
1

Scalable flow analysis
Abhishek Kumar Sapan Bhatia

Abstract

While current toolkits for analysis of flow-records such as
SiLK are powerful and versatile, real-time analysis of flow
records at very large flow collection installations continues
to be a challenge. In this paper we present a new approach
for summarization and analysis of flow records. Through
the use of approximate data structures, a large bulk of flow
records is reduced to a compact representation that is 100
times smaller in volume than the original flow records. The
techniques are suitable for implenting a small number of
predefined queries that are evaluated repeatedly in a periodic
manner. The operations involved in summarization and query
processing are fast enough to keep up with 2.5 million flows
per second in a software implementation running on general
purpose hardware.

I. I NTRODUCTION

Collecting flow records is the dominant method for retaining
state about the traffic observed at various links in a network.
Large flow collection installations primarily face bottlenecks
of four types. First, the generation of flow records from the
packet stream is a challenging task, especially at the higher end
of link speeds. Second, the transmission of the flow records to
a central operations center is problematic due to the large (and
unpredictable) volume of flow records. The third issue is that
of the vast amounts of storage and its management required
in large flow collection installations. Finally, analyzinga large
number of flow records has a high computational overhead that
often grows super-linearly with the number of flow records
being analyzed together.

In this paper, we present a new approach to flow analysis.
Instead of providing deterministic answers that are guaranteed
to be precise and accurate, this approach uses probabilistic
techniques and provides approximate answers to most queries.
But relaxing the requirement for deterministic accuracy inthe
favor of probabilistic guarantees allows for a solution that is
significantly faster and more efficient in its communication
and storage requirements.

The approach presented in this paper is not meant to
be a replacement for deterministic flow analysis tools such
as SiLK [1], [2], [3]. Instead, we believe the two to be
complementary . Deterministic analysis provides precise and
unambiguous solutions, and provides a high degree of flexibil-
ity in the definition of the queries, albeit at high computational,
storage and transmission overheads. The approach presented
here trades off the deterministic guarantees for efficiencygains
that allow such analysis to be performed at scales that are two
to three orders of magnitude larger. The improved scalability
of this approach implies that it provides an excellent means
to perform routine analysis for a high volume of flow records,
identifying a small number of suspicious cases that merit

further investigation. It is also a suitable candidate to build
situational awareness systems that evaluate a fixed set of
queries over the flow data in a periodic fashion.

In the next section we provide a taxonomy of queries posed
during flow analysis. Section III looks at an example query and
provides a solution using the proposed approach. Section IV
generalizes this solution to present a comprehensive summa-
rization and analysis system for automated, routine analysis of
flow data. We discuss the advantages and limitations of this
approach in section V and conclude with pointers to future
work in section VI.

II. TAXONOMY OF QUERIES

We divide the universe of queries that can be posed
against flow records into three classes. First, there are the
aggregate queries, that refer to various totals among the
dataset in question. Typical examples of aggregate queries
are estimating the total number of flows, the total number
of sources by IP, the total number of destinations identified
by IP alone or by<destination IP, destination
port, protocol> tuples. Such aggregate quantities are
the broadest and most important indicators capturing the
details of network activity.

The second family of queries coversdistributional queries,
pertaining to questions such as “what is number of sources that
have contacted exactly one destination within my network?”or
“what fraction flows have less than 10 packets?”. The broadest
distributional queries ask for the entire observed distribution
of a metric, such as the distribution of flow sizes, or the
distribution of number of destinations contacted by various
sources. Answers to distributional queries are more precise and
more sensitive indicators of various kinds of network activity
and attacks. For example, a small DoS attack on a web-server
might not show up as a large increase in the total number
of flows, but it will cause a more significant change in the
number of single-packet flows.

Finally, identity queries try to identify specific entities that
are outliers according to some metric evaluated over the
dataset. For example, “which sources have contacted more
than a hundred unique destinations” or “which destinations
have received more than two thousand flows” are queries that
identify individuals that exceed respective thresholds for the
number of unique destinations and the total number of flows.

In theory, there is an immense number of possible queries
that can be posed against a given collection of flow records.
But in practice, there are two kinds of queries that are actually
evaluated. The first set is that ofroutine queries that are
evaluated regularly, in a periodic manner, over the flow records
collected in regular monitoring intervals. Typically thisset
includes a small number of queries of all three types described
above. The results to these queries can be used to visualize the

2

Number of Sources 32 64 128 256 512 1024
Execution Time (sec) 9 50 581 922 1573 2464

TABLE I

T IME TAKEN TO EXECUTE AN EXAMPLE SILK QUERY OVER512K (219)

FLOW RECORDS.

current status of the network traffic, or in other words, provide
situational awareness about the network traffic. Anomaly de-
tection systems can track the results of such queries to detect
and flag significant deviations from the norm, perhaps raising
an alarm for an analyst to evaluate additional, non-routine
queries. This second set represents what we callforensic
queries. Such queries are typically part of an investigation
prompted by specific network events or perhaps even an
alarm raised on the basis of the information provided by the
routine queries. The range and objective of forensic queries is
significantly larger than that of routine queries. In this paper,
we propose a more efficient approach for evaluating routine
queries, keeping in mind that such queries are evaluated
repeatedly and over all data that is collected. Forensic queries
on the other hand, are evaluated less frequently , and are better
implemented using traditional flow analysis tools such as the
SiLKtools that can support a range of complex queries, albeit
with significantly higher costs in computational, storage and
transmission complexity. We now provide an example query
and its probabilistic implementation. We will generalize from
that implementation to present a broader system for routine
analysis of flow data.

III. A N EXAMPLE QUERY

Consider a query for identifying sources that have con-
tacted an unusually large number of destinations within the
monitored network. For a large network, evaluating such a
query periodically over the flow records corresponding to
the inbound traffic can expose a variety of activity such as
port scans, flooding attacks and automated worm or botnet
spreading attempts. Tracking the set of heavy hitters in this
query, i.e., the sources sending the largest number of flows
into the network, and changes in this set, can yield a list of
suspects warranting further investigation.

Using SiLK, an implementation of this query might look
like:
%rwuniq --distinct-destinations data.raw
As demonstrated in Table I, the total running time for this
query increases with the total number of sources. More sig-
nificant is the fact that all the half million flow records in this
example need to be available at the analysis station for this
query to be evaluated. Also, the amount of memory required
to implement this query and the total number of memory
accesses both increase no slower than the total number of
flows, the total number of sources, and the number of distinct
destinations per source. In the event of an actual attack or
scan, the situation is further exacerbated due to the increase
in the number of distinct sources and/or destinations, often by
several orders of magnitude, caused by such events.

We now describe a probabilistic solution implementing this
query. Consider a simple array of counters, indexed by a hash

function, such that the range of the hash function equals the
number of counters in the array. Now for every flow record, a
hash of the source IP can be used as an index into the counter
array, to locate the corresponding counter. This counter can
be incremented for every flow, thus accumulating the count of
the total number of flows from the corresponding source IP.
Sources sending a large number of flows can be identified
by selecting the flows that cause any counter to reach a
predetermined threshold value. This solution is approximate in
the sense that collisions in hashing can result in counter values
being incremented due to more than one source IP hashing to
the same location. However, with a reasonably large array,
say with2

18 counters, the probability of collisions among two
large sources is quite small. Such data structures, also known
as sketches, have been studied recently for their suitability in
estimating various statistics about network traffic. We refer the
reader to [4], [5] for a detailed treatment of the accuracy of
estimation using such sketches.

This solution can track the total number of flows corre-
sponding to each source, but requires another component to
track the set of unique destinations contacted by each source.
We implement this functionality by adding a Bloom Filter
to estimate whether a<source IP, destination IP>
tuple is unique. Bloom Filters [6] are probabilistic data struc-
tures capable of answering set membership queries in very
efficient manner. To count the number of unique destinations
contacted by each source in an approximate manner, a second
counter array is maintained, but updated only for previously
unseen<source IP, destination IP> tuples.

Figure 1 depicts the overall solution, consisting of two
counter arrays and a Bloom Filter for determining new unique
destinations for a given source. The first array provides the
total number of flows per source and the second array pro-
vides the total number of unique destinations per source. The
estimation techniques developed by Kumar et al. [4], enable
the computation of the entire distribution of the number of
flows sent by individual sources, and the number of unique
destinations contacted by individual sources. This answers
all distributional and aggregate queries about the statistics of
total number of flows by source and total number of unique
destinations by source. Finally, simple threshold sampling
rules can be used to select a small number of records from
sources that have sent more thanTtotal number of flows or
contacted more thanTunique destinations. This allows for the
identification of individual sources that have exceeded theset
thresholds, thereby answering the identity queries about the
outliers along these metrics.

In this section we have designed a solution that answers the
aggregate, distributional, and identity queries for two metrics,
the total number of flows by source and the number of unique
destinations contacted by each source. The following section
discusses how this approach can be further generalized to
design a comprehensive system for routine analysis of flow
data.

IV. A COMPREHENSIVE SYSTEM FOR ROUTINE ANALYSIS

The solution designed in the previous section used two
arrays of counters and a Bloom Filter for resolving uniqueness

3

Threshold Sampling

= Ttotal ?

Increment
Counter

Increment
Counter

Flow
Record h(src IP)

Bloom
Filter

Key=<src IP, dst IP>

+
Query

Insert

"No"
(new
unique
tuple)

unique=T ?

Select flow
Yes

Yes

Fig. 1. Solution to track total flows and total unique destinations by source IP

Metric Key field(s) Aggregate Queries Distributional Queries Identity Queries
Bytes Flow (5-tuple) Total Flows Flows with x ≤ bytes≤ y Large flows
Packets Flow (5-tuple) Total Flows Flows with x packets Large flows
Total Flows Source IP Total sources Sources sendingx flows Sources sending many flows (> Ttotal)
Unique Destinations Source IP Total sources Sources contactingx destinations Sources contacting many destinations

(i.e., contacting≥ Tunique destinations)
Total Flows Destination IP Total destinations Destinations receivingx flows Destinations receiving many flows
Unique Sources Destination IP Total destinations Destinations contacted byx sources Destinations contacted by many sources
Total Flows DDP-tuple Total DDP-tuples DDP-tuples receivingx flows DDP-tuples receiving many flows
Unique Sources DDP-tuple Total DDP tuples DDP-tuples contacted byx sources DDP-tuples contacted by many sources

TABLE II

METRICS TRACKED BY PROPOSED SYSTEM AND EXAMPLES OF SUPPORTEDQUERIES.

of tuples to answer queries along two important metrics: the
total number of flows and unique destinations by source IP.
This solution can be generalized to comprehensively support
routine analysis queries. Two observations facilitate this gen-
eralization: (i) The total number of metrics that are interesting
enough to be tracked on a routine basis are very small, and
(ii) A single Bloom Filter can be used universally to resolve
all uniqueness questions.

Given the high dimensionality of flow data, it is somewhat
counterintuitive that only a few metrics are of routine interest.
Indeed, in a forensic investigation, an analyst might need to
slice up the flow data along unusual dimensions. However,
the key point here is that forroutine analysis, only a small
number of metrics are actually tracked. In practice, informa-
tion about the eight metrics listed in Table II is adequate to
provide situational awareness with enough sensitivity to flag
most anomalies. This table also provides examples of queries
supported by the sketches tracking the respective metrics.The
abbreviation DDP-tuple stand for a<destination IP,

destination port, protocol> tuple.
One may argue with the exact composition of the list of

metrics in Table II, and we do believe that it can be improved
with inputs from the community of analysts, but the interesting
point here is that all the metrics in this list can be covered by
eight corresponding arrays (sketches). The first two arrays,
would track the number of packets and bytes on a per flow
basis, in an approximate manner. To accommodate a huge
number of flows in an array with fewer counters than flows, we
can resort to multi-resolution techniques as presented in [4],
using 1 million counters to track up to 50 million flows. The
remaining six metrics can be tracked comfortably by arrays
with 2

18 or 256k counters each. With 32 bit counters, the
overall size of these data structures would be 14 MB.

Threshold sampling would identify a small number of
records that are interesting because they correspond to an out-
lier for one of the metrics. Note that for routine analysis, the
goal is to identify a small number of interesting outliers. We
assume that the detailed data will be available independently

4

for subsequent forensic analysis. For 50 million flows in a
measurement, we conservatively estimate2

16 or 64K flow
records, easily fitting within 2MB before compression, using
a compact representation such as the SiLK raw format.

The second observation is that a single Bloom Filter can
be used to determine uniqueness of tuples across the entire
system. Bloom filters use an array of bits, or bit-vector, anda
collection ofk hash functions to insert and query for elements.
For insertion, all k hash functions are computed and the
corresponding bits are set to ’1’. Upon being queried for a
key, again allk hash functions are computed over the key,
and the corresponding bits looked up. If all the bits are ’1’,
the answer is “yes”, i.e. the key was inserted previously, while
if one or more bit is ’0’, the answer is “No”, implying the key
is a new unique item. Now, if the hash functions are chosen so
they can take variable length inputs, the rest of the operations
are transparent to the semantics of the keys, hence allowingus
to use the same Bloom Filter for determining the uniqueness
of various tuples with different fields. Continuing with thegoal
of processing 50 million flow records in one period, a Bloom
Filter with a single hash function and 16 MB of storage would
be sufficient to determine the uniqueness of various tuples with
acceptable accuracy. If additional memory is available, these
parameters can be tuned to provide optimal accuracy according
to the method provided in [7]. Note that the Bloom filter is
used as a local data structure used only while updating the
sketches for each flow record. Once this process is complete,
the Bloom Filter can be discarded; it does not need to be stored
or transmitted.

The sketches and selected records corresponding to outliers
together make up the summary representation of the flow
records. Here, they correspond to a total size of 16 MB
before compression. For our example of 50 million flows in an
observation period, this is roughly 100 times smaller than the
actual flow records and can be transmitted easily to a central
analysis server. The analysis server can then compute various
estimates over these sketches, feeding a situational awareness
or anomaly detection system. The next section discusses the
benefits and limitations of this solution approach.

V. BENEFITS AND LIMITATIONS

As identified before, the solution approach presented here
is complementary to the more flexible flow analysis paradigm
and tools available to analysts today. The benefits of this
approach lie in its speed and succinctness, while its limitations
lie in the restricted set of queries that such a system can
support.

• Speed: The first major benefit of the proposed approach
is its high speed. Updating the sketches involves a small
number of hash computations and memory lookups. A
software implementation running on a 2.0 Ghz dual-
Opteron system can process 2.5 million records per sec-
ond, preparing the 16 MB of summaries to be shipped to
the central analysis server. Running estimation algorithms
at the analysis server is equally fast, taking under one
processor-minute per sketch.

• Succinctness: Large flow monitoring installations typ-
ically have a distributed deployment, withcollectors

deployed at various locations in a network collecting flow
records from adjacent router(s) and packing them into
more succinct intermediate formats, before transmission
to a central analysis installation. The approach presented
in this paper enables creation of succinct summaries
at distributed collectors that are about 100 times more
compact than the packed formats of SiLK. This changes
the issue of transmission bandwidth (and storage at the
central server) from a major concern to a trivial overhead.
Indeed in current installations, the large volume of flow
records being transmitted, especially during attacks, are
a major overhead in large ISPs, and cited as one of the
main reasons against the deployment of flow-collection
in the core.

• Low Flexibility: The benefits of this approach come with
a significant limitation - the analysis only addresses a
set of predefined queries. This implies that any forensic
investigation into network events is likely to require eval-
uation of queries not supported by the sketches generated
into this system. But this problem can be addressed by
retaining the complete flow records at the distributed
“collectors” till such time when a forensic investigation
requires records from the corresponding period to be
“pulled” to the central analysis station. Since such inves-
tigations are likely to be infrequent, at least relative to
the repetitive evaluation of routine queries, such a 2-tier
solution will provide all efficiency benefits of the sketch-
based system while making available to the analyst all the
power and flexibility of conventional flow analysis tools
during specific investigations.

VI. CONCLUSIONS

Routine flow analysis tasks that periodically evaluate a fixed
set of queries over the flow data collected in the corresponding
period can be made significantly more efficient if approximate
answers are acceptable in lieu of deterministic accuracy. The
approach presented in this paper delivers a 100 fold reduction
in the amount of data sent to a central analysis server for
routine analysis. Future work on this subject includes the
identification of important metrics to track and performance
study of a complete, deployed system.

REFERENCES

[1] D. Kompanek and M. Thomas, “Silk analysis suite,”
http://sourceforge.net/projects/silktools, 2003.

[2] C. Gates, M. Collins, M. Duggan, A. Kompanek, and M. Thomas, “More
netflow tools: For performance and security,” inProc. of LISA XVIII,
Atlanta, GA, Nov. 2004.

[3] J. McHugh, “Sets, bags and rock and roll,” inProc. of the Ninth European
Symposium on Research in Computer Security, Sept. 2004.

[4] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data streaming algorithms for
efficient and accurate estimation of flow size distribution,” in Proc. ACM
SIGMETRICS, June 2004.

[5] A. Kumar and J. Xu, “Sketch guided sampling – using on-line estimates
of flow size for adaptive data collection,” inProc. of IEEE Infocom, Apr.
2006.

[6] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
CACM, vol. 13, no. 7, pp. 422–426, 1970.

[7] A. Broder and M. Mitzenmacher, “Network Applications ofBloom
Filters: A Survey,” inFortieth Annual Allerton Conference on Communi-
cation, Control, and Computing, 2002.

