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Abstract—Sharing of log data is a valuable step towards the
improvement of network security. However, logs often contain
sensitive information and organizations are hesitant to share
them. Anonymization methods are used for increasing protec-
tion, lowering the disclosure risk to a level considered safe.
Accordingly, a metric for anonymity is necessary to quantitatively
assess the risk before releasing log data. In this paper, we
propose a general framework for estimating disclosure risk using
conditional entropy between the original and the anonymized
datasets. We demonstrate our approach using network log files.

I. INTRODUCTION

Log data analysis is a powerful tool for improving network
security. Typically, each organization uses only their own logs,
but, with the increasing number of coordinated attacks, sharing
log information between organizations is becoming essen-
tial [1]. The problem is that organizations are often reluctant to
share their logs, since the information contained in them can
be sensitive. Anonymization methods are used for limiting dis-
closure risk in releasing such sensitive datasets. Anonymizing
data increases protection, lowering the disclosure risk, but, it
also decreases the quality of the data and hence its utility [2].
Finding the optimal trade off between risk and utility is the
main scope of the anonymization process. Both quantities are
hard to define, and strongly depend on context variables, e.g.,
data usage, level of knowledge of the attacker, amount of
data released. In this paper we focus on the evaluation of
disclosure risk (Section II). The main contribution of this
paper is to introduce a general measure of disclosure risk,
which is applicable to any set of masking transformations.
Unlike previous measures, we do not assume any specific
masking algorithm. Moreover, our measure provides a robust
estimation of risk both at single record level (local risk) and
at global level, i.e. for the whole dataset (Section III). Our
model is therefore general and can be applied for quantitatively
comparing different anonymization policies. Furthermore, it is
directly related to the measure of the information lost in the
anonymization procedure. We implemented this risk estimator
using the FLAIM framework [3] and tested on network log
files (Section IV).

II. PRIVACY IN PUBLIC DATASETS

Data holders, such as national statistical institutes, often
have to release data files containing information on individual
people or firms (micro-data) for research purpose. At the same
time they have to preserve the privacy of individuals. This
problem also occurs for sharing log files, since they may
contain personal information which cannot be released in its
original form (IP addresses, port numbers, timestamps, quan-
tities...). Consequently, these data holders need to anonymize
their databases before release, using data masking algorithms
such as: generalizing the data, i.e., recoding variables into
broader classes (e.g., releasing only the first two digits of
the zip code or removing the last octet of an IP address),
suppressing part of or entire records (also known as black
marker [3]), randomly swapping some fields among original
data records, applying permutations (one-to-one mapping on a
defined set) or perturbative masking, i.e., adding random noise
to numerical data values.

When masking methods have been applied, data holders
have to quantitatively assess the disclosure risk (or anonymity
level), to verify whether it is below a defined threshold, in
which case it is assumed to be acceptable. To this scope,
various measures for estimating disclosure risk have been pro-
posed so far [4], [5], [6]; their validity strongly depends on the
application scenarios considered, but still, there is a consensus
that the risk of disclosure cannot be reduced to zero (but
removing all the information). Thus, in general, a threshold
should be determined to decide whether to release a dataset or
not. Broadly speaking, there are two different approaches for
assessing disclosure risk: estimating the rareness in the sample
or population, or estimating the probability of re-identifying a
masked record using some external information.

Let us examine these two methods in detail. In a typical sce-
nario an attacker has knowledge about some variables, which
may identify a record in the dataset. Considering the example
of a medical database, the attacker may know a few attributes
(age, gender, marital status) from an external public register
(census data) or some private source of information (e.g.,
knowing age and address of his neighbor). He then tries to



(a) Original log file S
SrcIP SrcPort DestIP DestPort Packets

168.125.253.23 80 147.81.124.173 3157 40
39.109.219.43 7310 142.68.227.108 59959 126
35.187.130.82 161 213.48.191.68 55867 83

(b) Anonymized log file R
SrcIP SrcPort DestIP DestPort Packets

168.125.253.0 1023 10.1.1.1 65535 42
39.109.219.0 65535 10.1.1.1 65535 132
35.187.130.0 1023 10.1.1.1 65535 81

(c) Background knowledge Ŝ
SrcIP SrcPort DestIP DestPort Packets

39.109.219.43 7310 142.68.0.0 — —

TABLE I: Example of original (S) and anonymized log files (R). In
the anonymization process, the least-significant 8 bits of the SrcIP
are blacked out, BM(8) (replaced with 0s). SrcPort and DestPort
are partitioned in two classes (1023 and 65535), called binary
classification (C). DestPrt is completely blacked out, BM(32). Packets
are perturbed with random Gaussian noise.

match these variables (keys) with the partly altered records in
the released database. In the case of log files, an attacker may
inject some information (e.g., scanning some specific ports),
with the goal of later recognizing them in the anonymized logs.
When a unique record matches a combination of key variables,
the intruder can re-identify the masked record, assuming he
is certain that the record is in the dataset. In fact, even if
there is more than a unique match, but the number of linked
records characterized by that combination of keys is still low
(say it does not exceed a threshold k), these records have
a high risk of re-identification. This rule is known as k-
anonymity [7]. This approach has some limitations: it does
not consider intruder’s knowledge explicitly, and, in case of
continuous variables the number of population uniques could
be extremely large, especially when these data are randomly
perturbed during the masking process.

The second approach consists of estimating the probability
of re-identification. As in the previous case, the attacker aims
at linking pairs of records in the released database with his
background information [8], [4], [9]). This method permits
to assess the risk in both categorical and continuous data:
a record is considered at risk if this probability exceeds a
fixed threshold. The main issue with this approach is finding
a reliable strategy to compute these probabilities, since in
case there are many records with similar, close to threshold,
probabilities of re-identification, the risk estimation can be
strongly affected by random fluctuations.

III. ENTROPY BASED RISK ESTIMATOR

The protection model we propose here creates a measure
of disclosure risk for micro-data release, which combines
together the two approaches described above. This allows us
to develop a measure applicable in general cases (i.e. for any
kind of data transformation, as when using the probability of
re-identification method) and, at the same time, it considers the
whole distribution of original records (as in k-anonymization).
The basic idea is to use Shannon entropy as a measure

of disclosure risk for a single record. Entropy metrics have
previously been proposed for computing information loss [10],
and, more recently for estimating disclosure risk for tabular
data [11] and in network communications [12], [13].

In this section, we briefly review the theoretical framework
and analyze its mathematical features. We refer the reader
to [14] for a more extended discussion on the topic.

Let us consider a dataset S containing some sensitive data,
e.g., network log files (Table I(a)). Each entry s ∈ S of this
dataset is transformed using a data masking procedure, for
example one or more of the ones mentioned in the previous
section. The final result is an anonymized version of S dataset,
which we call R (Table I(b)).

The attacker aims at re-identifying released data by linking
them with some external information or background knowl-
edge Ŝ (Table I(c)), which has some overlapping attributes
with the released dataset. If the attacker is able to reconstruct
some attribute values of the original record, we have a privacy
breach. Because the data holder does not know in advance
which records and attributes might be available to the attacker,
it must run the risk analysis on the whole released dataset
Ŝ ≡ S and assume a set of key attributes (called quasi-
identifiers in the k-anonymity framework) the attacker might
know and use for re-identification. These key attributes can
coincide with the whole set of attributes. The re-identification
procedure consists of estimating for each ŝ ∈ Ŝ the probability
of linking it with a record r ∈ R: P (r|ŝ). Because we are
assuming Ŝ ≡ S, thereafter we will consider the P (r|s)
instead of P (r|ŝ).

We can estimate this probability assuming the attacker
simulates the data masking transformations [15], uses the
information released by data holders (such as the structure
of the noise added) or defines a distance function between
records [16]. Intuitively, the more uncertain the mapping
P (r|s), the lower the disclosure risk. Shannon’s entropy
can be used to estimate this uncertainty. By applying it to
the conditional probability P (r|s), the conditional entropy is
obtained:

H(R|s) = −
∑
r∈R

P (r|s) log2 P (r|s) (1)

This quantity measures the risk at the level of single record
s. It represents the average number of binary question we have
to ask to identify the corresponding r given s. Low entropy
values indicate an almost deterministic mapping, and high
risk accordingly, whereas large entropy is associated to low
disclosure risk.

For example, in the case where a selected record s can be
linked to exactly ks indistinguishable records in R (as in k-
anonymity [7]), we have a uniform distribution over the ks

records: and the corresponding specific entropy, Eq. (1) is:

H(R|s) = log2 ks (2)

The k-anonymity condition over the whole dataset can be
written as:

k ≥ mins∈S2H(R|s) (3)



Global identification risk, that is at the dataset level, can be
derived from the local risk measures, Eq. (1). One possible
choice (see [14] for other options) is to calculate the expected
number of correct matches (ECM , herein):

ECM =
∑
s∈S

1
2H(R|s) (4)

ECM is the average number of correct matches considering
the intruder is randomly guessing according to P (r|s). In fact,
the entropy H(R|s) represents the average number of binary
questions required to determine r, given s [14].

ECM differs from the estimated number of correct matches,
called NTM herein, typically used for global risk assessment
(see [15], [9]). These two measures differ because NTM is
based on maximum likelihood, which implies verifying a
posteriori whether a match is correct, whereas ECM is the
average number of correct matches considering a random
guess according to P (r|s). So, the latter lacks the decoding
part (i.e., the maximum likelihood step) and relies on the shape
of the distribution only. In practice, they coincide when P (r|s)
has a single sharp peak, that is an almost deterministic one
to one mapping. In contrast, they may strongly deviate in
presence of multiple peaks and/or a smooth distribution. In
addition, because ECM depends on the shape of the whole
distribution (not only on its peak value), it is less sensitive to
random fluctuations [14]. Lastly, note that conditional entropy
is directly linked to the mutual information between S and R,
and it can be used as an estimation of the information lost in
the anonymization transformation [14].

IV. MEASURING RISK ON ANONYMIZED NETWORK LOGS

We tested the entropy-based risk estimator on a publicly
available Netflow log file 1. In this analysis, we only use
a limited set of fields and records. In addition we do not
consider the utility of the masked dataset. Consequently,
results presented here should be viewed as a proof of concept
and recommendations for selecting a specific anonymization
policy are not provided.

To run these tests, we developed a risk-estimating module
based on FLAIM (Framework for Log Anonymization and
Information Management) [3]. FLAIM is a modular and
scalable framework for anonymizing log files which includes
an anonymization engine with various anonymization prim-
itives (BlackMarker, Permutation, Enumeration, etc ...). We
developed a component, RiskEngine (see Figure 1), capable of
estimating disclosure risk (Eq. (4)) by comparing the original
and anonymized log files. As the other FLAIM components,
the risk estimator works on streamed data, allowing us to
process very large datasets.

A. Results

To illustrate the previously described method and its imple-
mentation in FLAIM, seven different anonymization scenarios
are presented. As testing dataset we used the sample Netflow

1Available at http://flaim.ncsa.uiuc.edu/downloads/flaim/sample.nfdump.log

Fig. 1: The structure of the risk estimation component (RiskEngine).
It is implemented as a subclass of AnonyEngine. The BasicPreproces-
sor and BasicPostprocessor classes were extended with interfaces to
the RiskEngine. AnonyAlg and each of its subclasses now implement
a method for estimating the probability P (r|s) for each anonymiza-
tion primitive

SRC IP DST IP SRC PRT DST PRT BYTES
S1 None None None None None
S2 BM(16) BM(16) None None None
S3 BM(16) BM(16) C C None
S4 BM(16) BM(16) C C NA(10%)
S5 BM(24) BM(24) C C NA(10%)
S6 BRP BRP C C NA(10%)
S7 BM(32) BM(32) C C NA(10%)

TABLE II: List of the 7 anonymization scenarios discussed in the
main text, in order of increasing anonymization strength. Legend:
BM(16) (BM(24)): Black Marker applied on the 16 (24) least-
significant bits. C: Classify: bins ports below 1024 in one bin and
ports greater or equal to 1024 in another. NA(10%): Noise Addition:
adds zero averaged Gaussian noise with a standard deviation equal to
10% of the value to anonymize. BRP: Binary Random permutation:
maps each IP into a randomly generated IP in a consistent way (all
IPs equal in the original log file are also equal in the anonymized
log file). For more details about these transformations see Ref. [3].

.

file available on the FLAIM website. The nfdump module
provided in FLAIM is used for parsing the log file. We
considered a subset of the available fields: the source and
destination IPs, the source and destination ports and the
number of bytes in a flow. The seven scenarios are summarized
in Table II.

Each anonymization primitive has its corresponding func-
tion for calculating the probability P (r|s). For the sake of
simplicity we assumed that the different fields are independent.
Therefore, in the example above, P (r|s) reads:

P (r|s) = P (r|s)SRC IP · P (r|s)DST IP ·
·P (r|s)SRC PRT · P (r|s)DST PRT · P (r|s)BY TES
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Fig. 2: Entropy-based risk for the 7 anonymization scenarios de-
scribed in Table II

Figure 2 shows the expected number of correct matches,
ECM , as a percentage of the total number of records for the
seven scenarios. Intuitively, increasing the number and strength
of the anonymization methods leads to a reduced disclosure
risk. In more details, we observed that removing the last 8
bits in the IP addresses have no impact on the estimated
risk (Scenarios 1 and 2). Similarly suppressing the 16 or the
24 least-significant bits of the IP addresses lead to similar
risk values (Scenarios 4 and 5). This indicates that, in this
sample, most of the IP addresses sharing the same first octet
are actually the same address (however, the corresponding port
is not necessarily the same). In other words, due to a lack of
diversity, most of the IPs can be identified by their first 8 most-
significant bits. By generalizing the port number (Scenario 3),
we observed a ' 36% decrease in the risk, suggesting that
port re-coding could be a valuable anonymization strategy in
this context. Adding random noise on the number of packets
transmitted gives a further ' 8% decrease in the risk (Scenario
4). To obtain low risk values, we needed to remove most of the
information contained in IP addresses by either using a one-to-
one mapping into a predefined set (binary random permutation,
scenario 6) or black marking all the 32 bits of the address
(BM(32) in Scenario 7).

V. SUMMARY

The advantage of using Shannon’s entropy as a measure
of disclosure risk for log file release is twofold: First, it
can be applied to any general masking transformation, unlike
k-anonymity measure, which is limited to non-perturbative
masking transformations. Second, it only depends on the shape
of the probability distribution; thus it is less sensitive to
random fluctuations than measures where decoding of the
masked record is needed.

The main technical issue is that computing the probability
of re-identification can be hard for complex masking trans-
formations [15]. Furthermore, these probabilities depend on
the attack scenarios (attacker’s knowledge, data sensitivity,
etc . . . ), that are often difficult to model and application-
specific. In the simple example we presented here, we could

easily derive these probabilities under the assumptions of
independence among fields and records. Both these hypotheses
are unrealistic in many real world scenarios, such as in port
scanning attack, where multiple ports are scanned in sequence
on a single target host. Further analysis is needed to investigate
the viability of this approach in realistic settings.
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