
Managing Technical Debt
Identify Technical Debt Items

TECHNICAL DEBT OCCURS when a design or
construction approach is taken that is expedient in
the short term but increases complexity and cost in
the long term. Whether it results from inexperience,
accident, or strategy, all software-reliant systems
accumulate some technical debt. If managed
well, some technical debt can accelerate design
exploration and system delivery. Left unrecognized
and unmanaged, accumulated technical debt drives
up development and sustainment costs. To reason
about technical debt, estimate its magnitude, and
gain information to make decisions about it, you
must be able to anchor technical debt to explicit
technical debt items.

TECHNICAL DEBT PRACTICE

110010
010011
001010
100101
110110
100111

Technical Debt Must Trace to the System
Development teams are often aware of the consequences
of technical debt, but do not have the mechanisms to
communicate the issue. Identifying technical debt items can
help. When you trace technical debt to the system, start with
the business context, assess artifacts across the technical
debt landscape, and record the results as a technical debt
item. A description of a technical debt item captures where
in the system the debt is located and the associated state of
consequences that it causes in the system.

Software developers explain the what and the where as
they incur or become aware of technical debt, but they
don’t highlight clearly the consequences of not fixing it,
how the debt might grow over time, and a reasonable
time to pay the debt if the fix must be deferred. We
recommend building an inventory of technical debt items
that record the consequences of accumulating debt. That
inventory will help the development team assess how
the debt is growing. This practice creates a technical debt
awareness mindset for the team, which helps reduce the
rate of unintentional technical debt going forward. It also
has operational benefits such as the capability to retrieve
all outstanding technical debt issues and assess their
importance and priority against the team’s resources.

Benefits of Identifying Technical Debt Items
Technical debt is a useful concept for fostering dialog
between business and technical people in a software
development organization. Technical people do not
always appreciate the value of shorter time to market and
rapid tactical changes of direction. Business people do
not always realize the dramatic impact that some earlier
design decisions can make in a software project and
the cost they can lead to downstream. An organization
can help everyone better understand the challenges of
software evolution and make the economic consequences
more real and tangible by

•	identifying concrete items of technical debt

•	considering their impact over time

•	evaluating lifecycle cost associated with them

Then both technical and business people can plan how to
manage technical debt just as they plan new features, fix
defects, and evolve the architecture.

How We Can Help
To meet the challenge of uncovering, communicating,
and managing technical debt, the Software Engineering
Institute (SEI) has developed a systematic approach to
gain control of technical debt. It includes techniques
for making technical debt visible and integrating debt
management into project planning.

The SEI can help a project team conduct working sessions
to identify technical debt items. During the assessment,
the SEI will guide the project team—and key stakeholders
such as the architect, product owner, and project
manager—through activities that build an inventory of
technical debt items, which in turn can be assessed for
impact and acted on accordingly:

•	Quickly identify likely technical debt, and prioritize the
items most meriting near-term investigation.

•	Collaborate with business and project stakeholders to
connect the chosen technical debt items to business
goals and the consequence across the organization of
carrying that debt.

•	Analyze the technical debt items to reveal the concrete
software artifact associated with the debt and the
rework needed to eliminate the debt.

•	Document the technical debt items in the issue tracker.

•	Weigh the costs and benefits of the technical debt items
to decide which items to address first, which to defer
until some measure is reached, or what further analysis
is needed.

•	Vet the results.

The outcome will be a list of likely technical debt items,
analysis and documentation as technical debt items
of a select number of the high-priority items, and
recommendations that the team can draw on to expand
the exercise to the rest of the project. The SEI will review
the findings with stakeholders to ensure that analysis is
accurate and identify practices they can transition to the
rest of the organization.

Contact info@sei.cmu.edu.

©2022 Carnegie Mellon University | 5877 | C 05.24.2022 | S 09.15.2022 | DM22-0788

About the SEI
Always focused on the future, the Software Engineering Institute (SEI) advances
software as a strategic advantage for national security. We lead research and
direct transition of software engineering, cybersecurity, and artificial intelligence
technologies at the intersection of academia, industry, and government. We
serve the nation as a federally funded research and development center (FFRDC)
sponsored by the U.S. Department of Defense (DoD) and are based at Carnegie
Mellon University, a global research university annually rated among the best for
its programs in computer science and engineering.

Contact Us
CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE
4500 FIFTH AVENUE; PITTSBURGH, PA 15213-2612

sei.cmu.edu
412.268.5800 | 888.201.4479
info@sei.cmu.edu

Bad Architecture Choices

0 50 100 150 200 250 300 350

Overly Complex Code

Lack of Code Documentation

Inadequate Testing

Obsolete Technology

Insufficient Test Automation

Inter-module Dependencies

Code Duplication or Repetitive Edits

Dependencies on External Team’s Code

Poor Deployment Process

Dependecies on External Software…

Obsolete Code

Inefficient CM/Build Infrastructure

Other

Results from over 1,800
developers from two large industry
organizations and one government
software development organization
reinforce that unattended
architecture decisions and practices
are at the root of technical debt.

Ernst N.; Bellomo, S.; Ozkaya, I.; Nord, R.; & Gorton,
I. Measure it? Manage it? Ignore it? Software
Practitioners and Technical Debt. In Int. Symp. on
Foundations of Software Engineering. 2015.

mailto:info@sei.cmu.edu
http://sei.cmu.edu
mailto:info@sei.cmu.edu

