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Abstract 
 
With the ever growing array of threats to computer systems, security applications have 
evolved from simple firewalls to extremely complex entities with very sophisticated 
requirements. These requirements need to address functionality, performance, and 
scalability. Functionality spans firewalls, VPNs (IPSec and SSL), IDS/IPS, AV/AS, and 
server off-load functions, among other things. Performance includes both the ability to 
pass packets through the system at multi-gigabit rates, as well as being able to do deep 
packet inspection/processing at high speeds. Scalability must address both of these 
aspects of performance - i.e. packet throughput and processing power. It is also important 
to consider system management, maintainability, ease of use, and reliability. In this 
paper, we examine these aspects of the system, and propose an architecture that not only 
meets these requirements, but will also be flexible enough to support future application 
needs. 
 

Introduction 
 
In this paper, we first describe an architecture for processing flows. We then take a look 
at each aspect of the architecture, and qualitatively describe how it meets the 
requirements for processing flows in an optimal way. 

Flow Processing Requirements 
The following requirements are addressed in this document. 
 

• Performance – while we don’t state a specific number, it is clear that today’s 
performance requirements are in the multi-gigabit range. Small and large 
packets must be processed at wire speeds, which could range from 1Gbps to 
10Gbps or higher. 

• Scalability – the system architecture must be scalable so that different 
performance requirements can be addressed with meaningful cost structures. 

• Functionality – the architecture must be versatile, in that it should support 
multiple applications. This translates to the requirement to be able to process 
flows of different types. Flows may constitute single or multiple network 
associations (i.e. connections, for example) between cooperating applications 
distributed over a network. 



• Manageability – the architecture should be easily manageable. Ease of 
configuration, management and maintenance are crucial to the adoption of this 
architecture. 

• Application maintenance and portability – when applications are developed 
for this architecture, they should still maintain a general flavor that will 
support other architectures. The architecture must shield applications from 
getting locked into specific hardware or software features. 

 

System Architecture 
 
The following diagram shows our proposed system architecture. 
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This architecture utilizes a combination of general purpose processors (CPUs) running 
the Linux operating system, and a new generation Network Processing Unit (NPU) for 
performing various flow operations. One processor (MGMT), also running Linux, is 
reserved for purely management functions, while other CPUs run applications. All of the 



CPUs and the NPU reside on, and communicate over, an extensible, high speed 
backplane that operates at multiples of 10Gbps. The external network interfaces, 
consisting typically of 1Gbps or 10Gbps Ethernet, are connected to the NPU. 
 
In addition, each application CPU has attached to it one or more co-processors over a 
very fast bus (PCI Express, for example). These co-processors typically perform such 
functions as cryptographic encryption and decryption, key generation, regular expression 
processing, etc. 
 
The MGMT CPU will typically have its own private Ethernet port and console port for 
management purposes. It will also support storage, for example, in the form of an 
attached SCSI/RAID disk system. 
 

The Networking Environment 
The system supports one or more network interface cards, with each card supporting 
multiple ports (for example, eth0, eth1, and so on). All configurations are done on 
MGMT. Through a process of virtualization, these interfaces are replicated on every 
application CPU. The system software ensures that interface states are identical on all the 
processors. Thus, applications have direct access to the external interfaces, from every 
processor on the system. There is a special Ethernet interface in each CPU – bp0 – that 
enables applications to communicate over the backplane. The backplane essentially looks 
like a very high speed, private Ethernet network, not visible from the external network. 
Applications may communicate with each other over the backplane using standard socket 
based communication methods. Thus, every processor, including MGMT, has an 
identical networking environment. 
 

The File System Environment 
Application CPUs all boot using standard protocols from the management CPU, and 
mount the storage attached to MGMT. Thus all CPUs have identical file system 
environments. 
 

NPU Functions 
The NPU performs the following functions: 
 

• Load-balance incoming traffic to applications based on multiple algorithms. 
• Support bindings, set using special APIs, that enable special flow processing. For 

example: 
o Cut through flows. 
o Direct specific flows to applications requesting them. 

• Perform QoS functions. 
• Maintain, and report full flow statistics. 



• Support application specific flow processing, either dynamically through APIs, or 
statically through application specific code, linked to NPU processing through 
architected hooks for intercepting packets between input and output. 

 
NPU bindings are set by applications over the backplane using protocols designed for this 
purpose. These bindings must be such that the API calls used to set them must have very 
low latency. 
 

Benefits of Proposed Architecture for Meeting Flow 
Requirements 
We are now ready to consider the benefits of this architecture in fulfilling flow 
requirements. We start by with comparing the architecture with specialized hardware 
implementations. 
 

Comparison with Specialized Hardware 
One approach to flow processing is to use hardware developed specifically to process 
flows in certain ways. There is no doubt that specialized hardware will outperform more 
general systems for specific functions. However, such systems necessitate a number of 
compromises, among which are: 
 

• Flexibility. Unlike general purpose hardware which is programmable, often 
ASICs are designed to be used in very limited ways, with limited 
programmability. These are okay for well established protocols which operate at 
low levels, but definitely not for generalized flows where applications are 
constantly evolving. It is not feasible to require a new spin of an ASIC in order to 
present new features to customers, for most application vendors. 

• Scalability. Often, ASICs lack the general purpose hardware’s ability to be 
clustered, or stacked. Thus scalability needs to be built with external “glue” 
hardware, often at a huge cost. 

• Performance. This may seem like a contradiction, since ASICs are built with 
performance in mind (in addition to volume considerations for decreasing cost). 
However, we need to keep in mind that in order to make ASICs support multiple 
applications, some amount of generality needs to be embedded in it. This makes it 
more like a CPU, and often, it runs at a fairly low clock frequency. Thus, while a 
specific function (such as cutting through flows, or bulk encryption) may outstrip 
the capabilities of generalized hardware, combinations of functions will severely 
limit performance. 

• Application portability. When portions (or all of) applications are changed to use 
specialized hardware, the application will lose its generality. It is often a huge 
effort to split an application so that certain portions of processing are delegated to 
special hardware. This makes it very hard to maintain the applications portability 
to other systems – for example, in a product range that meets different 



performance levels – and locks in the application to the specific hardware 
components. 

 
Thus, where all of the above requirements are important, and it is of utmost importance to 
be able to change quickly to conform to new conditions, a more generalized hardware 
would be the most appropriate way to go. Note that what we say about ASICs applies to 
FPGAs also. 
 

Performance 
Until recently, simple architectures sufficed for a couple of reasons: firstly, performance 
requirements have not been very high for flow processing applications, and CPU speeds 
have been keeping up with Moore’s Law. Both of these considerations have undergone 
major changes recently. 
 
Flow processing speeds are now required to be in the 10Gbps range by service providers. 
Even though CPU speeds are very high – Intel processors run close to 4GHz – flow 
throughput is still being limited by factors other than CPU speed. One of the limiting 
factors is memory access. Even with the fastest memory (DDR2, 600 MHz, 64-bit 
access), practical considerations limit access to well under 10Gbps. This bandwidth needs 
to be utilized for processing (running code and accessing local variables), as well as for 
transferring data in and out of memory. Thus, however fast the CPU may be, memory 
bandwidth considerations will limit the amount of data that can be processed to a few 
hundred megabytes of small packets to a few (usually 2) gigabits of large packets. This is 
true even for SMP clusters, since such a cluster will operate on a single memory (even if 
distributed among multiple banks using dual controllers). 
 
Moreover, if there is a need to integrate multiple applications – as in the case of UTMs 
(Unified Threat Management systems) – in order to meet complex flow processing 
requirements, the amount of processing that needs to be done for each flow increases 
drastically. Since Moore’s law seems to have hit a limit (witness Intel’s emphasis on dual 
cores now) the only way to scale is to use more processors in a loosely coupled scheme. 
Each processor may be a multi-core unit in the above architecture, so one gets the best of 
both worlds. 
 

Scalability 
The most common design for a flow processing consists of a CPU subsystem (an Intel 
dual-core, typically) attached over a fast bus such as PCI Express to an NPU that 
incorporates a crypto engine, and a regular expression processing engine. Aside from the 
single system performance considerations we have noted above, one huge drawback of 
such system is their scalability. The missing piece is really the extensible backplane 
incorporated in the architecture we have presented. This backplane allows additional 
CPUs, NPUs, and their associated resources, to be added to the system. 
 



One of the tremendous advantages of the architecture we have presented is that scaling is 
almost linear when more CPUs are added. This depends on the NPU to perform a clean 
partitioning of flows, so that the need to synchronize with other CPUs is minimized. We 
will discuss this some more later. 
 
Also, having specialized engines for cryptographic functions and regular expression 
processing be attached to each CPU via a fast bus such as PCI Express allows scaling of 
applications that use these functions. If these resources were combined with the NPU – as 
do many architectures – two problems present themselves. One problem is that 
communication between the CPUs and the NPU could become considerable, thus 
affecting scaling. Secondly, since a given NPU has fixed co-processing capability, this 
resource cannot be easily scaled. 
 
A good side-effect of our architecture is the built-in redundancy. With multiple CPUs 
available, if one CPU fails, it can be backed up using multiple schemes. Typically, the 
NPU will detect this condition, and load-share the flows targeted at the failed CPU 
among the active CPUs. 
 

Functionality 
By keeping the primary functionality in the application CPUs, and using a generally 
accepted operating system such as Linux, one maximizes the ease with which new 
functionality can be introduced. Indeed, there is a plethora of software available in the 
realm of open and free source for Linux, and it will be fairly easy (usually requiring a 
compilation only) to port this software to our architecture. Indeed, we have done 
precisely this in our implementation. Moreover, there are architected means to employ 
multiple applications in the same CPU, as well as divide CPUs into groups where each 
group processes flows requiring a specific application. 
 
We are not saying that it is impossible to provide new functionality in other architectures. 
Only that it will be a non-trivial port, often requiring NPU specialists. 
 

Manageability 
This is very often an overlooked function, which requires considerable resources from the 
system. In most systems, management has to coexist with applications in the same CPU. 
If the system is busy, response time will be very poor when an administrator tries to 
perform configuration or maintenance. This is not acceptable when there are situations 
which require immediate action (such as a breach of security). 
 
In our architecture, this problem is solved by dedicating a CPU (MGMT) which is solely 
used for management purposes. The CLI and GUI run on this CPU. It has its own, 
dedicated, management Ethernet port over which the system is always accessible and 
response is guaranteed to be immediate. This CPU can be used to consolidate and 
preprocess log information and statistics, if necessary, thus freeing the application CPUs 
for flow processing. 



 
One very important function performed by the management CPU is general monitoring of 
system health. It watches hardware, the system environment (such as temperature), and 
the running applications. When a failure is detected, the criticality of the failure will be 
assessed, and corrective action will be taken immediately. This action may be to restart a 
failed application, shutdown a non-functioning CPU, signal a secondary (active or 
standby) system to take over, reroute traffic on a failed link, or failopen interfaces (for an 
IPS application, for example) to take the system offline due to non-recoverable errors. 
 
Thus, the importance of a clean separation of management functions from applications 
cannot be overemphasized. 
 

Application Maintenance and Portability 
Common sense dictates that this is an important consideration for commercial ventures. 
The architecture we have proposed ensures this by providing a full Linux environment 
for applications, requiring only minimal changes, if any, for functioning in this 
environment. Indeed, we have ported open source applications to this architecture with 
only a recompilation. A beneficial side-effect is that applications do not get locked in to a 
particular architecture. 
 

Some Additional Scaling Considerations 
We said before that scaling using this architecture is linear. In this section, we expand on 
this statement. 
 
Scaling is a term that applies to multiple features of a system. It can apply, for example, 
to network throughput, or to compute power. This architecture promotes scaling in both 
dimensions. 
 
In order to increase the network throughput of the base system, an additional NPU can be 
added to the extended backplane. In practice, the additional NPU would be part of a 
board that might contain additional CPUs. The effect of the additional NPU is to increase 
the IO capability of the system. We have done this on a similar architecture with very 
little change to the base code. The main requirement is that the system be aware of the 
NPUs and their addresses on the backplane. 
 
To increase the available compute power, additional CPUs can be added to an extended 
backplane. This enables more processing for each flow, for a given maximum system 
throughput. With enough compute power, wire-speed can be attained for any type of flow 
processing within reason (it is always possible to create pathological examples that are 
hard to accommodate). 
 
In an SMP configuration of CPUs, we already saw how memory bandwidth affects 
throughput. Inherently, scaling using SMP configuration is not linear, because of the 



effects memory contention, and use of locking to arbitrate contention for critical 
resources. 
 
In the loosely coupled CPU architecture we have described, scaling can be linear if the 
NPU is used appropriately. Essentially, by recognizing and grouping associations into 
sets of related flows that are processed by the same CPU, the need for synchronization 
between CPUs is drastically minimized. Synchronization may still need to be done for 
slow-path control functions such as configuration, but these do not affect the fast-path 
data processing. Aggregation functions such as statistics over the full set of flows (not 
visible to a particular CPU in its entirety), detecting certain types of anomalies, QoS, etc. 
are good candidates for implementation in the NPU. Not requiring CPUs to synchronize 
for these features makes CPU scaling linear. 
 

Summary 
In this paper, we have described an architecture which we believe is most suitable for 
general flow processing.  Requirements for flow processing were enumerated, and an 
architecture for implementing these requirements was proposed. Each aspect of the 
architecture was discussed qualitatively, and shown to be of benefit in realizing flow 
processing requirements. 
 
We have implemented this architecture and it has been deployed for processing flows 
commercially. 
 


