
1©2017 Carnegie Mellon University | 3854 | 01.22.17

WHAT IS YOUR DEFINITION OF SOFTWARE
ARCHITECTURE?

The SEI has compiled a list of modern, classic, and
bibliographic definitions of software architecture.

Modern definitions are definitions from Software
Architecture in Practice and from ANSI/IEEE Std
1471-2000, Recommended Practice for Architectural
Description of Software-Intensive Systems.

Classic definitions appear in some of the more prominent
or influential books and papers on architecture.

Bibliographic definitions are taken from papers and
articles in our software architecture bibliography.

Modern Software Architecture
Definitions

Entries

1. From the book Documenting Software Architectures:
Views and Beyond (2nd Edition), Clements et al, Addison-
Wesley, 2010:
The set of structures needed to reason about the system,
which comprises software elements, relations among
them, and properties of both.

In this book, we use a definition based on the one
from Software Architecture in Practice (2nd Edition)
(see below). We chose it because it helps us know what
to document about an architecture. The definition

emphasizes the plurality of structures present in every
software system. These structures, carefully chosen and
designed by the architect, are the key to achieving and
reasoning about the system’s design goals. And those
structures are the key to understanding the architecture.
Therefore, they are the focus of our approach to
documenting a software architecture.

Structures consist of elements, relations among the
elements, and the important properties of both. So
documenting a structure entails documenting
those things.

2. From the book Software Architecture in Practice
(2nd edition), Bass, Clements, Kazman; Addison-
Wesley 2003:
The software architecture of a program or computing
system is the structure or structures of the system,
which comprise software elements, the externally visible
properties of those elements, and the relationships
among them.

“Externally visible” properties refers to those assumptions
other elements can make of an element, such as its
provided services, performance characteristics, fault
handling, shared resource usage, and so on. Let us look at
some of the implications of this definition in more detail.

First, architecture defines elements. The architecture
embodies information about how the elements relate
to each other. This means that architecture specifically

What is your definition of software
architecture?

2©2017 Carnegie Mellon University | 3854 | 01.22.17

omits certain information about elements that does
not pertain to their interaction. Thus, an architecture
is foremost an abstraction of a system that suppresses
details of elements that do not affect how they use, are
used by, relate to, or interact with other elements. In
nearly all modern systems, elements interact with each
other by means of interfaces that partition details about
an element into public and private parts. Architecture is
concerned with the public side of this division; private
details of elements—details having to do solely with
internal implementation—are not architectural.

Second, the definition makes clear that systems can
and do comprise more than one structure and that no
one structure holds the irrefutable claim to being the
architecture. For example, all non-trivial projects are
partitioned into implementation units; these units
are given specific responsibilities, and are the basis
of work assignments for programming teams. This
kind of element will comprise programs and data
that software in other implementation units can call
or access, and programs and data that are private. In
large projects, the elements will almost certainly be
subdivided for assignment to subteams. This is one
kind of structure often used to describe a system. It
is a very static structure, in that it focuses on the way
the system’s functionality is divided up and assigned to
implementation teams.

Other structures are much more focused on the way the
elements interact with each other at runtime to carry
out the system’s function. Suppose the system is to be
built as a set of parallel processes. The set of processes
that will exist at runtime, the programs in the various
implementation units described previously that are
strung together sequentially to form each process, and
the synchronization relations among the processes form
another kind of structure often used to describe a system.

Third, the definition implies that every software system has
an architecture because every system can be shown to be
composed of elements and relations among them. In the
most trivial case, a system is itself a single element—an
uninteresting and probably non-useful architecture, but
an architecture nevertheless. Even though every system
has an architecture, it does not necessarily follow that
the architecture is known to anyone. Unfortunately, an
architecture can exist independently of its description or
specification, which raises the importance of architecture
documentation and architecture reconstruction.

Fourth, the behavior of each element is part of the
architecture insofar as that behavior can be observed or
discerned from the point of view of another element. This
behavior is what allows elements to interact with each
other, which is clearly part of the architecture. This does
not mean that the exact behavior and performance of
every element must be documented in all circumstances;
but to the extent that an element’s behavior influences
how another element must be written to interact with it
or influences the acceptability of the system as a whole,
this behavior is part of the software architecture.

Finally, the definition is indifferent as to whether the
architecture for a system is a good one or a bad one,
meaning that the architecture will allow or prevent the
system from meeting its behavioral, performance, and
life-cycle requirements. Assuming that we do not accept
trial and error as the best way to choose an architecture
for a system—that is, picking an architecture at random,
building the system from it, and hoping for the best—this
raises the importance of architecture evaluation.

3. ANSI/IEEE Std 1471-2000, Recommended
Practice for Architectural Description of Software-
Intensive Systems
Architecture is defined by the recommended practice
as the fundamental organization of a system, embodied in
its components, their relationships to each other and the
environment, and the principles governing its design and
evolution. This definition is intended to encompass a
variety of uses of the term architecture by recognizing
their underlying common elements. Principal among
these is the need to understand and control those
elements of system design that capture the system’s
utility, cost, and risk. In some cases, these elements
are the physical components of the system and their
relationships. In other cases, these elements are not
physical, but instead, logical components. In still other
cases, these elements are enduring principles or patterns
that create enduring organizational structures. The
definition is intended to encompass these distinct, but
related uses, while encouraging more rigorous definition
of what constitutes the fundamental organization of a
system within particular domains.

3©2017 Carnegie Mellon University | 3854 | 01.22.17

Classic Software Architecture
Definitions

Rational Unified Process, 1999
An architecture is the set of significant decisions about
the organization of a software system, the selection of
the structural elements and their interfaces by which
the system is composed, together with their behavior as
specified in the collaborations among those elements,
the composition of these structural and behavioral
elements into progressively larger subsystems, and the
architectural style that guides this organization---these
elements and their interfaces, their collaborations,
and their composition (Kruchten: The Rational Unified
Process. Also cited in Booch, Rumbaugh, and Jacobson:
The Unified Modeling Language User Guide, Addison-
Wesley, 1999).

PERRY AND WOLF, 1992

An early one by Dewayne Perry and Alex Wolf is:
A set of architectural (or, if you will, design) elements
that have a particular form. Perry and Wolf distinguish
between processing elements, data elements, and
connecting elements, and this taxonomy by and large
persists through most other definitions and approaches.

GARLAN AND SHAW, 1993
In what has come to be regarded as a seminal paper
on software architecture , Mary Shaw and David Garlan
suggest that software architecture is a level of design
concerned with issues

...beyond the algorithms and data structures of the
computation; designing and specifying the overall
system structure emerges as a new kind of problem.
Structural issues include gross organization and
global control structure; protocols for communication,
synchronization, and data access; assignment
of functionality to design elements; physical
distribution; composition of design elements; scaling
and performance; and selection among design
alternatives.”

BASS, ET AL., 1994
Writing about a method to evaluate architectures with
respect to the quality attributes they instill in a system ,
Bass and his colleagues write that

...the architectural design of a system can be described
from (at least) three perspectives -- functional
partitioning of its domain of interest, its structure, and
the allocation of domain function to that structure.

HAYES-ROTH, 1994
Writing for the ARPA Domain-Specific Software
Architecture (DSSA) program, Hayes-Roth says that
software architecture is

...an abstract system specification consisting primarily
of functional components described in terms of their
behaviors and interfaces and component-component
interconnections.

GARLAN AND PERRY, 1995
David Garlan and Dewayne Perry have adopted the
following definition for their guest editorial to the April
1995 IEEE Transactions on Software Engineering devoted
to software architecture:

The structure of the components of a program/system,
their interrelationships, and principles and guidelines
governing their design and evolution over time.

(The source of this definition was a weekly discussion
group devoted to software architecture at the Software
Engineering Institute.)

BOEHM, ET AL., 1995
Barry Boehm and his students at the USC Center for
Software Engineering write that:

A software system architecture comprises

•	 A collection of software and system components,
connections, and constraints.

•	 A collection of system stakeholders’ need statements.

•	 A rationale which demonstrates that the components,
connections, and constraints define a system that, if
implemented, would satisfy the collection of system
stakeholders’ need statements.

SONI, NORD, AND HOFMEISTER, 1995
Soni, Nord, and Hofmeister of Siemens Corporate
Research write that, based on structures found to be
prevalent and influential in the development environment
of industrial projects they studied, software architecture
has at least four distinct incarnations:

Within each category, the structures describe the system
from a different perspective:

•	 The conceptual architecture describes the system
in terms of its major design elements and the
relationships among them.

•	 The module interconnection architecture encompasses
two orthogonal structures: functional decomposition
and layers.

•	 The execution architecture describes the dynamic
structure of a system.

4©2017 Carnegie Mellon University | 3854 | 01.22.17

•	 The code architecture describes how the source
code, binaries, and libraries are organized in the
development environment.

Shaw, 1995: At the First International Workshop on
Architectures for Software Systems, Mary Shaw provided
a much-needed clarification of the terminological chaos.
Distilling the definitions and viewpoints (implicit or
explicit) of the workshop’s position papers, Shaw classifies
the views of software architecture thus :

•	 Structural models all hold that software architecture
is composed of components, connections among
those components, plus (usually) some other aspect or
aspects, including (grouping suggested by the authors):

•	 configuration, style

•	 constraints, semantics

•	 analyses, properties

•	 rationale, requirements, stakeholders’ needs

Work in this area is exemplified by the development
of architectural description languages (ADLs), which
are formal languages that facilitate the description of
an architecture’s components and connections. The
languages are usually graphical, and provide some form
of “box and line” syntax for specifying components and
hooking them together.

•	 Framework models are similar to the structural view,
but their primary emphasis is on the (usually singular)
coherent structure of the whole system, as opposed to
concentrating on its composition. Framework models
often target specific domains or problem classes.
Work that exemplifies the framework view includes
domain-specific software architectures, CORBA [55] or
CORBA-based architecture models, and domain-specific
component repositories (e.g., PRISM).

•	 Dynamic models emphasize the behavioral quality of
systems. “Dynamic” may refer to changes in the overall
system configuration, setting up or disabling pre-
enabled communication or interaction pathways, or the
dynamics involved in the progress of the computation,
such as changing data values.

•	 Process models focus on construction of the
architecture, and the steps or process involved in
that construction. In this view, architecture is the
result of following a process script. This view is
exemplified by work in process programming for
deriving architectures.

These views do not preclude each other, nor do
they really represent a fundamental conflict about
what software architecture is. Instead, they represent
a spectrum in the software architecture research
community about the emphasis that should be placed

on architecture -- its constituent parts, the whole entity,
the way it behaves once built, or the building of it. Taken
together, they form a consensus view of
software architecture.

Bibliographic Software
Architecture Definitions

[Lane 90]: Software architecture is the study of the large-
scale structure and performance of software systems.
Important aspects of a system’s architecture include
the division of functions among system modules, the
means of communication between modules, and the
representation of shared information.

[Rechtin 92]: Systems architecture: The underlying
structure of a system, such as a communication network,
a neural network, a spacecraft, a computer, major
software or an organization.

[Bhansali 92]: A generic architecture is defined as a
topological organization of a set of parameterized
modules, together with the inter-modular relationships.
Designing a software system using a generic architecture
consists of instantiating the parameters of each
parameterized module by a concrete value while
maintaining the inter-modular constraints.

[Garlan 92]: As the size and complexity of software
systems increases, the design problem goes beyond
the algorithms and data structures of the computation:
designing and specifying the overall system structure
emerges as a new kind of problem. Structural issues
include gross organization and global control structure;
protocols for communication, synchronization, and
data access; assignment of functionality to design
elements; composition of design elements; scaling and
performance; and selection among design alternatives.
This is the software architecture level of design.

[Perry 92]: We distinguish three different classes of
architectural elements: processing elements; data
elements; and connection elements. The processing
elements are those components that supply the
transformation on the data elements; the data elements
are those that contain the information that is used and
transformed; the connecting elements (which at times
may be either processing or data elements, or both) are
the glue that holds the different pieces of the architecture
together. For example, procedure calls, shared data, and
messages are different examples of connecting elements
that serve to “glue” architectural elements together.
Consider the example of water polo as a metaphor for
the different classes of elements: the swimmers are the

5©2017 Carnegie Mellon University | 3854 | 01.22.17

processing elements, the ball is the data element, and
the water is the primary connecting element (the “glue”).
Consider further the similarities of water polo, polo, and
soccer. They all have a similar “architecture” but differ in
the “glue”- that is, they have similar elements, shapes and
forms, but differ mainly in the context in which they are
played and in the way that the elements are connected
together. We shall see below that these connecting
elements play a fundamental part in distinguishing one
architecture from another and may have an important
effect on the characteristics of a particular architecture
or architectural style. The architectural form consists of
weighted properties and relationships. The weighting
indicates one of two things: either the importance of
the property or the relationship, or the necessity of
selecting among alternatives, some of which may be
preferred over other. The use of weighting to indicate
importance enables the architect to distinguish between
“load-bearing” and “decorative” formal aspects; the use
of weighting to indicate alternatives enables the architect
to constrain the choice while giving a degree of latitude
to the designers who must satisfy and implement the
architecture. Properties are used to constrain the choice
of architectural elements-that is, the properties are used
to define constraints on the elements to the degree
desired by the architect. Properties define the minimum
desired constraints unless otherwise stated- that is, the
default on constraints defined by properties is: “what
is not constrained by the architect may take any form
desired by the designer or implementer. “Relationships
are used to constrain the “placement” of architectural
elements-that is, they constrain how the different
elements may interact and how they are organized
with respect to each other in the architecture. As with
properties, relationships define the minimum desired
constraints unless otherwise stated. An underlying,
but integral, part of an architecture is the rationale for
the various choices made in defining an architecture.
The rationale captures the motivation for the choice of
architectural style, the choice of elements, and the form.

[Crispen 94]: An Architecture, as we intend to use the
term, consists of (a) a partitioning strategy and (b) a
coordination strategy. The partitioning strategy leads to
dividing the entire system in discrete, non-overlapping
parts or components. The coordination strategy leads to
explicitly defined interfaces between those parts.

[Clements 94-2]: Software architecture is loosely defined
as the organizational structure of a software system
including components, connections, constraints, and
rationale. Components can be small pieces of code,

such as modules, or larger chunks, such a stand-
alone programs like database management systems.
Connections in an architecture are abstractions for how
components interact in a system, e.g., procedure calls,
pipes, and remote procedure calls. An architecture has
various constraints and rationales associated with it,
including the constraints on component selection and the
rationale for choosing a specific component in a given
situation.

[Moriconi 94]: A software architecture is represented
using the following concepts: 1. Component: An object
with independent existence, e.g., a module, process,
procedure, or variable. 2. Interface: A typed object that is
a logical point of interaction between a component and
its environment. 3. Connector: A typed object relating
interface points, components, or both. 4. Configuration:
A collection of constraints that wire objects into a
specific architecture. 5. Mapping: A relation between
the vocabularies and the formulas of an abstract
and a concrete architecture. The formula mapping is
required because the two architectures can be written in
different styles. 6. Architectural style: A style consists of a
vocabulary of design elements, a set of well-formedness
constraints that mush be satisfied by any architecture
written in the style, and a semantic interpretation of the
connectors. Components, interfaces, and connectors are
treated as first-class objects- i.e., they have a name and
they are refinable. Abstract architectural objects can be
decomposed, aggregated, or eliminated in a concrete
architecture. The semantics of components is not
considered part of an architecture, but the semantics of
connectors is.

[Kruchten 94]: Software architecture deals with the
design and implementation of the high-level structure
of the software. It is the result of assembling a certain
number of architectural elements in some well-chosen
forms to satisfy the major functionality and performance
requirements such as scalability and availability. Software
architecture deals with abstraction, with decomposition
and composition, with style and aesthetics.

[Garlan 94]: A critical aspect of the design for any large
software system is its gross structure that is, its high-level
organization of computational elements and interactions
between those elements. Broadly speaking, we refer to
this as the software architectural level of design.

[FHayes-Roth 94]: Software Architecture: An abstract
system specification consisting primarily of functional
components described in terms of their behaviors and

6©2017 Carnegie Mellon University | 3854 | 01.22.17

interfaces and component-component interconnections.
The interconnections define provide by which
components interact.

[Abowd 95]: Software architecture is an important
level of description for software systems. At this level
of abstraction key design issues include gross-level
decompositional components, protocols of interaction
between those components, global system properties
(such as throughout and latency), and life-cycle issues
(such as maintainability, extent of reuse, and platform
independence).

[Boasson 95]: [We take] “architecture” to mean a system
structure that consists of active modules, a mechanism to
allow interaction among these modules, and a set of rules
that govern the interaction.

[Garlan 95]: The structure of the components of a
program/system, their interrelationships, and principles
and guidelines governing their design and evolution over
time.

[BHayes-Roth 95]: The architecture of a complex
software system is its “style and method of design and
construction”.

[Lawson 95]: A system architecture is typically defined in
the context of the “requirements, design, implementation”
sequence, referring the top level of the design stage,
“...where the design issues involve overall association
of systems capabilities with components.” It also
designates a higher level of abstraction, codification, and
standardization, targeting the improvement of system
design and making the complex system intellectually
tractable. To characterize a system architecture the
following topics must be addressed: The relations
that bind a system architecture to the corresponding
development process: the important decisions to be
made (at the corresponding level of abstraction), the
issues to be resolved, the properties to be guaranteed.
The relations to the information model employed, and
the tools used. The corresponding body of applicable
engineering knowledge and design rationale. The set of
constructive concepts-architecture elements- as well as
notations for them, that can be used to build the system
description at the appropriate level of abstraction. From
this perspective, we define and architecture as a system
design model that captures system organization and
behavior in terms of components, interactions, and static
and dynamic configurations.

[KJackson 95]: “The definition of a set of generic
component types together with: -a description of the

properties of each type, -the rules governing the way
each component type may interact with each other type
-the style of interactions allowed between components,
and -the rules which govern how a system (or subsystem)
may be composed from instances of the generic
components.” For an architecture to be considered “good”
and provide the facilities defined in the previous section
an architecture must, in addition to the items indicated
above: -support the specification of design specific
but context independent (reusable) component types;
-support the composition of system (and subsystems)
from instances of these design specific components,
-support the ability to place components in appropriate
physical locations and define the run-time software
and/or special purpose hardware required to support
the execution of the system. (We refer to this item as
“infrastructure” or “middleware”, since it sits between
the application software and the standard computer
hardware plus operating system.

[ATA 96]: The U.S. Army’s Army Technical Architecture
(ATA) provides these definitions:

•	 A Technical Architecture is the minimal set of
rules governing the arrangement, interaction, and
interdependence of the parts or elements that together
may be used to form an information system. Its
purpose is to ensure that a conformant system satisfies
a specified set of requirements. It is the build code for
the Systems Architecture being constructed to satisfy
Operational Architecture requirements.

•	 An Operational Architecture is a description, often
graphical, which defines the force elements and
the requirement to exchange information between
those force elements. It defines the types of
information, the frequency of its exchange, and what
warfighting tasks are supported by these information
exchanges. It specifies what the information systems
are operationally required to do and where these
operations are to be performed.

•	 A Systems Architecture is a description, often graphical,
of the systems solution used to satisfy the warfighter’s
Operational Architecture requirement. It defines
the physical connection, location, and identification
of nodes, radios, terminals, etc., associated with
information exchange. It also specifies the system
performance parameters. The Systems Architecture
is constructed to satisfy the Operational Architecture
requirements per the standards defined in the
Technical Architecture

