is due to be released
this fall.

About the Author

Mike Phillips is the Director of Special Projects at the SEI, a position created to lead the Capability
Maturity Model® Integration (CMMI®) project for the SEI. He was previously responsible for
transition-enabling activities at the SEI.
10 http://interactive.sei.cmu.edu news@sei interactive

Columns: Using CMMI: How Is it Progressing?
Prior to his retirement as a colonel from the Air Force, he managed the $36B development
program for the B-2 in the B-2 SPO and commanded the 4950th Test Wing at Wright-Patterson
AFB, OH. In addition to his bachelor’s degree in astronautical engineering from the Air Force
Academy, Phillips has masters degrees in nuclear engineering from Georgia Tech, in systems
management from the University of Southern California, and in international affairs from Salve
Regina College and the Naval War College.
news@sei interactive http://interactive.sei.cmu.edu 11

Columns: Using CMMI: How Is it Progressing?
12 http://interactive.sei.cmu.edu news@sei interactive

Columns: Changing Focus
The COTS Spot

Changing Focus
PATRICIA OBERNDORF

Over the course of the past few years, this column has highlighted a large number of topics
important to the successful use of commercial off-the-shelf (COTS) software in software-intensive
systems. These topics have ranged from evaluating COTS products to issues relating to
modernization of legacy systems. The discourse was generated from the work of the SEI COTS-
Based Systems (CBS) initiative, the focus of which has been to learn, mature, and transition
principles, methods, and techniques for creating systems from COTS products.

The CBS initiative has thoroughly explored a wide range of issues. Our products have included an
instrument and method for CBS risk evaluation (COTS Usage Risk Evaluation, or CURE); a
process for developing and sustaining COTS-based systems (Evolutionary Process for Integrating
COTS-Based Systems, or EPIC); courses for executives, managers, and practitioners; and
technical reports, special reports, and technical notes.

Almost from the outset, we recognized that this tight focus on systems built from COTS products
was to some extent artificial: no one builds systems solely from COTS products. Most systems
today include COTS products, but they also contain components from other sources, such as
legacy systems, a “sibling” system with some similar characteristics built by a sister organization,
and a development effort that creates a functional component not available in the COTS
marketplace. And all of them incorporate some “glue” code that is created to integrate all these
components into a coherent system. It turns out that a good deal of what has resulted from the
close examination of using COTS products applies equally to using any off-the-shelf (OTS)
component—the “c” in “COTS” often has little to do with what is necessary to successfully
integrate an OTS component into a system.

This realization, coupled with a sense that the CBS territory was largely exposed (even if many
problems remain to be solved), has brought us to a crossroads. It is time to step up to the larger
scope of improving the creation and sustainment of systems from any set of largely OTS (but not
just commercial) constituents. This is a transition from a CBS-focused endeavor to one that
considers integration more broadly. It also moves closer to addressing the interoperability and
systems-of-systems issues that are so ubiquitous in the world of software engineering today and
that are causing so many headaches in so many software projects.

Thus we are announcing the transformation of the CBS initiative into the Integration of Software-
Intensive Systems (ISIS) initiative starting in October 2003. While the detailed plans are still
taking shape as of this writing, we can outline the intended start and direction.
news@sei interactive http://interactive.sei.cmu.edu 13

Columns: Changing Focus
One part of the initial effort will be to work on terminology and basic concepts: while the essential
notions of “integration” and “interoperability” are shared throughout the engineering community,
we see the need for greater precision. For instance, are these terms the same? If not, what
distinguishes them? (And if they really do connote the same thing, why do we all insist on using
them as though they were distinct?)

The rest of the initiative and its work will be founded on several bases in addition to this
definitional one. First, we are not intending to relinquish all of the intellectual currency we have
gained through our work in COTS-based systems; we intend to put the wisdom we have gained to
use wherever appropriate. Second, we have the great benefit of inheriting the work of several
research and development projects that have been underway at the SEI for the past year. Perhaps
the most significant of these is an effort in system-of-systems interoperability (SOSI); this research
effort will provide a head start for our work in understanding the basic issues in interoperability
across multiple systems. Another R&D effort during this past year focused on sustainability, and
we intend to leverage that work particularly as we grapple with the maintenance problems that
confound so many systems developers today: even if interoperability can be achieved between and
among systems, and even if we can coerce two or more systems to behave the way we want them
to, how do we manage to keep that interoperation going as these systems evolve? How do we cope
when components—whether COTS or other OTS—are constantly being upgraded, refreshed, and
retired, outside the control of the sustaining agency?

We intend to place a primary focus on the study of existing and planned systems of the U.S.
Department of Defense (DoD) and other large organizations, examining them for identification of
the important integration problems, for successful methods and techniques that are in use, and for
lessons learned that can be shared with others. We will also explore more detailed integration and
interoperability techniques, those already in use, and others that may need to be created and
matured. We will explore current practice particularly in the areas of component evaluation,
architectural qualities, opportunistic evolution, and the management of assumptions. We will also
investigate techniques for rapid integration of systems. Another path will ensure that metrics
considerations are a part of this work from the outset. And we will examine applicable DoD
policies that may foster—or inhibit—the achievement of a desired state of integration or
interoperability.

We will consider the proposition that full integration, especially at the system-of-systems
interoperability level, depends as much on integration at the programmatic level as on detailed
engineering methods and techniques. We expect to explore the use of an acquisition modeling
approach to compare the acquisition strategies and plans of two programs and determine how
adjusting and harmonizing those strategies and plans can improve program-to-program (and
therefore system-of-systems) integration.
14 http://interactive.sei.cmu.edu news@sei interactive

Columns: Changing Focus
We are excited about this enlargement of scope and the opportunity to build on all of the CBS
work to create solutions for a broader range of systems. While the SEI will continue to support and
transition the results of the CBS initiative, the readers of this column can look forward to articles
that explore problems and solutions regarding integration and interoperation. In keeping with this
change, we will retire the “COTS Spot” name.

As for our new initiative, we wryly admit that with a name like “ISIS” we could be in for a bit of
ribbing: how many of our colleagues can claim the protection of an ancient Egyptian goddess? But
for the purpose of this venue, we have decided that a name that is a bit more expressive would be
appropriate. So starting in the next issue, look for the new column called “Eye on Integration.”
We’re looking forward to an exciting time!

About the Author

Tricia Oberndorf is Director of the Dynamic Systems Program at the Software Engineering
Institute (SEI). She has been a principal of the COTS-Based Systems Initiative and concentrates
on the investigation of issues in integration and acquisition of systems from commercial and other
off-the-shelf components. Early her career focused on the investigation of integration and open
systems questions, primarily in the context of computer-aided software engineering environments.
Prior to the SEI, she was with the Navy for more than 19 years. Oberndorf has co-authored a book
titled Managing Software Acquisition: Open Systems and COTS Products. She received an MS in
Computer Science from UCSD and a BS in Computer Science from Oregon State University.
news@sei interactive http://interactive.sei.cmu.edu 15

Columns: Changing Focus
16 http://interactive.sei.cmu.edu news@sei interactive

Columns: Use Care When Reading Email with Attachments
Security Matters

Use Care When Reading Email with Attachments
LAWRENCE R. ROGERS

You probably receive lots of mail each day, much of it
unsolicited and containing unfamiliar but plausible return
addresses. Some of this mail uses social engineering1 to
tell you of a contest that you may have won or the details
of a product that you might like. The senders are trying to
encourage you to open the letter, read its contents, and
interact with them in some way that is financially
beneficial—to them. Even today, many of us open letters
to learn what we've won or what fantastic deal awaits us.
Since there are few consequences, there's no harm in
opening them.

Email-borne viruses and worms operate much the same way, except that there are consequences,
sometimes significant ones. Malicious email often contains a return address of someone we know
and often has a provocative subject line. This is social engineering at its finest—something we
want to read from someone we know.

Email viruses and worms are common. If you've not received one, chances are you will. Here are
steps you can use to help you decide what to do with every email message with an attachment that
you receive. You should only read a message that passes all of these tests.

1. The Know test: Is the email from someone that you know?

2. The Received test: Have you received email from this sender before?

3. The Expect test: Were you expecting email with an attachment from this sender?

4. The Sense test: Does email from the sender with the contents as described in the Subject line
and the name of the attachment(s) make sense? For example, would you expect the sender—
let's say your mother—to send you an email message with the subject line “Here you have,
;o)” that contains a message with attachment—let's say AnnaKournikova.jpg.vbs? A message
like that probably doesn't make sense. In fact, it happens to be an instance of the Anna
Kournikova worm, and reading it can damage your system.

1. Social engineering is the art and science of getting people to comply with your wishes. It is not a method of mind

control, it will not enable you to get people to perform tasks wildly outside of their normal behavior, and it is far

from foolproof. (From http://packetstormsecurity.nl/docs/social-engineering/aaatalk.html.)
news@sei interactive http://interactive.sei.cmu.edu 17

http://packetstormsecurity.nl/docs/social-engineering/aaatalk.html
http://packetstormsecurity.nl/docs/social-engineering/aaatalk.html

Columns: Use Care When Reading Email with Attachments
5. The Virus test: Does this email contain a virus? To determine this, you need to install and use
an anti-virus program. That task is described in Task 1, “Install and Use Anti-Virus Programs,”
of Home Computer Security (http://www.cert.org/homeusers/HomeComputerSecurity/#1).

You should apply these five tests—KRESV—to every piece of email with an attachment that you
receive. If any test fails, toss that email. If they all pass, you still need to exercise care and watch
for unexpected results as you read it.

Now, given the KRESV tests, imagine that you want to send email with an attachment to someone
with whom you’ve never corresponded. What should you do? Here’s a set of steps to follow to
begin an email dialogue with someone.

1. Since the recipient doesn’t already Know you, you need to send him or her an introductory
email. It must not contain an attachment. Basically, you’re introducing yourself and asking
permission to send email with an attachment that the person may otherwise be suspicious of.
Tell the recipient who you are and what you’d like to do, and ask for permission to continue.

2. This introductory email qualifies as the mail Received from you.

3. If the recipient responds, honor his or her wishes. If he or she chooses not to receive email
with an attachment from you, don't send one. If you don’t hear from the recipient, try your
introductory email one more time.

4. If the recipient accepts your offer to receive email with an attachment, you are free to send it.
The recipient now Knows you and has Received email from you before. He or she will also
Expect this email with an attachment, so you've satisfied the first three requirements of the
KRESV tests.

5. Whatever you send should make Sense to the recipient. Don't use a provocative subject line or
any other social engineering practice to encourage the person to read your email.

6. Check your attachment for Viruses before sending it. Having gained the trust of the recipient,
you don’t want to destroy it by inadvertently sending a contaminated attachment.

The KRESV tests help you focus on the most important issues when sending and receiv-
ing email with attachments. Use it every time you send email, but be aware that there is no
foolproof scheme for working with email, or security in general. You still need to exercise
care. While an anti-virus program alerts you to many viruses that may find their way to
your computer, there will always be a lag between when a virus is discovered and when
anti-virus program vendors provide the new virus signature. This means that you shouldn’t
rely entirely on your anti-virus programs. You must continue to exercise care when read-
ing email.

Use the checklist (http://www.cert.org/homeusers/HomeComputerSecurity/checklists/
checklist3.pdf) from Home Computer Security to help you make decisions about opening
email attachments.
18 http://interactive.sei.cmu.edu news@sei interactive

http://www.cert.org/homeusers/HomeComputerSecurity/checklists/checklist3.pdf
http://www.cert.org/homeusers/HomeComputerSecurity/checklists/checklist3.pdf

Columns: Use Care When Reading Email with Attachments
About the Author

Lawrence R. Rogers is a senior member of the technical staff in the Networked Systems
Survivability Program at the Software Engineering Institute (SEI). The CERT Coordination Center
is a part of this program. Rogers’s primary focus is analyzing system and network vulnerabilities
and helping to transition security technology into production use. His professional interests are in
the areas of the administering systems in a secure fashion and software tools and techniques for
creating new systems being deployed on the Internet. Rogers also works as a trainer of system
administrators, authoring and delivering courseware. Before joining the SEI, Rogers worked for
10 years at Princeton University. Rogers co-authored the Advanced Programmer’s Guide to UNIX
Systems V with Rebecca Thomas and Jean Yates. He received a BS in systems analysis from
Miami University in 1976 and an MA in computer engineering in 1978 from Case Western
Reserve University.

This article is adapted from Task 3 in Home Computer Security, which can be found at http://www.fedcirc.gov/
library/documents/homeusers/index.html and http://www.cert.org/homeusers/HomeComputerSecurity/. This
work was funded by the General Services Agency of the U.S. Government.
news@sei interactive http://interactive.sei.cmu.edu 19

http://www.fedcirc.gov/library/documents/homeusers/index.html
http://www.fedcirc.gov/library/documents/homeusers/index.html
http://www.cert.org/homeusers/HomeComputerSecurity/
http://www.cert.org/homeusers/HomeComputerSecurity/

Columns: Use Care When Reading Email with Attachments
20 http://interactive.sei.cmu.edu news@sei interactive

Columns: The Man with the Plan
Software Product Lines

The Man with the Plan
PAUL CLEMENTS

One of the crucial aspects of getting a software product line production capability up and running
is to synchronize the production of the core assets with the production schedules of the products
that need to use them. At the heart of the problem is knowing which core assets need to be
produced first, and channeling all of the product-builders’ needs and demands through a
disciplined process that results in a prioritization that is optimal for the entire product line, as
opposed to any one product. For this process to work, planning is essential.

In October of 1999 I went to visit the software core asset manager for a product line effort we were
helping to get off the ground. It had been a few months since my last visit, and in the interim the
product line effort had undertaken a massive and detailed planning effort. The manager wanted to
show me the results. “I have to give my manager credit,” he said, referring to the overall product
line manager. He began unrolling a cylinder of paper over a conference table, spreading out a sheet
roughly the size of a queen-size bed, covered with an enormous PERT chart. “He asked me if it
would be worthwhile to hire a management consultant to help us build this project plan for the core
assets and keep it up to date. I said ‘Sure, why not?’ Since then, the guy has worked full time on-
site for a week every other week for several months.”

A full-time management consultant hired to help with planning sounded expensive, if not
extravagant. Had it paid off?

“I can’t believe what a difference it’s made,” he said. “Just this week, I’ve had four or five product
managers come to me and say they needed to have a particular task moved over here” – with a
sweeping motion of his hand he indicated the left side of the huge chart, home to the earliest tasks–
“and they needed it now.” He smiled–rather serenely, I noticed. “I say, ‘Well, there are about 2,000
tasks in the plan. Yours is one. We can move it, but it’s going to affect everything else. We’ll have
to see if that’s what management wants.’”

This resonated immediately. Almost three years earlier we had performed a risk evaluation at this
organization, and one of the most critical risks to their ambitions of launching a product line was
lack of planning. Project engineers intent on getting a particular product out the door as soon as
possible would make heated demands on the newly-formed, embryonic, and hopelessly
overworked core asset team. When they balked, the project engineer could point to a deadline,
whether real or invented, whereas the core asset team could point to nothing. One of the risk
evaluation participants lamented, “We never had enough information to be able to justify a ‘no’
answer.”
news@sei interactive http://interactive.sei.cmu.edu 21

Columns: The Man with the Plan
Not that “no” was anyone’s goal. But some well-placed “no”s will keep an organization focused
on the long-term product line goals and not let them get trodden over by short-term single-project
concerns. Learning how and when to say “no” is a big part of product line culture.

And that wasn’t all. The manager went on to explain that his consultant would visit the product
development, systems engineering, and hardware engineering groups to understand the inter-group
dependencies and account for them in the core asset software plan. Groups who had poor plans of
their own could not justify the arbitrary deadlines they once were able to impose on the core asset
group. The message was “When you understand what you really need and why you need it, come
see us and we’ll see what we can do to help you. Until then, poor planning on your part does not
constitute an emergency on our part.” It was a message that was never delivered explicitly; it never
had to be.

As we went through the plan, I noticed something I hadn’t heard before. He told me he thought
that the software core assets were going to be ready sometime in 2001.

“Really?” I said. “The last I heard, you were on the hook to deliver those this spring.”

He nodded. “April 2000,” he agreed. That was only six months hence.

“And now not until 2001?”

“Yep.”

“What happened?”

With another sweep of his hand, he indicated the leftmost edge of his furniture-sized PERT chart,
where there dwelled a column of blue boxes indicating dependencies on external projects such as
the systems engineering group or the hardware selection group. “These won’t be ready in time,” he
said, trying very hard to suppress a grin.

I thought a minute. “There’s no way that you would have been allowed to slip your schedule
almost a year without this plan, is there?”

“Nope,” he said, grin no longer suppressed. “Now we’re going to get to do it right.”

The point, as we both knew, is not that a year delay in the product line was a thing to be smug
about. But since the dependencies really did exist, the delays would have occurred anyway. But
they would have occurred maybe a month at a time, each time precipitating unpleasant surprise,
finger-pointing, hand-wringing, disappointment, and (more than likely) management pressure that
intensified each time, to no good end. The plan had bought the core asset group the time it would
have had anyway, but without planning that time would have arrived in jerky four-week chunks
and not have been used to best advantage.
22 http://interactive.sei.cmu.edu news@sei interactive

Columns: The Man with the Plan
If the truth will set you free, then I was looking at a very liberated software core asset manager.

Besides uncovering the truth, planning had another ironic side effect. Considered a way to let the
core asset group to say “no,” planning now let them avoid having to. The message is one of
cooperation, not confrontation:

• “We’ll happily move your task up—after all, we’re here to serve--but here are the
ramifications. Let’s see if the product line manager agrees with those effects wrought on other
development groups and the product line itself.”

• “We’ll happily move your task up. Show me in your plan where it feeds in to a critical path so
we can agree on the timing.”

• “We’re all ready to produce the core assets in the amount of time we promised, but we can’t
make progress until we get the following information from the following groups.”

“That consultant makes a lot of money,” the manager volunteered, rolling up the chart. I knew the
manager was talking in terms of a per-hour rate, and consultants being consultants, I had no doubt
that the rate was breathtaking. But if we were measuring the serenity that this information
imparted to the core asset group, a serenity that I had not observed heretofore in this manager, then
I got the distinct impression that the manager thought the consultant was not overpaid at all. I was
inclined to agree.

About the Author

Dr. Paul Clements is a senior member of the technical staff at Carnegie Mellon University's
Software Engineering Institute, where he has worked for 8 years leading or co-leading projects in
software product line engineering and software architecture documentation and analysis.

Clements is the co-author of three practitioner-oriented books about software architecture:
Software Architecture in Practice (1998, second edition due in late 2002), Evaluating Software
Architectures: Methods and Case Studies (2001), and Documenting Software Architectures: View
and Beyond (2002). He also co-wrote Software Product Lines: Practices and Patterns (2001), and
was co-author and editor of Constructing Superior Software (1999).In addition, Clements has also
authored dozens of papers in software engineering reflecting his long-standing interest in the
design and specification of challenging software systems.

He received a B.S. in mathematical sciences in 1977 and an M.S. in computer science in 1980,

both from the University of North Carolina at Chapel Hill. He received a Ph.D. in computer sci-

ences from the University of Texas at Austin in 1994.
news@sei interactive http://interactive.sei.cmu.edu 23

Columns: The Man with the Plan
24 http://interactive.sei.cmu.edu news@sei interactive

Columns: Some Programming Principles: Projects
Watts New?

Some Programming Principles: Projects
WATTS S. HUMPHREY

This is the third in a series of columns on programming principles. The first column in March
discussed some general principles of programming, with particular emphasis on the changing and
ill-defined nature of software requirements. The second column in June addressed those software
principles that relate to the nature of our products. These principles concern the fact that our
products are intangible, can last essentially forever, and are increasingly important to our
businesses and to society in general.

In this column, I discuss the principles that relate to software engineering projects. Many of these
principles are common to engineering projects of all kinds, but software projects present some
issues that make our work uniquely challenging and rewarding. In discussing project principles, it
is important to start with the fundamental purpose or objective of most software projects. This is to
develop or enhance a product to meet a business need. In fact, this defines the following important
principle about almost any software project.

The principal objective of almost all software projects is to meet a business need.

This means that the schedule, cost, and quality of the work is of paramount importance. Therefore,
in addressing the principles that govern software projects, I will talk about schedule, cost, and
quality. Of course, by quality, I refer to the ability of the product to reliably produce the user’s
desired results. While there are many other important project considerations, they all relate directly
or indirectly to schedule, cost, and quality performance. In closing, I will comment on the benefits
of successful projects and the characteristics of project success from both a business and an
engineering perspective.

Project Schedule Performance

Project schedule performance has three interesting characteristics. First, with few exceptions, if
you don’t meet the committed schedule or a revised schedule that everyone knows about and has
previously agreed to accept, your project will not be judged fully successful. In other words,
schedule performance comes first. For example, in assessing the best projects, any that are late,
even by only a few days or weeks, never make it to the top of the list.

Second, and particularly for projects that last for more than a few weeks, the important
stakeholders need to know where you stand and if you are likely to finish on time. The end users
need to make installation and conversion plans, the testers need to schedule their resources and
facilities, and management needs to know if there will be any business problems or if they will
have to step in to accelerate or redirect the work.
news@sei interactive http://interactive.sei.cmu.edu 25

Columns: Some Programming Principles: Projects
Keeping managers and customers properly informed requires accurate and timely status reports.
This is the most common area where software projects run into difficulty. Since software engineers
rarely know precisely where they stand against their schedules, they cannot make a convincing
report on their status or accurately forecast when they will finish. From a management perspective,
this proves that they do not know how to manage their work. This leads to distrust, management
meddling, and often even to project redirection or cancellation. In fact, I have seen management
interference destroy projects that otherwise would have been reasonably successful, all because of
poor status-tracking and reporting.

Third, schedule performance by itself is not personally rewarding. While it is essential to meet
other people’s criteria for project success, the satisfaction that comes from meeting a schedule is
ephemeral. After a rather brief period, management’s reaction will become “So what was the big
deal?” You just did what you said you would do. Consider schedule performance like a down
payment: it is essential to get into the game and it will improve your personal reputation with
management, but, by itself, it will not produce lasting rewards or personal satisfaction.

Project Cost Performance

Most engineers feel that if they meet the schedule, any cost overruns will be small and not worth
worrying about. But that is becoming less and less true. As many software projects last longer and
become more expensive, both cost and schedule management are increasingly important. To see
why, suppose that you were building a new house and that the builder assured you that he would
finish on schedule. Then, just before the final closing, he told you that your changes had cost more
than expected and that he had to pay some overtime to finish on the promised date. The bill is
therefore $50,000 more than you had previously agreed. This would likely cause a serious
problem. The mortgage commitment probably would not cover the added costs and you probably
don’t have that kind of money lying around. While meeting the schedule was nice, the cost overrun
could easily be a deal breaker.

Cost is equally important for software work. However, the time to address cost problems is when
you first detect them, not at the end when no one has any flexibility. If your customer wants a
change, if you have technical problems, or if your original estimates were way off, you should
figure out what the job is now likely to cost and get agreement before you proceed with the work.
While this will involve lots of nitty debates during the project, it will avoid the big cost surprises at
the end. When you are at it, also make sure that you put all of these cost negotiations and
agreements in writing.

Of course, the problem that cost management presents for most software projects is that we rarely
know enough about the costs of our work to estimate the impact of small changes. This again is a
fairly unique problem for software, but it is a problem we must learn to address if we are ever
going to effectively manage the costs of our work.
26 http://interactive.sei.cmu.edu news@sei interactive

Columns: Some Programming Principles: Projects
Project Quality Performance

While cost and schedule performance are important, our product must work. Also, cost and
schedule performance are not, in the long run, satisfying from an engineering point of view. We
like to build great products. If you finished development on schedule and within planned costs but
the product was a disaster, the brief glory you got from delivering on time would quickly fade.
While being known for meeting schedules is important, being known as the developer of a poor-
quality product is an engineering kiss of death.

The world is changing and the importance of delivering quality products will only increase. After
they have lived through a few software disasters, many software developers properly conclude that
it is better to deliver good products late than to produce poor products on time. This strategy,
however, will continue to have business problems. The engineers who get ahead in the future are
almost certain to be those who deliver quality products on time and for their committed costs. If no
one in your organization can consistently do this, there are lots of organizations all over the world
that would love to take your place. Many of these organizations are already demonstrating the
ability to do superior work on schedule and they are growing very quickly. So, if you want to keep
your job, it would be a good idea to learn how to meet both the business and technical needs for
your products.

Project Success Criteria

The real satisfaction we get from our work is the thrill of working on a great team, creatively using
the latest technology, and producing superior products that truly meet our users’ needs. As
engineers, we are creators and we want our creations to be accepted, used, and appreciated. This
requires quality products. In short, the truly successful and rewarding projects of the future will be
those that produce quality products on schedule and for their committed costs. These are the only
projects that will consistently satisfy the engineers, their managers, and the users.

The criteria that engineers and managers use for judging project success historically have been
very different. As I will discuss in the next column, it is important that we learn to consistently
meet both management’s success criteria as well as our own. The key point to remember, however,
is that management decides who to hire and how much to pay for our work. This means that we
must meet management’s criteria if we want to get ahead. In the next column, I will conclude this
series on programming principles with a discussion of the perceptions that engineers and managers
have about project success and what this means for each of us.

Acknowledgements

In writing papers and columns, I make a practice of asking associates to review early drafts. For
this column, I particularly appreciate the helpful comments and suggestions of Dan Burton, Don
Firesmith, Marsha Pomeroy-Huff, Julia Mullaney, Bill Peterson, and Alan Willett.
news@sei interactive http://interactive.sei.cmu.edu 27

Columns: Some Programming Principles: Projects
In closing, an invitation to readers

In these columns, I discuss software issues and the impact of quality and process on engineers and
their organizations. However, I am most interested in addressing the issues that you feel are
important. So, please drop me a note with your comments, questions, or suggestions. I will read
your notes and consider them when planning future columns.

Thanks for your attention and please stay tuned in.

Watts S. Humphrey
watts@sei.cmu.edu

About the Author

Watts S. Humphrey founded the Software Process Program at the SEI. He is a fellow of the
institute and is a research scientist on its staff. From 1959 to 1986, he was associated with IBM
Corporation, where he was director of programming quality and process. His publications include
many technical papers and six books. His most recent books are Managing the Software Process
(1989), A Discipline for Software Engineering (1995), Managing Technical People (1996), and
Introduction to the Personal Software ProcessSM (1997). He holds five U.S. patents. He is a
member of the Association for Computing Machinery, a fellow of the Institute for Electrical and
Electronics Engineers, and a past member of the Malcolm Baldrige National Quality Award Board
of Examiners. He holds a BS in physics from the University of Chicago, an MS in physics from
the Illinois Institute of Technology, and an MBA from the University of Chicago.
28 http://interactive.sei.cmu.edu news@sei interactive

Features: e-RA Method Simplifies Decision Making for Authentication Requirements
Features

e-RA Method Simplifies Decision Making for
Authentication Requirements

How can the U.S. government determine how far it should go to ensure that the people using its
Internet sites are who they say they are? On which sites should the government use the most
sophisticated and expensive technology to authenticate users? On which sites can it employ
simpler solutions?

A technique developed by an SEI team enables organizations to analyze their own authentication
risks and requirements for their Internet sites, without having to call in authentication experts.

The technique, called e-RA, was developed for the General Services Administration’s Office of
Electronic Government by an SEI team consisting of Rich Caralli, Audrey Dorofee, Eileen
Forrester, Bill Wilson, Bradford Willke, and Erin Whiteman. The term “e-RA” is short for “e-
authentication risk and requirements assessment.” It is a technique to elicit requirements for
authentication for transaction-based systems, based on the risks to those systems and to users. The
purpose of e-RA is to guide the selection of an appropriate level of authentication that will enable
the system to resist threats to data, users, and organizations that could result from unauthorized
system transactions.

Common technology-centric approaches—such as, “just use public key infrastructure” or “user id
and password should do it”—may be either too much or too little. A solution that is too much for
the risks involved could be costly and tough to implement, manage, and maintain. It could also
present an unnecessary barrier for intended users. However, a solution that is too little will not
provide enough protection, resulting in dire consequences for the organization, and possibly users.

The government could have approached the problem in a number of ways, the SEI’s Caralli says.
“You could look at the available authentication technologies and just apply one or more of them,
which might require that each and every user get a $20 certificate and install it on his or her
computer.” Instead, the SEI team developed an approach to discover the risks of unauthorized use
in a range of scenarios covering 22 electronic-government, or “e-government,” initiatives
comprising government-to-government, government-to-business, government-to-citizen, and
internal government transactions. Examples of transactions include government travel processing,
inquiries about social security benefits, and filing grant applications.

After conducting the assessment, organizations can say accurately, “this is what we need to avoid,
and it takes this level of authentication to avoid it,” Caralli says. “They can make decisions based
on risk, then decide which technology is the most cost effective.”
news@sei interactive http://interactive.sei.cmu.edu 29

Features: e-RA Method Simplifies Decision Making for Au-
Or, the organization might decide to change the Web site, says Mark Liegey, a program analyst
with the U.S. Department of Agriculture (USDA). Liegey was the team lead for risk assessment
for the e-government e-authentication initiative, which is part of the President’s Management
Agenda and promotes the reuse of credentials across government. “The e-RA approach gives us
the opportunity to think about whether there are other ways to reduce risk than with an expensive
solution,” Liegey says. “If the e-RA approach shows that a transaction exposes a user’s social
security number, we might ask whether we even need to ask for the social security number.”

e-RA Assessments

An e-RA assessment is usually performed by using the e-RA database for data collection and
analysis. Organizations perform four major activities in an e-RA assessment. They

1. record information about their e-government initiative

2. set risk tolerances for their organization

3. identify the transactions of their system or initiative

4. analyze those transactions for risks related to authentication in order to produce requirements

Risk-tolerance criteria are benchmarks or measures against which the organization can evaluate
the consequences of unauthorized transactions. The same consequence could mean different things
to different organizations. The organization develops its own weighting factors to describe what is
important and to determine the consequences and impacts that it most wants to avoid.

Transactions are the vehicle for creating system data, inquiring on it, modifying it, or deleting it.
After conducting an e-RA assessment, a system owner has a mapping of each transaction to an
authentication level. This mapping can be used to develop authentication requirements and to then
choose and implement technical and other operational solutions for authentication.

Each type of transaction (create, inquire, modify, and delete) usually maps to a specific type of
undesired outcome if an unauthorized user executes it:

• Create transactions permit data to be recorded or documented. Unauthorized use can result in
the creation of data that is misleading, fraudulent, or used for unintended purposes. The
creation of unauthorized data can interfere with the authorized use of existing data.

• Inquire transactions typically provide access to view data. Unauthorized use can result in
disclosure of data to users other than the owner.

• Modify transactions allow the modification of existing data. Unauthorized use affects the
integrity of the data and the ability to use it for the purpose intended by the owner or other
authorized users.

• Delete transactions allow data to be deleted temporarily or permanently. Unauthorized use
causes the data to be unavailable to the owner and other authorized users.
30 http://interactive.sei.cmu.edu news@sei interactive

Features: e-RA Method Simplifies Decision Making for Authentication Requirements
Transition to Broad Use

The USDA’s Liegey says the government got a better-codified and simpler solution than anyone
expected. “We originally wanted the SEI to figure out a technique for doing authentication
assessments and then teach us to do the assessments. So it started out being very expert-driven. But
every time we did a pilot, we streamlined the process and realized it didn’t have to rely on hands-
on expertise from the SEI for every assessment. Instead, the SEI experts could provide us with a
tool to automate the process. From a transition point of view, that’s one of the most exciting things
about this project. We got to something suitable for broad use in the federal government, and we
got more than we expected.”Liegey expects that the e-RA technique will become a
recommended best practice for federal agencies.

The e-RA tool and the <i>e-Authentication Risk and Requirements Assessments Guide</i> are
available for download from the governments e-Authentication Web site.1

Forrester says the team plans to study the technique to see if a similar risk-based approach can be
used for requirements other than authentication. The team will be writing a technical report to
describe how e-RA was developed. The e-RA team welcomes inquiries about e-RA, the technical
report, or the potential for other risk-based approaches to requirements elicitation.

For more information, contact—

Bob Rosenstein

Phone
412-268-8468

Email

br@sei.cmu.edu

1. http://www.cio.gov/eauthentication/
news@sei interactive http://interactive.sei.cmu.edu 31

Features: New Software Architecture Curriculum Developed
New Software Architecture Curriculum Developed
ERIN HARPER

Based on decades of experience with software-intensive systems and supported by four widely
acclaimed books in the SEI Addison-Wesley Series, the SEI has developed a software architecture
curriculum.

The six courses and three certificate programs that make up the curriculum equip software
professionals with state-of-the-art practices for designing, documenting, evaluating, and
implementing software architectures.

Because a software architecture acts as the blueprint for a system and for the project that develops
that system, getting it right is imperative. An architecture is “right” if it meets the behavioral and
quality-attribute goals (such as performance or security) defined for the system, which will in turn
help an organization reach its broader business goals. “If you are responsible for this critical
artifact but lack the knowledge or point of view needed to develop it, the system’s stakeholders
will ultimately suffer in some way,” says Mark Klein, a member of the SEI’s technical staff who
helped develop the curriculum. Much of the technology taught in the curriculum originated within
the SEI. “Every instructor was instrumental in the development of the technology we’re teaching,
and many of them literally wrote the book on the subject,” says Paul Clements, another SEI staff
member who contributed to the development of the curriculum.

The Courses

The curriculum is designed so that participants can take single classes in their areas of interest or
complete one or more of the three certificate programs.

The course Software Architecture: Principles and Practices teaches participants about the concept
of software architecture—defined as the structure or structures of a system, comprising software
elements, the externally visible properties of those elements, and the relationships among them.
Based on the book Software Architecture in Practice, 2nd Edition, the course emphasizes the
importance of the business or mission context in which a system is designed.

The Documenting Software Architectures course provides in-depth coverage of effective software
architecture documentation practices. Participants learn how to produce a comprehensive
documentation package useful to many different stakeholders, including developers, managers,
and system maintainers. This course is based on the book Documenting Software Architectures:
Views and Beyond.

The Software Architecture Design and Analysis course answers the questions, “Which design
decisions will lead to a software architecture that successfully addresses the desired system
qualities?” and “How do you know if a given software architecture is deficient or at risk relative to
32 http://interactive.sei.cmu.edu news@sei interactive

Features: New Software Architecture Curriculum Developed
its target system qualities?” A software architecture design method called Attribute-Driven Design
(ADD) is presented in the course, which also introduces a family of software architecture
evaluation methods based on the Architecture Tradeoff Analysis MethodSM (ATAMSM). The
books Software Architecture in Practice, 2nd Edition and Evaluating Software Architectures:
Methods and Case Studies serve as the foundation for this course.

The Software Product Lines course provides a comprehensive introduction to software product
lines, which are sets of software-intensive systems that share a common, managed set of features
satisfying a particular market or mission area, and are built from a common set of core assets in a
prescribed way. Adopting a product line approach to software is both a technical and business
decision. This course covers the essential technical and management practices needed to use
product lines successfully. This course is based on the book Software Product Lines: Practices and
Patterns.

The ATAM Evaluator Training course prepares software architects to participate in software
architecture evaluations using the ATAM. Based on the book Evaluating Software Architectures:
Methods and Case Studies, this course includes lectures, videotaped enactments, interactive
exercises, and hands-on practice.

Building on the skills taught in ATAM Evaluator Training, the ATAM Facilitator Training course
focuses on the social and leadership skills required to lead successful architecture evaluations.
Class exercises allow participants to practice the tasks required of lead evaluators.

The Certificate Programs

The three certificate programs offered are the Software Architecture Professional program, the
ATAM Evaluator program, and the ATAM Lead Evaluator program.
news@sei interactive http://interactive.sei.cmu.edu 33

Features: New Software Architecture Curriculum Developed
Beginning with an introduction to software architecture fundamentals, the Software Architecture
Professional certificate program helps participants gain experience in architecture documentation,
design, and analysis techniques. The four-course sequence also demonstrates how these techniques
can be used effectively with a product line approach.

Qualified participants who complete the courses in the ATAM Evaluator certificate program are
authorized by the SEI to participate in ATAM architecture evaluations. The five courses and field
exercise in the ATAM Lead Evaluator certificate program provide qualified participants with the
technical depth, social techniques, and experience they need to effectively lead software
architecture evaluations using the ATAM. SEI-authorized lead evaluators then attend yearly
ATAM update workshops to maintain their skills and status. A list of authorized lead evaluators is
provided on the SEI Web site at http://www.sei.cmu.edu/ata/ale.html?si.

For more information, contact—

Tim Denmeade

Phone
412-268-8243

Email
td@sei.cmu.edu

World Wide Web
http://www.sei.cmu.edu/ata/arch_curriculum.html?si
34 http://interactive.sei.cmu.edu news@sei interactive

news@sei interactive, 3Q03 http://interactive.sei.cmu.edu 1

New Acquisition Conference a Hit with Attendees
Janet Rex

The first Conference on the Acquisition of Software-Intensive Systems was held January 28-30,

2003, in Arlington, Virginia. U.S. government acquisition organization employees, their support

organizations (support contractors and federally funded research and development centers), and

federal government contractors met to share their experiences and insights about acquisition.

The conference was co-sponsored by the SEI and the Office of the Under Secretary of Defense

for Acquisition, Technology, and Logistics.

Why Acquisition?

While there were already conferences on software engineering, the people who actually spend

billions of government dollars on software usually made do with perhaps a track at a conference

aimed at engineers. This was the first conference aimed exclusively at the people in U.S.

government program offices responsible for acquisition.

The conference focused on improving the acquisition of software-intensive systems throughout

government. It drew from the experience and expertise of practitioners in the field to provide

insights for acquisition professionals who are trying to enhance the effectiveness of their methods

and techniques.

While organizers expected up to 150 attendees at this first conference, more than 200 people

participated. The majority of attendees were from the Department of Defense (DoD), but there

were also representatives from a wide range of U.S. governmental organizations, including the

Internal Revenue Service (IRS), National Aeronautics and Space Administration, and the Federal

Aviation Administration.

Conference Highlights

The keynote address was given by the Honorable Claude M. Bolton, Jr., Assistant Secretary of

the Army (Acquisition, Logistics and Technology). His presentation covered the critical role of

software in the U.S. Army’s transformation, and focused on acquisition, specifically for future

combat systems. The Army’s Strategic Software Improvement Program must meet the challenge

of building software systems that are flexible, expansible, sustainable, affordable, and secure,

Bolton said. By bringing broad and strategic thinking to this process, the Army plans to

news@sei interactive, 3Q03 http://interactive.sei.cmu.edu 2

institutionalize improved acquisition processes, to develop enterprise initiatives, and to cultivate

strategic partnerships with the SEI and other organizations.

“SA-CMM® in a Large Complex Program,” presented by Lloyd Anderson of the IRS and Hugh

Gray of Computer Science Corp., covered work performed by the IRS Business Systems

Modernization Office. The Software Acquisition Capability Maturity Model® (SA-CMM) was

selected as the acquisition management model used to develop capabilities for acquiring business

solutions. The presentation covered the organizational challenges that were overcome to

implement SA-CMM and the keys to a successful implementation, including establishing a

process-improvement infrastructure, aligning process improvement to the organization’s business

strategy, and using the process to address issues important to project teams. SA-CMM has

allowed the IRS to field six major functional capabilities in four years including a modernized

help desk, a new application for agents computing complex business tax returns, and modernized

telephony for the world’s largest call center.

Several papers highlighted relevant SEI work. Ted Marz and Jim Smith shared their insights

gained from evaluating several recent acquisitions in “The State of Practice in DoD Acquisitions

and Some Proposed Alternatives.” They noted that while Capability Maturity Model for Software

(SW-CMM) Level 3 is a great start, a more sophisticated understanding of a contractor’s abilities

is often necessary. The presenters recommended that a Software Capability Evaluation be

performed as part of source selection.

“TRL Corollaries for Practice-Based Technologies” by Caroline Graettinger, Suzanne Garcia and

Jack Ferguson offered a draft set of technology readiness level (TRL) descriptions for use in

assessing practice-based technologies (PBTs), because improvement of acquisition practices will

require the implementation of PBTs. A study by the SEI and the U.S. Army Communications-

Electronics Command in 2002 showed that current use of TRLs is not readily applied to

information-assurance PBTs. These enhanced TRL descriptions are one proposal to remedy the

situation.

Tricia Oberndorf and Pat Place delivered a presentation on “Acquisition Practice: Good and

Bad,” which focused on the acquisition of commercial off-the-shelf-based systems. Using the SA-

CMM as a basis, they compared the acquisition experiences of two federal agencies that were

involved in acquiring, tailoring, and deploying a financial-management package.

Feedback from attendees on these presentations and others was positive. Many commented that

the conference theme and size were ideal, giving them plenty of opportunities to get together and

share their experiences. The content of presentations was informative and sparked interesting

news@sei interactive, 3Q03 http://interactive.sei.cmu.edu 3

discussions. The presentations are available on the SEI Web site at

http://www.sei.cmu.edu/products/events/acquisition/2003-presentations/?si.

The next Conference on the Acquisition of Software-Intensive Systems will be held January 26-

28, 2004, in Arlington, Virginia. For more information, see the conference Web site at

http://www.sei.cmu.edu/products/events/acquisition?si.

For more information, contact—

Jack Ferguson

Phone
412-268-5800

Email
jrf@sei.cmu.edu

