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“Our research springs 
from the DoD’s need 
for software innovation 
and cybersecurity that 
continually evolves 
in support of its 
intensifying mission.” 



MESSAGE FROM THE CTO
We at the Carnegie Mellon University Software Engineering Institute (CMU SEI) are proud of our designation 
as a federally funded research and development center (FFRDC) sponsored by the Under Secretary of Defense, 
Research and Engineering (USD(R&E)). That pride shows in our ongoing commitment to establishing and 
advancing software as a strategic advantage for national defense and security. 

This book highlights the fundamental research we conducted in fiscal 2020 on behalf of our DoD sponsor and 
presented at the 2020 CMU SEI Research Review. It presents recently concluded work and work that remains 
underway in our pipeline for technology development and transition: study, make, transition, and transfer.

As you will see in the following pages, we dig into the enduring challenges facing the DoD, and our decades-
long engagement has informed our deep and nuanced understanding of the challenges it faces. Our research 
springs from the DoD’s need for software innovation and cybersecurity that continually evolves in support of  
its intensifying mission. 

The DoD needs its software-enabled systems to

•	 bring capabilities that make new missions possible or improve the likelihood of success of existing ones

•	 be timely to enable the DoD to field new software-enabled systems and upgrades faster than our adversaries

•	 be trustworthy in construction and implementation and resilient in the face of operational uncertainties 
including known and yet-unseen adversary capabilities

•	 be affordable such that the cost of acquisition and operations, despite increased capability, is reduced, 
predictable, and provides a cost advantage over our adversaries

Those four requirements drive all CMU SEI work, whether for USD(R&E), DoD programs, federal civilian 
agencies, or industry.

Our work in the problem space often generates fruitful collaborations with CMU academic departments, other 
leading universities, and industry that identify promising basic research and emerging technologies of use 
to the DoD. We also engage with DoD end users to gain field-level understanding of mission needs, gaps, and 
priorities, and with industry to assess existing capabilities. 

When creating solutions, CMU SEI develops prototypes using promising early research or technology, maturing it 
as we do to meet the needs of the DoD. We conduct initial validation with forward-leaning DoD end users in major 
defense acquisition programs, combatant commands, or combat support agencies. We also identify opportunities 
for cost sharing with federal agencies facing challenges similar to those of the DoD.

Our transition efforts take place through additional direct engagements, and it is funded from across the inter-
agency to refine prototypes to facilitate broad adoption by the entire DoD or to transfer these technologies to an 
industry or DoD partner for further integration or ongoing maintenance.

Across that pipeline, our steadfast purpose is to help the DoD gain and sustain an advantage over adversaries 
through the transformation of software acquisition, sustainment, and cyber operations within DoD. We strive 
to help the DoD do so in a way that matures and integrates advanced capabilities discovered by academia, 
government, and the private sector through a process that is routine, affordable, trustworthy, and timely.

I hope you enjoy reading about CMU SEI’s fiscal 2020 research efforts, and that the following pages demonstrate 
the pride we take in this work. We stand by to work with you to help you make a difference, and we encourage 
you to contact us at info@sei.cmu.edu. 

TOM LONGSTAFF
Chief Technology Officer

Carnegie Mellon University  
Software Engineering Institute
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Leverage Emerging Technology 
Innovation in Computing, 
Architectures, and Algorithms
CMU SEI takes promising technologies and research relevant 

to DoD missions and adapts and enhances them to allow 

integration into DoD systems and processes.

SECTION 1
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Problems
• The need exists for increased 

computational power to process, 
exploit, and disseminate information 
for decision makers.

• Massive amounts of information, 
along with AI/ML algorithms, generate 
data and computational-intensive 
applications.

• Implementing these applications 
effi  ciently on increasingly complex HW/
SW architectures is challenging.

• Too few engineers have the expertise to 
optimize algorithms for the wide variety 
of hardware currently available.

Solution
• Automatic code generation for data-

intensive computations
• Simultaneous, automatic co-

optimization for targeted hardware

Approach
• Identify and encode data-intensive 

compute primitives into CMU’s SPIRAL 
code generation technology.

• Develop and encode hardware 
performance models into Spiral.

• Use Spiral to co-optimize for a set of 
target hardware platforms.

Dr. Scott McMillan (SEI PI), Prof. Franz Franchetti (CMU PI), Prof. Tze Meng Low (CMU PI),
Dr. Daniele Spampinato, Mark Blanco, Anurag Kutuluru, Sanil Rao, Upasana Sridhar

info@sei.cmu.edu
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Spiral AI/ML: Co-optimization for High-Performance, Data-Intensive 
Computing in Resource Constrained Environments

Hardware-software co-optimization promises 
timely, high-performance, and cost-eff ective 
implementation and re-implementation of AI/ML 
workloads on new DoD hardware platforms.
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1. S. Rao, A. Kutuluru, S. McMillan, F. 
Franchetti, “GBTLX: A First Look”, in 2020 
IEEE High Performance Extreme Computing 
Conference (HPEC), 2020. Outstanding 
Student Paper Award.

2. SPIRAL Project, Version 8.1.2.  Available at 
https://www.spiral.net.

3. GraphBLAS Template Library (GBTL), Version  
3.0. Available at https://github.com/cmu-
sei/gbtl, June 2020.

4. A. Buluç, T. Mattson, S. McMillan, J. Moreira, 
and C. Yang, “Design of the GraphBLAS API 
for C,” in 2017 IEEE International Parallel 
and Distributed Processing Symposium 
Workshops (IPDPSW), pp. 643–652, 2017.

5. T. M. Low, V. N. Rao, M. Lee, D. Popovici, F. 
Franchetti, and S. McMillan, “First look: Linear 
algebra-based triangle  counting without 
matrix multiplication,”  in2017 IEEE High 
Performance Extreme ComputingConference 
(HPEC), pp. 1–6, 2017.

6. J. Kepner, D. Bader, A. Buluç, F. Franchetti, 
J. Gilbert, A. Lumsdaine, T. Mattson, 
S. McMillan, et al., “Mathematical 
Foundations of the GraphBLAS,” in 2016 
IEEE High Performance Extreme Computing 
Conference (HPEC), pp. 1–9, 2016.

Graph algorithms in the language of linear algebra 
supports a rich notation for specifying graph, ML and AI
algorithms.  For example, counting triangles in graph L:

∆ = || L .x ( L +. ᴧ  L) ||

includes use of semiring algebraic operations and 
masked matrix multiplies.

GBTL implements the GraphBLAS specifi cation that allows 
simpler implementation of the math in code:

uint64 _ t triangle _ count(Matrix<bool> const &L) {
    Matrix<uint64 _ t> B(L. nrows(), L.ncols());

    // Masked matrix multiply: B = L .* (L +.̂  L)
    mxm(B, L, NoAccum(), PlusAndSemiring<uint64 _ t>(), L, L);

    //Perform reduction: ||B||
    uint64 _ t count;
    reduce(count, NoAccum(), PlusMonoid<uint64 _ t>(), B);
    return count; 
}

Spiral wraps GBTL functions to build a trace fi le used for 
analysis during code generation:

spiral _ session := [
    rec(op := “triangle _ count”), //function name
    rec(op := “MatrixCreation”,row:= 9877,col:= 9877,
        ptr := 0x7fffff45bb60, mat = 0x7fffff45bb60),
    rec(op := “Matrix Multiplication”,
        output = IntHexString(“0x7fffff45bb60”) ,
        mask   = IntHexString(“0x7fffff45ba30”),
        inputA = IntHexString(“0x7fffff45bb30”),
        inputB = IntHexString(“0x7fffff45bb30”),
        semiring = “PlusAnd”),
    rec(op := “reduce(matrix->scalar)”,
        /*many more arguments*/),
];[3,4] [1] [1,5]

GBTLX generaged code is on par with hand-tuned code

[6]

[1]

[3]

[2]

References

2 RESEARCH REVIEW 2020



Principal Investigator

DR. SCOTT MCMILLAN
Member of the Technical 
Staff/Principal Engineer

Carnegie Mellon University  
Software Engineering Institute

Commanders and warfighters in the field rely on data, 
and the Department of Defense and U.S. intelligence 
community have an overwhelming data collection 
capability. This capability far outpaces the ability of 
human teams to process, exploit, and disseminate 
information. Artificial intelligence (AI) and machine 
learning (ML) techniques show great promise for 
augmenting human intelligence analysis. However, 
most AI/ML algorithms are computationally expensive, 
data intensive, and difficult to implement efficiently 
in increasingly complex computer hardware and 
architectures. What’s more, moving very large amounts of 
data through tactical and operational military networks 
requires forward deployment of advanced AI/ML 
techniques to support commanders and warfighters in 
theaters with equipment constrained by cost, size, weight, 
and power (CSWAP). 

SPIRAL AI/ML: CO-OPTIMIZATION FOR HIGH-PERFORMANCE, DATA-INTENSIVE 
COMPUTING IN RESOURCE-CONSTRAINED ENVIRONMENTS

As the military adopts AI/ML to augment human teams, 
the cost of implementing and re-implementing AI/ML 
software on new hardware platforms will be prohibitive. 
To address these challenges, we propose to build on CMU’s 
Spiral technology, a hardware-software co-optimization 
system that will 

•	 automatically search and select hardware configurations 
that meet CSWAP requirements 

•	 automatically generate optimized codes for the selected 
hardware configuration and the irregular, data-intensive 
computations required for AI/ML algorithms 

If successful, our solution will allow platform developers 
to realize high-performance AI/ML applications on 
leading-edge hardware architectures faster and cheaper. 
These advances will allow for rapid development and 
deployment of capabilities across the spectrum of national 
and tactical needs.

IN CONTEXT: THIS FY2019–21 PROJECT
•	 builds on DoD line-funded research and sponsored work 

on automated code generation for future-compatible 
high-performance graph libraries, big learning 
benchmarks, GraphBLAS API specification, and graph 
algorithms on future architectures

•	 is related to a set of programs at DARPA under the ERI 
umbrella (HIVE, SDH DSSOC, etc.) that the CMU SEI  
is supporting

•	 aligns with the CMU SEI technical objective to be 
affordable such that the cost of acquisition and 
operations, despite increased capability, is reduced  
and predictable and provides a cost advantage  
over our adversaries

3RESEARCH REVIEW 2020
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Problem 
When and where can the DoD benefi t from investing in 
quantum computing technology? To answer this question, 
we are working with noisy intermediate scale quantum 
(NISQ) computers, but we’re also thinking ahead to fault-
tolerant quantum error corrected computation. In particular, 
we want to determine when and where quantum advantage 
will exist for the following important DoD applications:

Jason Larkin (SEI), Catherine Bernaciak (SEI), Daniel Justice (SEI),
Matias Jonsson (CMU), Scott Mionis (CMU), Franz Franchetti (CMU), Gian Guerreschi (Intel)

Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

A18

Quantum Advantage Evaluation Framework

QAEF Output: When and where can you leverage 
quantum computing to achieve advantage in solving 
your organization’s problems?
• Input: the applications that have most potential for 

quantum advantage. It is critical to identify “real world” 
problem instances. 

• Output: when and where will quantum advantage exist? 
Establish timeframe for Quantum Advantage Readiness.
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http://spiral.net/
https://github.com/spiralgen/spiral-package-quantum
“Quantum Circuit Optimization with SPIRAL: A First Look,” S Mionis, et al, Supercomputing 2020

Quantum Circuit Optimization in SPiRAL

Scheduling to Quantum “Baremetal”

Framework to evaluate current 
and projected quantum 
computing advantage.

Where: to determine quantum 
advantage, benchmarks on 
specifi c problem instances must 
be performed on “real world” 
scales (O(100-1000+ nodes) 
(estimated 3 years IBM, Google)

https://arxiv.org/abs/2006.04831
“Assessment of Alternative Objective Functions for Quantum Variational Combinatorial Optimization,” M. Jonsson, et al, IEEE QCE Quantum Week 2020

Classical State of the Art: PSC

Quantum Computers 
(simulated)
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SEi Collaboration with Carnegie Mellon University
Quantum algorithm performance depends critically on 
quantum circuit optimization. We are working with CMU ECE 
Franz Franchetti’s group to adapt their well-known classical 
computing optimization tool, SPIRAL.

Application Evaluation
Results

Quantum Advantage
Evaluation Framework
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Principal Investigator

DR. JASON LARKIN
Research Scientist

Carnegie Mellon University  
Software Engineering Institute

The potential of quantum computing, especially near-
term, is not going to be realized without close integration 
with state-of-the-art classical computing. Universal gate 
(UG) quantum computers share many foundational 
features with classical computers. Furthermore, UG 
quantum computers must show advantage against state-
of-the-art classical software and/or hardware, and the 
two computing paradigms will be critically integrated as 
complimentary technologies. 

A major gap in achieving quantum advantage is the 
identification of applications in which quantum 
computing could provide computational advantage (in 
terms of time to solution, quality of solution, etc.). It is 
unclear which potential applications will realize quantum 
advantage among a variety of hardware, such as various 
UG technologies (e.g., superconducting qubit, trapped and 
neutral-atom, photonics). Variation in hardware is typical 
in the near-term noisy intermediate-scale quantum (NISQ) 
computing era. This is a software–hardware co-synthesis 
challenge for quantum computing in the near-term. 

QUANTUM ADVANTAGE EVALUATION FRAMEWORK 

This project aims to produce a novel classical computing 
emulation and software–hardware co-synthesis framework 
for quantum computing technology aimed at applications 
driven by the portfolio of DoD research. UG quantum 
computing has emerged as the near-term (5- to 10-year) 
quantum computing technology that can demonstrate 
not just quantum supremacy (performing a computation 
not possible with a classical computer, regardless of 
usefulness), but also quantum advantage (performing  
a useful computation better and/or faster than a  
classical computer). 

IN CONTEXT: THIS FY2019–21 PROJECT
•	 relates to DoD interest in applying quantum computing 

to mission capability

•	 aligns with the CMU SEI technical objective to 
make software trustworthy in construction, correct 
in implementation, and resilient in the face of 
uncertainties, including known and yet-unseen 
adversary capabilities

•	 aligns with the CMU SEI technical objective to bring 
capabilities through software that make new missions 
possible or improve the likelihood of success for existing 
missions

•	 provides a gateway into futuristic computing 
architectures and increased computational power for 
artificial intelligence and machine learning

5RESEARCH REVIEW 2020
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Problem: 
Aerial surveillance demands full attention to video by 
PED teams

• Manual, error-prone process
• Technical barriers including object  detection, and tracking
• Limitations result in poor pattern detection in a 

surveilled region

• Vehicle tracks used to train LSTM autoencoder that learns 
normal behavior in order to identify anomalous tracks

• Results shown are for perfect data -- reality is not so pretty 
due to inadequate object detection and tracking 

• This results in lost tracks and many “tracklets” that are 
diffi  cult to correlate

Solution
• Work directly with DoD to  improve pattern detection in 

aerial surveillance data patterns 
• Work with  researchers to address core technology 

problems of tracking of objects

impact (FY18–20)
• Improved DoD pattern detection in aerial surveillance data
• Developing unsupervised 3D tracking algorithms to 

improve on other unsupervised methods and achieve 
performance similar to supervised methods

Given 2 viewpoints of the same object:

• a neural 3D mapping for each
• Identify the corresponding voxel pair in the 

two mappings
• Treat all other mappings as negative 

correspondences
• Train the features to indicate the 

correspondences automatically

Given the bounding box  for object

• Generate features for the object
• Generate features for search region
• For each voxel of object, compute 

correlation with search region
• Estimate the total motion with RANSAC
• Update the box automatically

Early results are promising!

• Work on 3D tracking will continue as part of Adam Harley’s 
work toward his PhD at Carnegie Mellon University

Contact:
Ed Morris   Adam Harley
info@sei.cmu.edu  info@sei.cmu.edu

Ed Morris, Adam Harley
Distribution Statement A: Approved for Public Release; 

Distribution is Unlimited

PA5

Video Summarization and Search: Object Tracking

Object Discovery
What if the need is for a system that will discover objects 
autonomously?

• Extract 3D features for each frame
• Determine voxel-wise median
• Determine the diff erence from the median for each frame

Results: Tracking based on learned correspondence of points3-D Tracking Research: learning 
correspondence from static 
3D points causes 3D object 
tracking to emerge. 
Training

Tracking

Two vehicles meet 
on a little-used 
road

Vehicles 
traveling on 
main road
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The U.S. relies on surveillance video to determine when 
activities of interest occur in a surveilled location.  
Yet, there is a lack of automated tools available to assist 
analysts in monitoring real-time video or analyzing 
archived video [Seligman 2016]. Consequently, analysts 
now need to dedicate full attention to video streams to 
avoid missing important information about ongoing 
activities and patterns of life; and, in tactical settings, 
warfighters miss critical information for improved 
situational awareness because they cannot stare at a  
tablet strapped to their chest. 

In this work, we are developing machine learning 
algorithms necessary for detecting objects, better tracking 
those objects, and recognizing patterns of objects and  
object interactions.

VIDEO SUMMARIZATION AND SEARCH

IN CONTEXT: THIS FY2018–20 PROJECT 
•	 builds on prior DoD line-funded research into the 

foundations for summarizing and learning latent 
structure in video 

•	 draws from sponsored engagements for DoD programs 
and agencies 

•	 aligns with the CMU SEI technical objective to bring 
capabilities through software that make new missions 
possible or improve the likelihood of success of  
existing ones

Principal Investigator

MR. EDWIN MORRIS
Senior Member of the 
Technical Staff

Carnegie Mellon University  
Software Engineering Institute

7RESEARCH REVIEW 2020
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Introduction
Modeling patterns of sequential behavior is a task that 
underlies numerous diffi  cult artifi cial intelligence tasks:

• How do I detect when adversaries are deviating from 
normal routines?

• How can I predict where a ship is going to dock?
• How can I automate the teaching of novice analysts to 

perform complex tasks as if they were experts?

In this work, we use a class of techniques called Imitation 
Learning (IL) to model sequential behavior to answer 
questions like these and others. 

Methodology
Given observations of behavior:

ℬ = {((𝑠1,𝑎1 ),(𝑠2,𝑎2 ),…)1,…,((𝑠1,𝑎1 )…)𝑛 }
Learn a policy 𝜋:𝒮↦ 𝒜 that best explains the behaviors.

Two Kinds of Imitation Learning Algorithms
1. Inverse Reinforcement Learning: Learn a reward function 

𝑅:𝒮×𝒜↦ℝ that models the preference exhibited in 
behavior. Then, learn policy 𝜋 that maximizes expected 
reward.

2. Behavioral Cloning: Learn 𝜋 directly to mimic the actions 
exhibited in the behaviors.

How to use Imitation Learning for...
Activity-based Intelligence:
• Learn 𝜋 from observed behaviors of entities of interest.
• Project future behavior by successively applying 𝜋 to state.
• Detect anomalous behavior when 𝜋 deems an action to be 

of low probability (assumes probabilistic policy).

Teaching expert behavior:
1. Learn 𝜋 from expert behavior.
2. When a novice is in a state for which she doesn’t know the 

proper action, suggest the one produced by 𝜋.

Eric Heim,
 Jonathan Hoyle, Jay Palat, Dan DeCapria, Jake Oaks

Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

A3

A Series of Unlikely Events
Learning from Sequential Behavior for Activity-Based Intelligence and Modeling Human Expertise

Goals of this work
1. Investigate the practicality (assumptions made, effi  ciency, 

scalability, expressiveness) of applying IL to behavioral 
modeling problems.

2. Apply IL Techniques to DoD/IC relevant problems:

• Perform effi  cient implementations that scale to a large 
number of observations.

• Build demonstration from data ingestion to
visualization tools.

3. Develop techniques that are able to explain, simulate, and 
demonstrate expert behavior.

Accomplishments
1. Performed technical evaluation of Generative Adversarial 

Imitation Learning (GAIL) (Ho and Ermon, 2016) and 
Disturbances for Augmenting Robot Trajectories (DART) 
(Lee et al., 2017) when applied to modeling nautical
vessel behavior.

• With careful engineering and domain-specifi c modeling 
assumptions, we were able to achieve a policy that was 
able to predict a ship’s end destination state within 0.001% 
of their actual state (technical report forthcoming).

2. Created implementation of Maximum Causal Entropy IRL 
(MCEIRL) (Ziebart et al., 2010) that is 500x+ faster than 
academic implementation (to be publicly released).

3. Created demonstration of MCEIRL model applied to U.S. 
Coast Guard Nautical Vessel Data. (https://resources.sei.
cmu.edu/downloads/IRL-demo)

4. Developed model with Stephanie Rosenthal (CMU/CSD) 
and Reid Simmons (CMU/RI) of expert data scientist 
behavior for the purpose of guiding novice data scientists 
through challenging tasks (technical report forthcoming).

Ho, Jonathan and Ermon, Stefano. Generative Adversarial 
Imitation Learning. Advances in Neural Information Processing 
Systems (NIPS), 29. D. D. Lee et al. (eds]. NIPS Foundation. 2016.
Lee, Jonathan et al. DART: Disturbances for Augmenting Robot
Trajectories. 1st Conf. on Robot Learning (CORL) Project. Nov. 2017.
Ziebart, Brian D, et al. Maximum Causal Entropy IRL (MCEIRL). 
School of Computer Science, Carnegie Mellon University. 2010.

imitation Learning techniques 
are an effi  cient and eff ective 
means to perform activity-
based intelligence or to 
help automate the education 
of novices on how to perform 
tasks like experts.
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Principal Investigator

DR. ERIC HEIM
Senior Research Scientist—
Machine Learning

Carnegie Mellon University  
Software Engineering Institute

The Department of Defense (DoD) and the intelligence 
community (IC) frequently analyze activity based 
intelligence (ABI) to inform missions about routine 
patterns of life (POL) and unlikely events that signal 
important changes. For example, monitoring parking 
lots of military bases may indicate changing threat levels 
or upcoming military action. Despite growing research 
on general solutions for routine detection technologies, 
current algorithms are typically hand-crafted for 
particular applications, require labeled anomalous data, 
and have high false-positive rates that require verification 
by human analysts. 

We propose an alternative approach, inverse 
reinforcement learning (IRL), that observes all states and 
actions in data and computes a statistical model of the 
world that includes whether each behavior is part of a 
routine. Deviations from routines have a low likelihood 
of occurrence within the model. The statistical model 
can also explain why an action is labeled as routine or 
anomalous and could be used by analysts to prioritize the 
anomalies and to retrain models to reduce false positives. 

A SERIES OF UNLIKELY EVENTS

Though powerful, IRL techniques pose a number of both 
practical and fundamental challenges when applying 
them to dynamic, large-scale, DoD and IC missions. In this 
project, we focus on three of these challenges: 1) scaling 
IRL methods to DoD/IC-scale problem domains using 
efficient implementations of state-of-the-art techniques 
and high-performance computing, 2) making IRL 
techniques robust to novelty, thus allowing them to reason 
about never-seen-before behaviors, and 3) developing IRL 
techniques that expose key characteristics in data that 
could explain observed behaviors. 

IN CONTEXT: THIS FY2018–20 PROJECT
•	 builds on DoD line-funded research, including  

graph algorithms and future architectures, big  
learning benchmarks, automated code generation  
for future-compatible high-performance graph  
libraries, data validation for large-scale analytics,  
and events, relationships, and script learning for 
situational awareness 

•	 aligns with the CMU SEI technical objective to  
bring capabilities through software that make  
new missions possible or improve the likelihood  
of success for existing missions

9RESEARCH REVIEW 2020
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Problem
The Beieler Taxonomy (2019) categorizes three ways a 
machine learning system can be attacked. The three 
matching security policies for a defender to enforce are: 

1. Learn the right thing, even from adversary 
infl uenced data.

2. Do the right thing, even with adversarial 
examples present.

3. Never Reveal sensitive information about the model/data. 

Existing defense research primarily focuses on only one 
of these security policies at a time. This is an important 
limitation, because recent research demonstrates that state 
of the art methods for enforcing do policies can lead to 
violations of reveal policies. 

Train\Verify Verify learn Verify do Verify reveal

Train for learn

Train for do
Train, but Verify

Train for reveal

Solution
1. Train secure AI systems by training ML models to 

enforce at least two security policies. 
2. Verify the security of AI systems by testing against 

realistic threat models across multiple policies.

Intended Impact (FY20-22)
• Provide proof-of-concept defenses that either enforce 

multiple policies, or trade off  between those policy goals. 
• Provide proof-of-concept tooling to verify security policies 

across multiple policies. 

Matt Churilla, Jon Helland, Nathan VanHoudnos, and Oren Wright
info@sei.cmu.edu

Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited
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Train, but Verify: Towards Practical AI Robustness

An AI system trained for 
high-stakes decisions may reveal 
critical information about its 
training data. 

The ImageNet stingray class contains swimmers

... Caulifl ower class contains purple caulifl ower

For models trained on CIFAR 10 to enforce a do policy (TRADES, Zhang et al., 2019), 
adversaries with both full-model access and query-only access can recover the presence of 
riders on horses (about 20% of the class).

Start Deer Horse Start Deer Horse

Adversary w/ full model access

Examples of horses with riders from CIFAR10 (about 20% of the class)

Adversary w/ query only access

Adversary with model 
access, but no data First 9 examples of synset 

n01498041 (stingray)

Adversary with model 
access, but no data

First 9 examples of synset 
n07715103 (caulifl ower)

CIFAR 10 data set documented in Krizhevsky, Alex. “Learning Multiple Layers of Features from 
Tiny Images.” April 8, 2009.

ImageNet photos courtesy of ImageNet.
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The current challenges to the training and verification of 
secure machine learning (ML) stem from 

1.	the difficulty of enforcing quality attributes in a system 
that is trained on data instead of directly constructed 
from requirements 

2.	the fundamental advantage that an attacker has, namely 
that the attacker needs to only violate a single security 
policy, while the defender needs to enforce all of the 
security policies

The DoD has not been exempt from these challenges.  
The current state of the art in secure ML is to train 
systems to either enforce a single security policy or train 
auxiliary systems to detect violations of a single security 
policy. Very little extant work focuses on multiple security 
policies. For example, there exist systems in the DoD that 
make high-stakes decisions and yet were also trained on 
sensitive data. This implies that the system should enforce 
at least two security policies simultaneously (i.e., the ML 
system should neither do the wrong thing when presented 
with adversarial input nor reveal sensitive information 
about the training data during its operation). 

TRAIN, BUT VERIFY: TOWARDS PRACTICAL  
AI ROBUSTNESS

In this “Train, but Verify” project, we will attempt to 
address the gap in the state of the art on secure training of 
ML systems with two objectives: 

1.	Train secure AI systems by training ML models to 
enforce at least two security policies. 

2.	Verify the security of AI systems by testing against 
declarative, realistic threat models.

We consider security policies from the Beieler taxonomy: 
ensure that an ML system does not learn the wrong thing 
during training (e.g., data poisoning), do the wrong thing 
during operation (e.g., adversarial examples), or reveal the 
wrong thing during operation (e.g., model inversion or 
membership inference). 

IN CONTEXT: THIS FY2020–22 PROJECT 
•	 aligns with the CMU SEI technical objective to be 

trustworthy in construction and implementation 
and resilient in the face of operational uncertainties, 
including known and yet-unseen adversary capabilities.

MR. JON HELLAND
Associate Machine Learning 
Researcher

Carnegie Mellon University  
Software Engineering Institute

Principal Investigator

DR. NATHAN  
VAN HOUDNOS
Senior Machine Learning 
Research Scientist

Carnegie Mellon University  
Software Engineering Institute
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Problem
Development, deployment, and operation of ML systems 
involves three perspectives, often with three completely 
separate workfl ows and people: data scientists build the 
model; software engineers integrate the model into a larger 
system; and then operations staff  deploy, operate, and 
monitor the system.

Because these perspectives operate separately and 
often speak diff erent languages, there are opportunities 
for mismatch between the assumptions made by each 
perspective with respect to the elements of the ML-enabled 
system, and the actual guarantees provided by each 
element.

Solution
Develop descriptors for elements of ML-enabled systems 
by eliciting examples of mismatch from practitioners; 
formalizing defi nitions of each mismatch in terms of data 
needed to support detection; and identifying potential for 
using this data for automation of mismatch detection.

Descriptors for ML system elements 
make stakeholder assumptions 
explicit and prevent mismatch.

Principal Investigator, Grace A. Lewis 
Stephany Bellomo, Ipek Ozkaya, April Galyardt 

info@sei.cmu.edu

Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited

PA17

Characterizing and Detecting Mismatch in ML-Enabled Systems

Looking Ahead: Automated Mismatch Detection

Phase 1 Findings

Phase 1: Practitioner interviews to elicit examples of 
mismatch and their consequences 

Operational Data 8%

5% Data Rates

5% Development & Integration Timelines

21% Data Sources16% Data Syntax & 
Semantics

21% Data Pipelines 37% Data Statistics

Development Environment 9%

40% Upstream and Downstream
System Components

10% Computing Resources 45% Programming Language/
ML Framework/ Tools/ Libraries

4% Anonymization

2% Data Buffering

13% Proxy Data

18% Task

31% Data Dictionary4% Restrictions

15% Usage Context

14% Required Model Inference Time 54% Runtime Metrics & Data32% Computing Resources 

14% Decisions, Assumptions, 
Limitations & Constraints

17% API/
Specifications

17% Test Cases
& Data

14% Model Output
Interpretation

62% Data Preparation Pipelines 15% Versioning 23% Data Statistics

12% Programming Language/
ML Framework/ Tools/ Libraries

11% Evaluation
Metrics

8% Versioning

48% Metadata

26% Success Criteria 29% Business Goals

Raw Data 10%

Task and Purpose 15%

Operational Environment 16%

Trained Model 36%

Training Data 6%

5% System Configuration
Requirements

12% Data Rights & Policies 

Training Data mismatches are mostly due to lack of clarity 
on data preparation pipelines (37%) and lack of data 
statistics (21%).
Operational Data mismatches are mostly due to lack of 
data statistics (37%) and lack of clarity on data pipelines 
(21%).
Development Environment mismatches are mostly due to 
diff erences in programming languages … (45%) and lack of 
knowledge of upstream and downstream components (40%).
Raw Data mismatches are mostly associated with lack of 
metadata (48%) and lack of a “data dictionary” (31%).
Task and Purpose mismatches are mostly associated with 
unknown business goals (29%) or success criteria (26%).
Operational Environment mismatches are mostly 
associated with unavailable runtime metrics and data (54%) 
and unawareness of computing resources available for 
model serving (32%).
Trained Model mismatches are mostly associated with 
lack of test cases and test data (17%) and lack of model 
specifi cations and APIs (17%).

Distribution
Monitor

Training Data
Descriptor

Operations
Dashboard

Operational 
Data

Alerts

Predictions

Distribution={Label, Percentage}

Predictions Over
Period of Time

Input+Prediction+Other Metrics

Chi Square Test 
Between Distributions

JSON

Upstream
Components

Downstream
ComponentsML Component

Logs

!
"#! $ %&!'"

%&!
( )

#

!$%$&'()*+

!

6% Training Data 10% Raw Data 16% Operational
Environment

8% Operational Data 
9% Development Environment 

15% Task and Purpose 36% Trained Model

Resulting Mismatch Categories from Practitioner Interviews

Descriptors Being Used for Automated Drift Detection
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DR. GRACE A. LEWIS
Principal Researcher/ 
Tactical AI-Enabled Systems 
Initiative Lead

Carnegie Mellon University  
Software Engineering Institute

Despite the growing interest in machine learning (ML) and 
artificial intelligence (AI) among the DoD, government, 
and public sector organizations, development of ML and 
AI capabilities remains primarily a research activity or 
stand-alone project (with the exception of large companies 
such as Google and Microsoft). [Ghelani 2019] Deploying 
ML models in operational systems remains a significant 
challenge. [Amershi et al. 2019; Ransbotham et al. 2017; 
Sculley et al. 2015] 

The development and operation of ML-enabled systems 
involve three perspectives with three different and 
often completely separate workflows and people: the 
data scientist builds the model; the software engineer 
integrates the model into a larger system; and operations 
staff deploy, operate, and monitor the system. Because 
these perspectives operate separately and often speak 
different languages, mismatches can arise between the 
assumptions of each perspective about the elements of the 
ML-enabled system and the actual guarantees provided 
by each element. Furthermore, these system elements, 
such as the trained model, training data, raw data, and 
operational environment, evolve independently and 

CHARACTERIZING AND DETECTING MISMATCH IN  
ML-ENABLED SYSTEMS 

at a different rhythm, which could, over time, lead to 
unintentional mismatch. Such mismatch can manifest in 
poor system performance, poor model accuracy, the need 
for large amounts of glue code to accommodate operational 
data types, monitoring tools incapable of detecting 
diminishing model accuracy, and even system failure.

This project addresses the following questions:

•	 What are common types of mismatch that occur in the 
end-to-end development of ML-enabled systems?

•	 What are best practices for documenting data, models, 
and other system elements that will enable detection  
of mismatch?

•	 What are examples of mismatch that could be detected 
in an automated way, based on the codification of  
best practices in machine-readable descriptors for  
ML system elements? 

We are developing machine-readable ML-Enabled System 
Element Descriptors to enable mismatch detection and 
prevention in ML-enabled systems. These descriptors 
codify attributes of system elements and make all 

assumptions explicit. They can be used by system 
stakeholders manually, for information awareness 
and evaluation activities, and by automated mismatch 
detectors at design time and runtime for cases in which 
attributes lend themselves to automation. 

IN CONTEXT: THIS FY2020 PROJECT 
•	 aligns with the CMU SEI technical objective to 1) be 

trustworthy in construction and implementation and 
resilient in the face of operational uncertainties, including 
known and yet unseen adversary capabilities, and 2) bring 
capabilities that make new missions possible or improve 
the likelihood of success of existing ones 
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Formalize the Development, 
Integration, and Use of Models
CMU SEI seeks to 1) improve the fidelity and expressiveness 

of languages, models, and tools that allow the specification 

of software systems, and 2) ensure the ability to create these 

formalisms for new activities or extract them from legacy 

systems where critical documentation, development artifacts, 

source code, or formal descriptions may not exist.

SECTION 2
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Problem
Software increasingly dominates safety- and mission-critical 
system development. Issues are discovered long after they 
are created.

Solutions
Our three-year project aims to make systems safer and 
more secure by enabling early discovery of system-level 
issues through virtual integration and incremental analytical 
assurance. This project consists of four eff orts, all of which 
use the Architecture Analysis and Design Language (AADL), 
an SEI-created, internationally standardized language for 
designing software-centric critical systems.

Security Requirements
A new security annex to AADL and verifi cation plugins
We developed an extension to AADL that enables system 
designers to describe how their system meets security goals 
by, for example, encrypting information or dealing with 
private keys. We also developed tools to verify that a system 
conforms to various policies, and we are publishing papers 
and documentation on how to use them.

Reusable Safety Patterns
A collection of patterns expressed using AADL
We proposed a library of safety design patterns that capture 
key safety architecture fragments. Each pattern is described 
using AADL, complemented by a machine-readable 
description of applicable error scenarios, a behavioral 
description of the nominal case, and a verifi cation plan 
defi ned using custom tooling and AGREE / Resolute (tooling 
developed by Collins Aerospace). These formalizations are 
AADL implementations of existing patterns, and they equip 
system architects with modeling techniques and verifi cation 
methods that are adaptable to various domains.

Architecture-Supported Audit Processor
A collection of system viewpoints for certifi cation authorities
Performing a hazard analysis is a common way of 
examining a system for safety or security issues. This eff ort 
integrates a number of sources of system information—
system architecture, error behavior, Kansas State’s AWAS 
technology, and more—into a set of dynamic reports. The 
Architecture-Supported Audit Processor (ASAP) will allow 
system analysts to query interesting portions of a system’s 
architecture interactively, rather than read only what an 
analysis format specifi es. 

[Off -]Nominal Behavior
Unifi ed behavioral description
There are several ways to specify behavior in AADL, 
depending on what is being specifi ed: (nominal) component 
behavior, off -nominal (i.e., erroneous) behavior, or mode-
transition semantics. We produced a proposal to unify 
behavior specifi cations, which will make the language 
simpler and enable more powerful automated analyses.

Sam Procter, Peter Feiler,Dave Gluch, Aaron Greenhouse, Jerome Hugues, Lutz Wrage, Joe Seibel (info@sei.cmu.edu) 
Kansas State University: John Hatcliff , Eugene Vasserman, Robby, Hari Thiagarajan, Jason Belt

Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited
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Integrated Safety and Security Engineering for Mission-Critical Systems

Requirements 
Validation

System 
Architecture 

Validation

Requirements 
Engineering

Integration 
Test

Integration
Build

Acceptance 
Test

Deployment
Build

Unit
Test

Code 
Development

System
Design

Build the 
System

Build the 
Assurance Case

Architecture
Modeling
Analysis &
Generation

Software 
Architecture 

Validation

Software 
Architecture 

Design

System 
Test

Target
Build

Component 
Software 
Design

Design 
Validation

We’re making it easier to 
specify, design, and assure 
critical systems that are safer 
and more secure.

Safety and Security Across the System Development Lifecycle

AADL has been used in a variety of safety-critical domains, including medical devices, automotive components, and 
military and commercial aviation.
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Critical systems must be both safe from inadvertent harm 
and secure from malicious actors. However, safety and 
security practices have historically evolved in isolation. 
Safety-critical systems, such as aircraft and medical 
devices, were long considered standalone systems 
without security concerns. Security communities, on 
the other hand, have focused on information security 
and cybersecurity. Mechanisms such as partitioning, 
redundancy, and encryption are often deployed solely 
from a safety or security perspective, resulting in over-
provisioning and conflicts between mechanisms. Despite 
the recognition that this disconnect is harmful, there is 
limited understanding of the interactions between safety 
and security. [Friedberg 2017]

To combat this lack of understanding, we are developing 
an integrated safety and security engineering approach 
based on system theory and supported by an AADL-based 
workbench. This approach 

•	 unifies safety and security analysis through a formalized 
taxonomy that is used to drive system verification via 
fault-injection and simulation

INTEGRATED SAFETY AND SECURITY ENGINEERING FOR 
MISSION-CRITICAL SYSTEMS 

•	 provides a design framework to combine safety and 
security mechanisms into a more robust and resilient 
system architecture through continuous analytic 
verification 

•	 ensures traceability by linking machine-readable 
requirements to the tests that verify them and the system 
elements that implement them

In the Joint Multi-Role Rotorcraft (JMR) program, 
contractor teams are piloting Architecture-Centric 
Virtual Integration Practice (ACVIP) as a key technology 
on a mission-critical system architecture. Our ongoing 
partnership with JMR provides an excellent transition 
pathway for our research results and influences the Army’s 
Future Vertical Lift (FVL) program.

The following individuals also provided key contributions 
to this work: 

•	 CMU SEI: Peter Feiler, Dave Gluch, Aaron Greenhouse, 
Jerome Hugues, Lutz Wrage, and Joe Seibel 

•	 Kansas State University: John Hatcliff, Eugene 
Vasserman, Robby, Hari Thiagarajan, and Jason Belt

IN CONTEXT: THIS FY2018–20 PROJECT 
•	 extends AADL with a standardized security-

documentation format, builds example safety and 
security patterns into the OSATE toolbench, and uses 
novel program-slicing technology developed by our 
partners at Kansas State University

•	 aligns with the SEI’s technical objective to make 
software trustworthy in construction, correct 
in implementation, and resilient in the face of 
operational uncertainties including known and yet-
unseen adversary capabilities
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Out of 1M+ SLOC, changes 
should focus on only 24 classes

2040 Problematic Couplings

Select Objectives
• minimize problematic couplings
• minimize code changes
• maximize code quality
• …

>1M SLOC

By Relation Type By Target Type

Target Type PC Count
# Unique 

Targets

Class 363 15

Event 8 1

Method 334 51

Property 1335 77

2040 144

Calls
334

Writes
434

Uses Type
193Reads

1046

Inherits
33

Best solution:
Fitness = 33
Step 1: MoveStaticProperty (Duplicati.Server.Strings.Program.PortablemodeCommandDe-
scription, Duplicati.Server.Program)
Step 2: MoveClass (Duplicati.Library.AutoUpdater.AutoUpdateSettings)
Step 3: MoveClass (Duplicati.Library.Utility.WorkerThread<>)
Step 4: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 6: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 7: MoveClass (Duplicati.Server.Strings.Program)
Step 8: MoveClass (Duplicati.Server.Database.Backup)
Step 9: MoveClass (Duplicati.Library.Localization.Short.LC)
Step 10: MoveClass (Duplicati.Server.Database.Notification)
Step 11: MoveClass (Duplicati.Server.WebServer.IndexHtmlHandler)
Step 12: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 13: MoveClass (Duplicati.Server.Database.TempFile)
Step 14: MoveClass (Duplicati.Server.WebServer.BodyWriter)
Step 15: MoveClass (Duplicati.Library.Interface.CommandLineArgument)
Step 16: MoveInterface (Duplicati.Library.Interface.ICommandLineArgument)
Step 17: MoveClass (Duplicati.Server.EventPollNotify)
Step 18: MoveClass (Duplicati.Library.Utility.Utility)
Step 19: MoveClass (Duplicati.Library.Common.Platform)
Step 20: MoveClass (Duplicati.Server.LiveControls)
Step 21: MoveClass (Duplicati.Library.Interface.Strings.DataTypes)
Step 22: MoveClass (Duplicati.Library.Utility.Strings.Utility)
Step 23: MoveInterface (Duplicati.Server.Serialization.Interface.IFilter)
Step 24: MoveInterface (Duplicati.Library.Localization.ILocalizationService)
Step 25: MoveClass (Duplicati.Server.Database.Schedule)
Step 26: MoveInterface (Duplicati.Server.WebServer.RESTMethods.IRESTMethodPOST)
Step 27: MoveClass (Duplicati.Library.Utility.Sizeparser)
Step 28: MoveStaticMethod (Duplicati.Library.Utility.Strings.Sizeparser.InvalidSizeVal-
ueError, Duplicati.Library.Utility.Sizeparser)
Step 29: MoveStaticMethod (Duplicati.Library.Utility.Timeparser.ParseTimeSpan, 
Duplicati.Server.Database.Connection)
Step 30: MoveClass (Duplicati.Library.Interface.UserInformationException)
Step 31: MoveClass (Duplicati.Library.Interface.Strings.CommandLineArgument)
Step 32: MoveClass (Duplicati.Server.UpdatePollThread)
Step 33: MoveClass (Duplicati.Library.AutoUpdater.UpdateInfo)
Step 34: MoveClass (Duplicati.Server.Strings.Server)
Step 35: MoveClass (Duplicati.Library.Common.IO.Util)
Step 36: MoveInterface (Duplicati.Library.Utility.IFilter)
Step 37: MoveStaticProperty (Duplicati.Library.AutoUpdater.UpdaterManager.InstalledBas-
eDir, Duplicati.Server.Program)
Step 38: MoveInterface (Duplicati.Library.Common.IO.ISystemIO)
Step 39: MoveStaticField (Duplicati.Library.AutoUpdater.UpdaterManager.BaseVersion, 
Duplicati.Library.AutoUpdater.AutoUpdateSettings)
Step 40:  MoveClass (Duplicati.Server.Serialization.SettingsCreator)

Property
1335

Class
363

Event
8

Method
334

Problem 
To quickly deliver new capabilities and 
take advantage of new technologies, DoD 
needs the ability to effi  ciently restructure 
software for common scenarios like:

• migrating a capability to the cloud
• harvesting software for reuse
• containerizing software

One recent anecdote estimates the eff ort 
to isolate a capability from the platform at 
14,000 staff  hours just for development.

Solution
Create an automated assistant that 
rapidly refactors software to support 
software isolation goals that enable 
software evolution.

• Allows users to specify project-
specifi c goals.

• Uses genetic algorithms to recommend 
refactorings.

• Navigates multiple, competing objectives.

intended Outcomes (FY19–21)
• Refactoring recommendations 

outperform those based only on quality 
metrics, reducing problematic couplings 
by at least 75%.

• Our automation reduces the time to 
restructure software to 1/3 of the time 
compared to manual eff ort.

Read more about our vision:
J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried, 
Next Generation Automated Software Evolution: 
Refactoring at Scale. 2020. 28th  Joint European 
Software Engineering Conference and Symposium on the 
Foundations of Software Engineering (ESEC/FSE ‘20). ACM, 
Virtual Event, USA. 

James Ivers, Ipek Ozkaya, Robert Nord, Chris Seifried
Mario Benitez, Jared Frank, Carly Jones, Andrew Kotov, Reed Little, Craig Mazzotta, Scott Pavetti, Jeff  Yackley

Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited
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Untangling the Knot
Enabling Rapid Software Evolution

Automated refactoring can improve the 
structure of existing software in 1/3 of the 
time it takes to manually refactor.

Our prototype can help with 
common evolution scenarios:

Scenario
Gather data to assess the diffi  culty associated with 
project-specifi c goals as input to funding decisions.

Maturity
Available now (TRL 4)

Expected Results
Enumeration of problematic couplings, their 
locations, and types potentially impacted by 
proposed change as data to inform cost estimates.

Scenario
Compare the diffi  culty of diff erent refactoring 
approaches.

Maturity
Available now (TRL 4)

Expected Results
Enumeration of problematic couplings, their 
locations, and types potentially impacted by 
proposed change as data 
to inform cost estimates.

Scenario
Automatically refactor software to isolate 
software and speed its evolution.

Maturity
Ready for pilot application in 3–6 months

Expected Results
Recommended refactorings that enable the 
proposed change address multiple criteria.

Automated analysis identifi es 
all problematic couplings

Specify a goal

Analysis reduces 
to unique targets

Prototype uses a multi-objective genetic algorithm to 
generate a set of Pareto optimal solutions (recommendations)

Select a solution that 
addresses your context

Contact us at info@sei.cmu.edu if you 
are interested in partnering with us.
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Software-reliant systems need to evolve over time to meet 
new requirements and take advantage of new technology. 
However, all too often the structure of software becomes 
too complicated to allow rapid and cost-effective 
improvements. This challenge is common in long-lived 
DoD systems and not uncommon even in newer systems, 
which makes isolating a collection of functionality for use 
in a new context, or clean replacement by an improved 
version, difficult. Software refactoring can facilitate such 
changes, but can require tens of thousands of staff hours. 

This project aims to use AI techniques to create 
software engineering automation to recommend a set of 
refactorings that isolates functionality from its tangle of 
system dependencies. We aim to reduce the time required 
for this kind of architecture refactoring by two-thirds.  
In one DoD example, a contractor estimated 14 thousand 
hours of software development work alone (excluding 
integration and testing) to isolate a mission capability 
from the underlying hardware platform. If successful,  
our work would reduce the development time required  
to less than 5 thousand hours.

UNTANGLING THE KNOT: ENABLING  
RAPID SOFTWARE EVOLUTION

Our solution combines advances in search-based software 
engineering with static code analysis and refactoring 
knowledge. It is unique in its focus on mission-relevant 
goals as opposed to improving general software metrics. 
This goal is incorporated in genetic algorithms through 
fitness functions that guide the search to solutions for 
the project-specific goal. The search algorithm relies on a 
representation derived from static code analysis and uses 
formalizations of refactorings as operators to apply  
during search.

This work has broad implications for moving existing 
software to modern architectures and infrastructures, 
such as service-based, microservice, cloud environments, 
and containers. It also addresses a pervasive research 
challenge in improving automated support for 
architecture refactoring tasks. 

IN CONTEXT: THIS FY2019–21 PROJECT
•	 builds on prior DoD line-funded research in software 

architecture analysis, static code analysis, and 
identifying technical debt

•	 aligns with the CMU SEI technical objective to make 
software delivery timely so that the cadence of 
acquisition, delivery, and fielding is responsive to and 
anticipatory of the operational tempo of DoD warfighters

•	 addresses a widespread, recurring need in software 
organizations: as requirements and technology are never 
frozen in time, the need to adapt working software to 
new contexts is likely to remain a common need across 
many software systems 
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Codify Fully Integrated  
CI/CD Practices
CMU SEI seeks to fully integrate continuous integration/

continuous delivery (CI/CD) process across the entire 

acquisition lifecycle to give the DoD reduced cost, traceability 

through the acquisition phases, and faster deployment of 

incremental capability.

SECTION 3
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introduction
Cyber-Physical Systems (CPS) exhibit multiple 
engineering, verifi cation and validation (V&V), 
and testing challenges. In this project, we 
aimed at reducing the time to get fi rst test 
results by leveraging state-of-the-art system 
and software engineering approaches.

TwinOps explored the interplay between 
three core technologies:

• Model-Based Engineering (MBE): model-
based engineering relies on models as 
fi rst-class abstraction of a system to 
support engineering activities;

• DevOps: an organizational eff ort to support 
continuous delivery of software through 
a better coupling between (Dev)elopment 
and (Op)erations activities;

• Digital Twins: an infrastructure to support 
system monitoring and diagnosis in 
real-time and enable continuous system 
improvement.

Achievements
SEI delivers a ModDevOps exemplar

ModDevOps extends DevOps through 
MBE  and its V&V and code generation 
capabilities. We demonstrate how 
MBE enables rapid system prototyping 
through a DevOps cycle.

SEI enhances analysis and testing process 
for systems architects who build software-
intensive CPS with the TwinOps process

TwinOps builds on ModDevOps and 
Digital Twins to collect data on a system 
at runtime, and compare it to other 
engineering artifacts: model simulation 
and analysis. This comparison enables 
rapid system diagnosis.

Jerome Hugues 
Joe Yankel, Anton Hristosov, John Hudak

Distribution Statement A: Approved for Public Release; 
Distribution is Unlimited
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TwinOps
Digital Twins Meet DevOps

Approach
ModDevOps is defi ned as an abstract 
process using OMG SysML. This captures 
the key steps of the process as a 
collection of use cases, block diagrams, 
and activities.

 ⇒ Each project will adapt ModDevOps to 
its own problem/solution spaces

TwinOps is an instance of ModDevOps 
tailored for CPS. It combines

• AADL modeling for CPS architecture
• Simulink or C for the functional code
• Modelica for modeling the environment

The defi nition of the process as SysML 
models guides engineering phases:

• Orchestrate modeling, code generation, 
and compilation

• Continuous integration/continuous 
deployment used to deploy the system 
on the target, using Azure IoT cloud-
based solutions

Code generation from model enables 
multiple scenarios: deployment on target 
and digital twins to support various 
operating scenarios.

ModDevOps adds Model-Based 
early V&V and code generation 
to DevOps automation.

Mod/Dev Ops/
Digital Twins

1

4

2

3

5 6

8 7

Assembly
• Simulation
• Instrumented platform
• Digital Twin

Run || Simulate

MonitorVirtual
integration

Modeling
architecture

and parts

Data Analysis

Code generation
run-time observers

Plan requirements
and properties

Digital Twins

Instrumented Platform

1. Plant (Modelica) 2. Controller (Simulink)

3. AADL

4. C
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The engineering of cyber-physical systems (CPS) 
requires a large set of expertise to capture the system 
requirements and derive a correct solution. Key issues, 
such as sensor timing jitter, bias, or imprecise component 
characterization (in the functional, timing, or safety 
viewpoints) are still only discovered during testing or after 
the system has been deployed. Recent accidents involving 
airliners and autonomous vehicles were in part caused by 
imprecise characterizations of system behavior, causing a 
significant and costly rework of the software. Model-based 
engineering (MBE) and DevOps aim to efficiently deliver 
software with increased quality. In this project, we have 
proposed new ways to combine them. 

Model-based engineering relies on models as first-class 
artifacts to analyze, simulate, and ultimately generate 
parts of a system. DevOps focuses on software engineering 
activities, from early development to integration, and then 
improvement through the monitoring of the system at 
runtime. We claim these can be efficiently combined to 
improve the engineering process of CPS. 

TWINOPS: DIGITAL TWINS MEETS DEVOPS 

LENS TwinOps proposes a process that unifies MBE, 
digital twins, and DevOps practice in a uniform workflow. 
TwinOps leverages several best practices in MBE and 
DevOps for the engineering cyber-physical systems.  
We illustrate our contribution using a digital twins case 
study to illustrate TwinOps benefits, combining AADL 
and Modelica models, and an IoT platform. 

This project extends our line of research aimed to improve 
both the state of the art and the state of practice of 
designing and analyzing cyber-physical systems. Through 
the Architectural Analysis Design Language (AADL) and 
the Architecture Centric Virtual Integration Process 
(ACVIP), we addressed both system and software concerns 
(safety, security, performance, and code generation). 
Analytical frameworks based on AADL evaluate system 
integrability prior to the performance of actual integration 
testing activities. 

The following SEI researchers also provided key 
contributions to this work: Anton Hristozov, John Hudak, 
and Joe Yankel

IN CONTEXT: THIS FY2020 PROJECT
•	 builds on the foundations of digital twins and DevOps as 

well as on prior research on AADL and the Open Source 
AADL Tool Environment (OSATE)

•	 aligns with the CMU SEI technical objectives to  
1) bring capabilities through software that make new 
missions possible or improve the likelihood of success 
of existing ones and to be trustworthy in construction 
and implementation, and 2) be resilient in the face of 
operational uncertainties, including known and yet-
unseen adversary capabilities 
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Problem
Code often does not conform to designs, undermining 
properties such as extensibility and composability. Late 
detection increases cost and delays delivering capability 
to the fi eld.

Solution
Use code analysis, software architecture knowledge, 
and machine learning to automatically extract design as 
implemented in the code and check conformance with the 
intended design.

Intended Impact (FY20–22)
• Recommendations correctly identify nonconformance and 

detect at the commit that introduces nonconformance.
• Automation enables early detection and allows remediation 

before the violation gets “baked in” to the implementation.
• Detection of nonconformances allows program managers 

to hold developers (contractor or organic) accountable.

Read more about our approach:
Nord (2020). Using Machine Learning to Detect Design Patterns, 
SEI Blog.

Automated Design Conformance Checker

Code-Design Abstraction Gap

Robert Nord, Ben Cohen, Shane Ficorilli, 
James Ivers, John Klein, Lena Pons, Chris Seifried

 info@sei.cmu.edu

Distribution Statement A: Approved for Public Release; 
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Automated Design Conformance during Continuous Integration

Approach
Our solution builds on code analysis, software architecture, 
machine learning, and continuous integration. We ingest 
a software repository and build a graph representation 
of the code structure based on code analysis. We apply 
machine learning to bridge the abstraction gap to extract 
design constructs from the code. We build the design 
fragments that comprise the as-implemented design. The as-
implemented design can then be checked for conformance 
against the intended design at each code commit during 
continuous integration.

The central research of this project uses machine learning to 
extract features by recognizing abstractions commonly used 
in software architecture in C++ source code.

Feature engineering is key to extracting design and 
bridging the gap. Structural and behavioral features link 
elements (e.g., classes) though relations (e.g., inheritance, 
method call).

Our prototype advances the state of the art in applying 
machine learning to software engineering tasks and aligns 
with SEI strategic focus areas of timely and trustworthy 
software by introducing automation into the development 
and acquisition lifecycle.

Check
ConformanceCanonical Design

Knowledge

Non-Conformances
Intended

Design

buildCodeGraph

As-implemented
Design

predictDesignConstructs buildDesignFragment

Source
Code

pipelinestatic structures filter pipe

Code-design
abstraction gap

Extract Design 
From Code

An automated design 
conformance checker 
integrated into a continuous 
integration workfl ow will reduce 
time to detect violations from 
months or years to hours.

Source
Code

Intended
Design

Automated
Design

Conformance 
Checker

Nonconformances

Implements

Leaf Class
Node
ClassRedirect in

family
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To reduce the time needed to field capabilities and to 
lower lifecycle costs, the DoD has instructed program 
managers to consider a modular open systems approach 
(MOSA). MOSA promotes extensibility and composability 
of platforms through technical standards such as the 
Future Airborne Capability Environment (FACE). However, 
a gap exists in verifying whether implemented capabilities 
satisfy the design constraints of a reference architecture 
such as FACE. 

This project is creating an automated conformance 
checker that can be integrated into the continuous 
integration workflow to detect and report 
nonconformances in hours instead of the months 
or years that it takes to discover these problems 
today. This technology will correctly identify design 
nonconformances with precision greater than 90%. 

Our solution builds on code analysis, software 
architecture, machine learning, and continuous 
integration. The central research of this project is using 
machine learning to recognize abstractions commonly 
used in software architecture in C++ source code. We 
are focusing on detecting nonconformance with design 

AUTOMATED DESIGN CONFORMANCE DURING 
CONTINUOUS INTEGRATION

approaches that are essential to achieving the goals of 
MOSA and common platforms: communication over 
distributed interfaces, isolation and encapsulation of 
functionality, and separation of concerns.

The conformance checker will benefit developers and 
program managers. Developers can detect problems 
continuously and near the time when they are introduced, 
allowing faster and more economical realignment of 
implementation and design. Program managers can 
hold developers (contractor or organic) accountable for 
delivering sustainable systems.

IN CONTEXT: THIS FY2020–22 PROJECT
•	 advances the state of the art in applying ML to software 

engineering tasks

•	 aligns with CMU SEI’s strategic focus areas of timely and 
trustworthy software by introducing automation into the 
development and acquisition lifecycle 
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Probability of No Edge

Randomized Variables
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How can we control costs in software development and 
sustainment? We are collaborating with other researchers to 
apply causal learning to learn how.

DoD Problem
• DoD leadership needs to understand why software costs 

so much.
• DoD program offi  ces need to know where to intervene to 

control software costs.

Why Causal Learning?
To reduce costs, the causes of an outcome (good or bad) 
need to be considered. Correlations are insuffi  cient in part 
due to Simpson’s Paradox. For example, in the fi gure below, 
if you did not segment your data by team (User Interface 
[UI] and Database [DB]), you might conclude that increasing 
domain experience reduces code quality (downward line); 
however, within each team, it’s clear that the opposite is 
true (two upward lines). Causal learning identifi es when 
factors such as team membership explain away (or mediate) 
correlations, and it works for much more complicated data 
sets too.

Mike Konrad, Bob Stoddard, William Nichols, and Dave Zubrow 
Michele Falce, Rhonda Brown, and Bryar Wassum

info@sei.cmu.edu
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Causal Models for Software Cost Prediction & Control (SCOPE)

Summary
Causal models off er better insight for program control 
than models based on correlation. Knowing which factors 
drive which program outcomes is essential to sustain the 
warfi ghter by providing high-quality, secure software in a 
timely and aff ordable manner. 

For More Information
For more information, including causal analyses of other 
data sets, see our SCOPE Project website.
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Domain Experience

UI Team

DB Team

Simpson’s Paradox as Applied to UI/DB Data

COCOMO® II Mini-Cost Estimation Model Consensus Graph for U.S. Army Software Sustainment

COCOMO® II – Eff ort Drivers 
Size (SLOC), Team Cohesion, Platform 
Volatility, Reliability, Storage Constraints, Time 
Constraints, Product Complexity, Process 
Maturity, Architecture/Risk Resolution (RESL)

COCOMO® II – Schedule  Drivers 
Size (SLOC), Platform Experience, Schedule 
Constraint, and Eff ort

COSYSMO 3.0 – Eff ort  Drivers
Size and Level of Service Requirements

After identifying which of over 40 factors 
directly drive costs, we used Tetrad to generate 
mini cost-estimation models that fi t well. (In 
the fi gure, RESL_LS is the product of RESL and 
Log_Size.)

A U.S. Army Sustainment data set was segmented 
into (Superdomain, ACAT Level) pairs resulting in 
fi ve sets of data to search and estimate. Splitting 
addressed high fan-out for common causes, which 
can lead to structures typical of Simpson’s Paradox. 
A consensus graph (see above) was built from the 
resulting fi ve searched and fi tted models.

For consensus estimation, the data from individual 
searches was pooled with previously excluded data 
because of missing values. The resulting 337 releases 
were used to estimate the consensus graph using 
Mplus with Bootstrap in estimation.

There was no cherry picking or re-do’s—this model 
is a direct out-of-the-box estimation, achieving good 
model fi t on the fi rst try.

Acknowledgments
Our thanks to Anandi Hira and Jim Alstad of USC; and 
Cheryl Jones and her team at U.S. Army AFC-CCDC 
and DASA-CE.

Our Solution
Our approach to causal inference is principled (i.e., no 
cherry picking) and robust (to outliers). This approach is 
especially useful for small samples—when the number of 
cases is < 5-10 times the number of variables.
1. Inject null variables by appending an independently 

randomized copy of each original variable.

2. Search (FGES or PC with default settings) with Bootstrap 
to determine each edge’s Probability of No Edge (PNE) 
across the search.

3. Set a threshold (10th percentile) among the edges 
involving a null variable. (Of edges involving a null 
variable, 90% have a PNE exceeding that threshold.) 
Then drop the null variables but apply this same 
threshold to determine which edges to keep among the 
original variables.

Original Variables

Recent Results

Causal learning reduces costs.
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Correlation is not causation, and yet what we experience 
often confuses the two. This extends to software 
engineering research, where changes in project 
stakeholders, requirements, architecture, solution 
approach, personnel, and development platform and 
practices are shown to correlate with improved project 
outcomes; and yet, in reality, it might be only a few factors 
that directly drive project cost and schedule. Research 
in other fields (e.g., medicine) has shown causal models 
are superior to traditional statistical models because, by 
identifying truly causal factors, proactive control of a 
system or situation is possible. 

How would we build a causal model for software project 
costs? Until recently, we did not have a way to obtain 
or validate causal models from primarily observational 
data, a challenge shared across nearly all systems and 
software engineering research, where randomized control 
trials are nearly impossible. The SCOPE project will apply 
recent advances in causal modeling algorithms and tools 
to project data to identify, measure, and test causality. 
[Glymour 2019]

INTEGRATED CAUSAL MODEL FOR SOFTWARE COST 
PREDICTION & CONTROL (SCOPE)

In this project, which concluded at the end of FY20, we 
achieved the following:

•	 identified, from among 40 software engineering  
and systems engineering factors, which are more likely  
to improve program costs (“control knobs” for a  
program dashboard)

•	 completed the first stitching (and estimation) of a software 
engineering dataset, resulting in an integrated causal 
model covering multiple domains and acquisition 
category (ACAT) levels for determining the number of 
software changes released

•	 identified cognitive fog and system behavior stability as 
causes of program failure (from among 30 measures of 
project complexity)

•	 concluded that communication misbehaviors increase 
the amount of Common Vulnerabilities & Exposures 
(CVE) remediation effort, not just immediately, but for a 
longer time (open source projects)

•	 concluded that variation within programmers is 
approximately the same as between programmers; 
thus, rather than trying to hire the 10X programmer, 
organizations would do better to invest in training, 
processes, platforms and tools

•	 completed updates to Quantifying Uncertainty in Early 
Lifecycle Costs (QUELCE) for improved cost estimation

•	 transitioned causal discovery capability to the  
U.S. Army and University of Southern California cost 
estimation researchers

•	 developed a methodology for applying causal discovery 
to small datasets to improve robustness and reduce 
cherry picking of results

Thus, an immediate benefit of this work is the 
identification of causal factors that provide a basis for 
controlling program costs. A longer-term benefit is the 
use of causal models in negotiating software contracts, 
designing policy and incentives, and informing could/
should cost and affordability efforts.

Key contributors to this project were team members 
Rhonda Brown, Michele Falce, Madelyn Glymour,  
Michael Konrad, Chris Miller, William Nichols,  
Bob Stoddard, Bryar Wassum, and Dave Zubrow.

IN CONTEXT: THIS FY2018–20 PROJECT 
•	 contributes to a longer-term research roadmap to build 

causal models for the software developer, software 
development team, organization, and acquirer 

•	 aligns with the CMU SEI technical objective to make 
software affordable such that the cost of acquisition and 
operations, despite increased capability, is reduced and 
more predictable
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Improve Designed-In Resilience
CMU SEI seeks to increase the trustworthiness and 

confidence in DoD platforms through practices that imbue 

rigorous designed-in resilience properties.

SECTION 4
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Problem
Software vulnerabilities constitute a major threat to 
DoD. Memory violations are among the most common 
and most severe types of vulnerabilities. Spatial memory 
vulnerabilities constitute 15% of CVEs in the NIST National 
Vulnerability Database and 24% of critical-severity CVEs.

Solution
We developed and implemented a technique to 
automatically repair source code to assure spatial memory 
safety. Our tool inserts code to abort the program (or call 
user-specifi ed error-handling code) immediately before 
a memory violation would occur, preventing exploitation 
by attackers. 

The main technique that we use (fat pointers) has been 
previously researched to repair code as part of the 
compilation process. Our work is novel in applying it as a 
source-code repair, which poses the diffi  culty of translating 
the repairs on the intermediate representation (IR) back to 
source code. The pipeline is shown below:

Ensuring spatial memory safety with fat pointers
Our tool replaces raw pointers with fat pointers, which are 
structs that include bounds information in addition to the 
pointer itself. Before dereferencing a fat pointer, a bounds 
check is performed. For each pointer type T*, we defi ne a 
new struct:
struct FatPtr_T {
 T*   rp;   /* raw pointer */ 
 char*  base; /* of mem region */ 
 size_t size; /* in bytes */ 
};

To preserve compatibility with third-party binary libraries, 
we identify and refrain from fattening any pointers stored in 
heap memory that is reachable by external binary code. 
The C preprocessor can include or exclude pieces of C code 
depending on the confi guration chosen at compile time. We 
repair confi gurations separately and merge the results:

Results
The runtime overhead of our repair is around 50% on bzip2. Our DoD partners said this is too high for 
many of their use cases. Can we signifi cantly reduce the overhead while still guaranteeing memory 
safety? Probably not, but automated repair is valuable even if it fi xes only the likeliest bugs. To reduce 
the overhead time, we added an option to insert bounds checks only for memory accesses that are 
warned about by an external static analyzer. This reduced the overhead to 6% on bzip2. 

Intended Impact
With further development, this technology can be used 
by DoD to ensure memory safety as part of all software 
projects with code written in memory-unsafe languages 
(such as C and C++).

Will Klieber
Distribution Statement A: Approved for Public Release; 

Distribution is Unlimited
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Automated Code Repair to Ensure Memory Safety

#define BUF_SIZE 256

char nondet_char();

int main() {

    char* p = malloc(BUF_SIZE);

    char c;

    while ((c = nondet_char()) != 0) {

        *p = c;

        p = p + 1;

    }

    return 0;

}

#include "fat_header.h"

#include "fat_stdlib.h"

#define BUF_SIZE 256

char nondet_char();

int main() {

    FatPtr_char p = fatmalloc_char(BUF_SIZE);

    char c;

    while ((c = nondet_char()) != 0) {

        *bound_check(p) = c;

        p = fatp_add(p, 1);

    }

    return 0;

}

Figure 1(a): Original Source Code Figure 1(b): Repaired Source Code

We developed an automated 
technique to repair C source 
code to eliminate memory-
safety vulnerabilities.

Source
Code

Abstract 
Syntax Tree

(AST)

Intermediate
Representation (IR)map map

2. Record 
 AST     IR 
 mapping

3. Perform analysis 
 and repair at 
 IR level

4. Map repaired IR 
 back to AST

5. Map repaired AST 
 back to source

1. Record 
 Source     AST 
 mapping

h e l l o  w o r l d

Original: p

p.rp
p.base
(p.base + p.size)Repaired:

Original:

void foo(

#ifdef USE_LONG

 long* x

#else

 int* x

#endif

);

Repaired Config 1:

void foo(

#ifdef USE_LONG

 FatPtr_long x

#else

 int* x

#endif

);

Repaired Config 2:

void foo(

#ifdef USE_LONG

 long* x

#else

 FatPtr_int x

#endif

);

Merged:

void foo(

#ifdef USE_LONG

 FatPtr_long x

#else

 FatPtr_int x

#endif

);
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Software vulnerabilities constitute a major threat to 
the DoD, and memory violations are among the most 
common and most severe types of vulnerabilities. In 
recent years, spatial memory violations (e.g., buffer 
overflows) constituted 24% of critical-severity Common 
Vulnerabilities & Exposures in the NIST National 
Vulnerability Database.

We have designed and implemented a technique for 
automatically repairing all potential violations of spatial 
memory safety in source code. For this, we do not need 
to solve the challenging problem of distinguishing false 
alarms from true vulnerabilities: we can simply apply a 
repair to all potential memory-safety vulnerabilities, at a 
cost of runtime overhead. If the runtime overhead turns 
out to be too high, it can be reduced by limiting repairs to 
those lines of code that are flagged as likely vulnerabilities 
by an external static analyzer. 

Principal Investigator

DR. WILL KLIEBER
Software Security Engineer

Carnegie Mellon University  
Software Engineering Institute

AUTOMATED CODE REPAIR TO ENSURE MEMORY SAFETY

IN CONTEXT: THIS FY2018–20 PROJECT 
•	 extends prior DoD line-funded research in automated 

repair of code for integer overflow and the inference of 
memory bounds 

•	 is related to CMU SEI technical work into advancements 
based on the Pharos static binary analysis framework, 
vulnerability discovery, and code diversification to avoid 
detection of vulnerabilities by adversaries 

•	 aligns with the CMU SEI technical objective to make 
software trustworthy in construction, correct in 
implementation, and resilient in the face of operational 
uncertainties including known and yet unseen adversary 
capabilities 
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Problem
Despite the DoD’s current use of Internet of Things (loT) 
devices in supervisory control and data acquisition 
(SCADA) systems, and its interest in using such devices in 
tactical systems, adoption of loT has been slow, mainly 
due to security concerns (e.g., reported vulnerabilities, 
untrusted supply chains). At the same time, the DoD 
recognizes the rapid pace at which the loT commercial 
marketplace is evolving, and its urgency to embrace 
commodity technologies to match its adversaries.

Solution
Move part of security enforcement to the network 
to enable the integration of loT devices into DoD 
systems, even if the loT devices are not fully trusted or 
confi gurable, by creating an loT security platform that is 
provably resilient to a collection of prescribed threats.

The “Software-Defi ned” Aspect
Use software-defi ned networking (SDN) and 
network function virtualization (NFV) to create 
a highly dynamic loT security platform.

The “High Assurance” Aspect
Use the open-source uber eXtensible Micro-
Hypervisor Framework (uberXMHF) to develop 
secure extensions that enforce security properties of 
critical elements of the software-defi ned IoT security 
platform at runtime, on commodity platforms.

KalKi IoT Security Platform Features
• Has fl exible policies to defi ne states, transitions 

and actions.
• Can protect from both cyber and kinetic attacks.
• Uses diff erent network defenses for each device and state.
• Adapts to device-specifi c vulnerabilities or limitations.

Sebastián Echeverría, Dr. Grace A. Lewis, Craig Mazzotta, Matthew McCormack, Marc Novakouski, Kyle O’Meara, Dr. Vyas Sekar, Dr. Amit Vasudevan
info@sei.cmu.edu 
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KalKi: High Assurance Software-Defi ned IoT Security

The KalKi IoT Security Platform 
enables the integration of IoT 
devices into DoD systems, even 
if the IoT devices are not fully 
trusted or confi gurable.

Year 3 Highlights
1. The new version of the platform prototype using docker 

containers showed signifi cant performance and scalability 
improvements—threat reaction time is 3 seconds (90% 
improvement) with support for up to 125 connected 
devices (80% improvement).

2. User interface improvements to the 
Dashboard UI signifi cantly reduce the time 
and complexity of adding new IoT devices, 
especially with respect to policy defi nition.

{EV1}
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{EV1} {EV2}
SS1 SS2

...

...
{EVn}
SSn

Policies

loT Controller

Control Node
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μmbox[SS1]
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μmbox[SS2]
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Each loT Device D 
senses/controls a set of 
environment variables EV

Network traffic to/from each 
device is tunneled through
μmboxes that implement the 
desired network defense for 
the current system state
     D1 μmbox[SS1] = Firewall
     D2 μmbox[SS2] = IPS, ...

loT Controller maintains a 
shared statespace composed 
of {EV} and security state (SS) 
for each device
    SS= {Normal, Suspicious, Attack}

Changes in the shared 
statespace are evaluated
by policies and may result
in the deployment of new
μmbox(es)

1

2
4

Security sensitive areas of the system are 
protected by the uberXMHF extensible and 
performant micro-hypervisor framework that 
provides three key runtime capabilities: 

a. isolation, 
b. mediation,
c. attestation. 

• The micro-hypervisor verifi es the integrity 
of the μmbox images when they are loaded, 
to ensure that each device has the correct 
network defenses.

• Signing network packets ensures that they are 
routed through the proper μmboxes for each 
specifi c device in the Data Node.

3. Architecture changes enable the system to adapt to 
diff erent network layouts and to be deployed on 
low-cost hardware such as a Raspberry Pi.

4. We created a formal model of our security architecture 
using the Alloy modeling language and successfully 
validated its designed-in resilience properties.

5. We demonstrated that the architecture provides 
intrinsic security against a broad spectrum of 
attacks, including nine published attacks against 
such software-defi ned architectures.

6. Kalki code is available as open-source on Github to invite 
the community to test or adapt the platform. 
KalKi platform: 
https://github.com/SEI-TAS/kalki-node-setup/wiki ; 
uberXMHF microhypervisor: https://uberxmhf.org/
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Despite its use of Internet of Things (IoT) devices in 
supervisory control and data acquisition (SCADA) systems 
and its interest in using such devices in tactical systems, 
the DoD has been slow to adopt IoT. In particular, the DoD 
is reluctant to use commodity IoT devices, especially in 
tactical systems, because of untrusted supply chains and 
a growing amount of reported vulnerabilities in these 
devices. At the same time, the DoD recognizes the rapid 
pace at which the IoT commercial marketplace is evolving 
and its urgency to embrace commodity technologies, to 
match its adversaries. 

INVESTIGATING THE FEASIBILITY OF HIGH-ASSURANCE 
SOFTWARE-DEFINED IOT SECURITY 

Our proposed solution moves part of security enforcement 
to the network to enable the integration of IoT devices into 
DoD systems, even if the IoT devices are not fully trusted 
or configurable, by creating an IoT security infrastructure 
that is provably resilient to a collection of prescribed 
threats. It uses 

•	 software-defined networking (SDN) and network 
function virtualization (NFV) to create a highly dynamic 
IoT security framework 

•	 überSpark (a framework for building secure software 
stacks) to incrementally develop and verify security 
properties of elements of the software-defined IoT 
security infrastructure [Vasudevan 2016] 

IN CONTEXT: THIS FY2018–20 PROJECT
•	 builds on prior CMU SEI technical work in the mobile 

communication and computing needs of edge users and 
the authentication and authorization for IoT devices 

•	 draws from our collaboration with CMU researchers 
and sponsored engagements to reduce risk through 
architecture analysis 

•	 aligns with the CMU SEI technical objective to make 
software trustworthy in construction, correct in 
implementation, and resilient in the face of operational 
uncertainties
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Today, almost all computers use multicore processors. 
Unfortunately, satisfying hard real-time requirements 
of software executing on such computers is challenging 
because the timing depends on how resources in the 
memory system are shared, and this information is typically 
not publicly available. This project addresses this problem.

Multicore processors
Today, almost all computers use multicore processors. 
These computers have many processor cores such that 
one program can execute on one processor core and 
another program can execute on another processor core 
simultaneously (true parallelism). Typically, processor 
cores share memory. In today’s memory system, a large 
number of resources are used to make memory accesses 
faster in general but, unfortunately, also make execution 
time more unpredictable and dependent on execution of 
other programs (because these other programs use shared 
resources in the memory system). A simplifi ed view of a 
multicore processor with the memory system is shown 
in Figure 1.

Embedded real-time cyber-physical systems
These systems are pervasive in society in general, as shown 
by the fact that 99% of all processors produced are used in 
embedded systems. In many of these systems, computing 
the correct result is not enough; it is also necessary to 
compute the correct result at the right time.

Dr. Bjorn Andersson | info@sei.cmu.edu
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Using All Processor Cores While Being Confi dent about Timing

These methods assume that 
one knows the resources in the 
memory system; unfortunately, 
most chip vendors do not make 
this information available.

Department of Defense (DoD)
Embedded real-time cyber-physical systems are pervasive in 
the DoD. Because of the importance of achieving predictable 
timing, it is common for practitioners to disable all processor 
cores except one (hence making a multicore processor 
behave as a single processor system). The importance of 
timing was recently stressed by AMRDEC’s S3I director [1]:

“The trick there, when you’re processing fl ight critical 
information, it has to be a deterministic environment, 
meaning we know exactly where a piece of data 
is going to be exactly when we need to—no room 
for error,” [ Jeff ] Langhout says. “On a multi-core 
processor there’s a lot of sharing going on across the 
cores, so right now we’re not able to do that.”

Current solutions
The current state of the art makes solutions available for 
managing contention for resources in the memory system 
and for analyzing the impact of this contention on timing for 
the case that we know the resources in the memory system. 

Problem addressed
In this project, we have addressed the problem of 
verifying timing of software executing on a multicore 
processor assuming that we do not know the resources in 
the memory system.

Results
We have developed a preliminary method—see Andersson, 
B. et al., “Schedulability Analysis of Tasks with Co-Runner-
Dependent Execution Times,” ACM Transactions on 
Embedded Computing Systems, 2018.
[1] ”Army still working on multi-core processor 
for UH-60V,” May 2017, Available at https://www.
fl ightglobal.com/news/articles/army-still-working-
on-multi-core-processor-for-uh-6-436895/
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3
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Bank 2

DRAM
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DRAM
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Figure 1: A simplifi ed view of a multicore processor with shared memory
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Complex, cyber-physical DoD systems, such as aircraft, 
depend on correct timing to properly and reliably execute 
crucial sensing, computing, and actuation functions. Any 
timing failure can have disastrous consequences—a large 
unexpected delay translating sensor data into actuation 
can cause system instability and loss of control. What’s 
more, the complexity of today’s DoD systems has increased 
the demand for use of multicore processors, because 
unicore chips are either unavailable or not up to the task. 
However, concerns about timing have led to the practice 
of disabling all processor cores except one.

In this project, we aim to develop a solution to overcome 
this obstacle. This is a difficult challenge, because timing 
is determined by many shared resources in the memory 
system (including cache, memory banks, and memory 
bus) with complex arbitration mechanisms, some of 
which are undocumented. The goal of our research is to 
demonstrate multicore timing confidence by achieving  
the following sub-objectives:

•	 Verification. Develop a method for timing verification 
that does not depend directly on undocumented design 
qualities and quantities. 

USING ALL PROCESSOR CORES WHILE BEING  
CONFIDENT ABOUT TIMING 

•	 Parameter extraction. Develop a method for obtaining 
values for parameters in the model of a software 
system suited for the timing verification procedure 
mentioned above. 

•	 Configuration. Develop a configuration procedure (such 
as assigning threads to processor cores or assigning 
priorities to threads) that takes a model as input and 
produces a configuration for which the verification will 
succeed (if such a configuration exists). 

IN CONTEXT: THIS FY2019–20 PROJECT
•	 builds on prior DoD line-funded research and sponsored 

work on timing verification of undocumented multicore, 
verifying distributed adaptive real-time systems, 
high-confidence cyber-physical systems, and real-time 
scheduling for multicore architectures

•	 aligns with the CMU SEI technical objective to bring 
capabilities through software that make new missions 
possible or improve the likelihood of success of  
existing ones
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Fielding new technologies is essential to preserve 
defense superiority. However, this is only possible if these 
technologies can be validated for safety.

Challenges for Validation
• Increasingly complex systems
• Changing behavior at runtime (e.g., machine learning)
• Interactions with physical world (e.g., vehicles)

 - Must have correct value
 - Occur at right time (i.e., before crash)

Methods
Formal automatic verifi cation

• Scalable

 - Unverifi ed components
 - Monitored and enforced by verifi ed components
 - Verifi ed components protected from unverifi ed 
components

• Verifi ed

 - Physics: verify reaction of physical model 
(e.g., physical vehicle)

 - Logic: correct value with correct protection
 - Timing: occurs at the right time

• Protect verifi ed components

Results
Real-time Mixed-Trust Computation

• Verifi ed protection mechanism (micro-hypervisor: 
uber XMHF)

• Timing verifi cation of combined trusted/untrusted 
(mixed-trust)

• Physics verifi cation of enforcement

Dio DeNiz
Distribution Statement A: Approved for Public Release; 

Distribution is Unlimited

P10

Rapid Certifi able Trust

NEW RESULTS
Predictive Mixed-Trust Scheduling

Resilient Mixed-Trust Autonomy Scheduling

Preserve safety by verifying 
only a small part of the system. 
Assure trust by protecting the 
verifi ed part.
Trust = Verifi ed + Protected
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The DoD recognizes the need to field new cyber-physical 
systems (CPS) capabilities at an increasingly rapid 
pace, which is why it maintains a number of initiatives 
on rapid deployment. The demand for more rapid 
deployment, however, creates a need for verification 
techniques that can adapt to a faster deployment 
cadence, especially for CPS that are too big for traditional 
verification techniques and/or involve unpredictable 
aspects, such as machine learning.

The goal of Rapid Certifiable Trust is to reduce the 
deployment time of CPS by reducing the overall 
development and assurance times. We will do this by 
enabling the use of unverified commodity software 
components (e.g., open source drone piloting software) 
guarded by verified enforcers that guarantee the 
containment of unsafe component behavior. We are 
developing compositional verification techniques 
to allow us to use multiple enforced components 
minimizing and automatically removing conflicting 
enforcer assumptions (e.g., reducing a plane’s airspeed 
to avoid crash while increasing airspeed to prevent 
stalling). These techniques will allow us to assure 

RAPID CERTIFIABLE TRUST

full-scale systems, even if most of their functionality is 
implemented by unverified components. Our objective is 
to develop enforcement verification techniques that scale 
to at least 10 enforced controllers. 

IN CONTEXT: THIS FY19–21 PROJECT
•	 builds on line-funded work on Certifiable Distributed 

Runtime Assurance, the goal of which was to facilitate 
confident and rapid deployment of autonomous 
distributed real-time systems (DRTS) operating in 
uncertain and contested environments 

•	 seeks to verify software-reliant systems that interact 
with physical processes (e.g., aircraft) to which existing 
verification technology does not scale 

•	 will develop enforcing algorithms to identify unsafe 
control actions and replace them with safe actions 

•	 drones are used to validate our approach in the SEI’s 
drone lab 

•	 aligns with the CMU SEI technical objective to 
make software trustworthy in construction, correct 
in implementation, and resilient in the face of 
operational uncertainties

•	 also aligns with the CMU SEI technical objective to 
make software delivery timely so that the cadence of 
acquisition, delivery, and fielding is responsive to and 
anticipatory of the operational tempo of DoD warfighters
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Problem
Manual adjudication of static analysis meta-alerts 
requires too much eff ort in short CI build and PR-
approval time frames to address many (if any) of them. 
This problem is technically challenging. Developing a new 
static analysis to precisely match fl aws in diff erent version 
of Java or C++ code requires language-specifi c algorithms, 
and the matching must be fast to work in a CI/CD system. 
Also, when cascading is imprecise, mis-labeled data worsens 
classifi er performance, and no eff ective systems exist that 
use automated classifi ers for multiple static analysis tools in 
a CI system.

Solution
The solution involves (1) a system that supports classifi cation 
integrated with CI, and builds on the SCAIFE API and 
implementation we developed for an extensible architecture 
that supports classifi cation, and (2) precise cascading 
algorithms for C++ code.

We (1) designed a model for integrated SCAIFE-CI systems, 
including SCAIFE changes, performance measures, and 
new classifi er features; (2) implemented parts of the design 
(collaborators tested and reviewed subsequent versions); 
(3) performed an experiment using diff -based (imprecise) 
cascading and generated data for comparison to precise 
cascading. Future plans are to develop a precise cascading 
algorithm, improve classifi ers, and fully integrate them.

Dr. Lori Flynn 
Ebonie McNeil, Matt Sisk, David Svoboda, Hasan Yasar, Joseph Yankel, David Shepard, and Shane Ficorilli
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Rapid Adjudication of Static Analysis Meta-Alerts During Continuous Integration (CI)

FY20 Code and API Artifacts 
• (Sep 2020) SCAIFE System v 1.2.2 is released with signifi cant 

CI-SCAIFE integration progress; it includes fi ve APIs, an 
HTML manual, SCALe, and the rest of the software system. 
(collaborators)

• (Sep 2020) SCALe is released for SCALe v. r.6.2.2.2.A. (public)
• (Sep 2020) Five SCAIFE APIs are released. (collaborators, 

public)
• ( Jul 2020) SCAIFE System v 1.1.1 is released with API modules 

and SCALe automation for CI-SCAIFE integration; the system 
includes separable SCALe v. r.6.1.1.1.A, fi ve APIs, and an 
HTML manual. (collaborators)

• (Mar 2020) SCAIFE System v 1.0.0 is released with containers 
for CI-SCAIFE integration; the system includes a SCALe 
separable module, new APIs, and an HTML manual. 
(collaborators)

• (Feb 2020) SCAIFE API v 0.0.9-beta is published. 
(collaborators, GitHub) 

• (Oct 2019) SCAIFE System Beta VM v 2.1 is released with a 
bill of materials. (collaborators)

FY20 Additional Artifacts 
• (Sep 2020) Diff -based cascading experiment artifacts are 

produced.
• (Sep 2020) A SCAIFE/SCALe HTML manual is released for 

SCALe v r.7.0.0.0.A. (public, collaborators) 
• ( Jul 2020) “How to Instantiate SCAIFE API Calls” manual is 

released. (public)
• (Apr 2020) “Open Dataset RC_Data for Classifi er Research” is 

published. (public)
• (Mar 2020) “How to Test and Review the SCAIFE System v 

1.0.0 Release” manual is published. (collaborators)
• (Feb 2020) “SCAIFE API Version 0.0.9-Beta: Reviewer 

Roadmap” manual is published. (collaborators)

The team developed progressive versions of (1) a design 
for CI-classifi er (CI-SCAIFE) integration and (2) an API 
defi nition. The team also implemented a system for 
modular classifi cation with features to enable CI-
integration and to measure performance. 

Statistics Module
• Creates, runs, and stores classifiers
• Stores adaptive heuristic algorithms
• Stores automated hyperparameter 
 optimization algorithms

DataHub Module
• Stores tool and alert information
• Stores test suite meta-data and 
 meta-alert determinations
• Generates speculative 
 mappings

Continuous Integration
(CI) Server

Registration-Orchestration Module
• Generates registration tokens
• Provides authentication and basic 
authentication for other services
• Enables data and state coordination per 
 CI Build between SCAIFE and the CI server

UI ModuleModifications for CI-SCAIFE integration
• Uploads tool output warnings
• Stores local projects
• Displays project and alert data

Prioritization Module
• Stores and evaluates 
 prioritization formulas

NEW+Updated
API Calls

NEW
API Calls

NEW
API Calls

NEW
API Calls

NEW+Updated
API Calls

API Calls

NEW
API Calls

NEW+Updated
API Calls

Any static analysis tool can 
instantiate APIs to become 
a UI Module. For example

• SEI SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator tools
• Single static analysis tools

User
Interface

To overcome barriers to using 
automated classifi ers during 
CI, we designed a system 
that enables classifi cation to 
be used in CI builds, including 
cascading adjudications.
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The DoD has directed a shift toward continuous 
integration/continuous deployment (CI/CD) to maintain a 
competitive edge. [McMurry 2018] It is currently standard 
to run automated unit, integration, and stress tests during 
CI builds, but static analysis (SA) tools are not always part 
of builds because CI time frames are too short. However, 
SA tools could detect code flaws that are cheaper to fix 
earlier in the development process during CI builds. 

It is increasingly common to use multiple SA tools and 
combine their alerts to maximize the identification of 
potential security flaws. [Delaitre et al. 2018] However, 
current SA tools produce some false positive (FP) alerts 
that require humans to inspect the code and manually 
adjudicate true alerts vs. false. [Heckman 2011] We use 
the term alertCondition to designate an alert from a 
tool mapped to a member of an external taxonomy of 
conditions (code flaws); for instance, CWE-190 from the 
CWE taxonomy. If SA is used within CI, alertConditions 
could stop a build and force human adjudication of true 
positive (TP) vs. FP, which slows development but might 
net an acceptable tradeoff if the slowdown is limited and/
or occasional. Furthermore, many previously adjudicated 

RAPID ADJUDICATION OF STATIC ANALYSIS ALERTS 
DURING CONTINUOUS INTEGRATION

FP alerts reappear each time an SA tool is run on a 
subsequent code version. 

To maintain development velocity, DoD organizations with 
a continuous authority to operate (ATO) process have been 
forced to make tradeoffs in their security development 
testing and evaluation processes. For example, one 
organization removed SA tools from the CI/CD process, 
substituting a more expensive, less agile, and later manual 
review. Another kept SA tools, but reduced their sensitivity 
and analyzed only a small subset of the alerts, which 
introduced false negatives. We take the latter approach as 
a starting point, our goal being to increase efficiency by 
automating this process. 

This research project will use machine learning and 
semantic analysis of data generated during CI/CD to reduce 
the number of alerts requiring human adjudication by 
50% in multiple SA tool deployments without slowing the 
development process. More specifically, this project will

•	 improve the state of the art in reducing false positives 
and integrating SA tools into CI/CD processes

•	 improve the state of the practice by delivering and 
validating a prototype system that implements the 
new algorithms and measures the effectiveness of the 
techniques 

IN CONTEXT: THIS FY20–21 PROJECT
•	 builds on a number of previous projects, including 

“Rapid Construction of Accurate Automatic Alert 
Handling System: Model & Prototype” and “Running in 
the Cloud Without Breaking the Bank” 

•	 aligns with the CMU SEI technical objective to make 
software trustworthy in construction, correct in 
implementation, and resilient in the face of operational 
uncertainties, including known and yet-unseen 
adversary capabilities 
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Equip the Cyber and 
Information Operators with 
Dominant Tradecraft
CMU SEI seeks to move the human operator “out of the 

loop” by developing automation and autonomy in key cyber 

tradecraft areas needed for agile, risk-informed cyber 

response actions (for instance, malware analysis, forensics, 

situational awareness, adversary assessment and incident 

management).

SECTION 5
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The Problem:
Time and again we’ve seen humans making poor choices 
while relying on (or ignoring) existing AI decision support 
systems. These failures have led several systems to be 
abandoned. Preliminary research indicates that a failure to 
communicate model output understandably may contribute 
to this problem, but it is currently unknown what the best 
practices in AI system design are that would alleviate it.

The Solution:
If you want to know what humans will do, you usually need 
to check what a human will do. Our goal is to collect data on 
real human decision making and use that data to determine 
appropriate best practices for AI system interface design 
within a chosen domain.

The Approach:
We created the Human-AI Decision Evaluation System 
(HADES). This test harness allows the collection of human 
decision making data on an arbitrarily large set of possible 
AI interfaces. 

The optimal setting for collecting this data requires a human 
to repeatedly make the same type of decision over and over 
again, each time with slightly diff erent information available. 
Such a task presented directly can quickly induce fatigue 
and disinterest in a subject. However, this repeated decision 
making is a common characteristic of games. The specifi c 
information available to a player may be modifi ed from turn 
to turn, but the core game mechanics rarely change.

The Innovation:
Integrate HADES test harness into game environments 
to observe the eff ect of AI decision support systems on 
gameplay outcomes.

Rotem Guttman
Distribution Statement A: Approved for Public Release; 

Distribution is Unlimited

A15

Human Decision Making with AI Support

Interface Features Tested 
Explainability Variables Contextual Variables

Input Visibility Underlying Model Accuracy

Selected Features Visibility Risk / Stakes of Decision

Threshold Types Cost of Choices

Threshold Adjustability Unmodelled Information

Confi dence Measure Visibility

HADES Capabilities
• Ability to simulate not-yet-implemented AI systems

 - Allows for data-driven system requirements development

• Slot-In capability for implemented AI systems

 - Useful for verifi cation and validation (V&V) use case

• Standards-Compliant RESTful interface
• Support for multiple experimental designs

Neo Security Lab: Student-developed game leveraging the HADES test harnessTo test human decision making, 
you need to test humans 
making decisions.

Special thanks to our collaborators, Dr. Jessica Hammer, Erik Harpstead, and the students of the CMU Entertainment 
Technology Center and CMU’s OH!Lab, without which the testing of the HADES test harness would have been impossible.
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The field of artificial intelligence (AI) is still in its infancy, 
and vulnerabilities introduced by human-AI interactions 
are not well understood. Recent failures of systems using 
AI underscore this point. To best understand the (mis)
use of AI-enabled systems, we must be able to collect 
data on how these systems will be used under a variety of 
circumstances. However, the current research literature  
is insufficient to provide actionable guidance to DoD  
AI-enabled decision support system designers. 

Two distinct bodies of research literature bear on this 
problem: psychological research on human decision 
making and how humans interpret and react to 
uncertainty, and nascent research on explainable AI.  
The literature on explainable AI, including the majority 
of DARPA XAI projects, focuses on extracting information 
from an AI model. However, recent research has 
indicated that, for many individuals, this information is 
incomprehensible for the purpose of decision making. 
Extensive literature from the field of psychology and 
decision sciences documents how humans process 
information and make decisions in the face of uncertainty. 
Yet, to date, there has been little work integrating these 
disparate research threads.

HUMAN DECISION MAKING WITH AI SUPPORT 

This project aims to create the Human-AI Decision 
Evaluation System (HADES). HADES allows the 
investigation and evaluation of AI-assisted human 
decision making in a variety of simulation environments 
by exposing a standards-compliant API interface. This is a 
necessary first step to closing the gap in the literature. 

Our test environment will focus on cybersecurity 
decision making, a domain of critical interest to the 
DoD. By aligning the test environment with those used in 
operational settings, we can ensure operational validity. 
Our criteria for success is an improvement in the average 
test subject’s decision-making quality by at least 50% from 
their baseline performance.

IN CONTEXT: THIS FY2020 PROJECT
•	 allows for the testing of AI systems across the development 

cycle; critically, HADES allows the testing of proposed 
systems prior to their development to drive requirement 
setting, as well as verification and validation activities after 
system development is complete.

•	 contributes best practices to reduce risk and increase 
confidence in AI enabled mission support systems; 
enables testing of new tactics, techniques, and procedures 
(TTPs), and operations with AI-enabled mission support 
systems; enables better training for human-AI teaming; 
and enables testing of AI products for human-AI teaming 
at all stages of the software lifecycle

•	 aligns with the CMU SEI technical objective to reduce 
risk and increase confidence in cyber-enabled mission 
elements by defining and documenting best practices 
that align defense operators to mission metrics 
and through the invention of innovative training 
environments that allow mission rehearsal  
for new tactics, techniques, and procedures (TTPs)  
and operations
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Introduction
Conventional wisdom tells us that when a compiler 
transforms a program from source code to executable, some 
information is lost and cannot be recovered. For example, 
variable names are not included in a compiled executable, 
and have been assumed to be lost. Although state of the 
art decompilers can recover the presence of variables, they 
make attempt to recover their original names. Instead, they 
name the variables v1, v2, and so on. This is unfortunate 
since several studies have shown that programmers 
carefully select variable names to make the program easier 
to understand.

In this project, we showed that the conventional wisdom that 
variable names cannot be recovered is wrong. Specifi cally, 
we showed that variable names can largely be predicted 
based on the context of code in which they are used and 
accessed. We trained a neural network to predict variable 
names on a large corpus of C source code that we collected 
from GitHub.

Corpus
To generate our corpus, we scraped GitHub for projects 
written in C. We then automatically built 164,632 binaries 
from these projects and extracted 1,259,935 functions. For 
each function, we generated a corpus entry that consisted 
of the original source code with placeholder variables, as 
shown in the code fi gure to the right. Each corpus entry also 
included a mapping from placeholder variable to the original 
identifi er in the source code and the decompiler’s identifi er.

Edward J. Schwartz , Bogdan Vasilescu
info@sei.cmu.edu
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A1–3

Recovering Meaningful Variable Names in Decompiled Code

We can exactly predict 74.3% 
of variable names in decompiled 
executable code by training a 
neural network on a large corpus 
of C source code from GitHub.

Results

Experiment Accuracy
Overall 74.3
Function in Training 85.5
Function not in Training 35.3

An important consideration when evaluating a 
solution based on machine learning such as ours is the 
construction of the training and testing sets. Each binary 
was randomly assigned to either the training or testing 
set. As in real reverse-engineering scenarios, library 
functions may be present in multiple binaries, and thus 
may be present in both the training and testing sets. To 
better understand the eff ect of this on our system, we 
partitioned our testing set into the set of functions that 
were also in the training set, and those that were not 
in the training set. As demonstrated in the table below, 
DIRE achieves 85.5% accuracy on functions it has been 
trained on, compared to 74.3% overall. On functions that 
it has not seen in training, it yields 35.3% accuracy.

Decompiled Original Recovered

void *file_mmap(int v1|fd|fd, int v2|size|size)
{
void *ptr|ret|buf;
ptr|ret|buf = mmap (0, v2|size|size, 1, 2, v1|fd|fd, 0);
if (ptr|ret|buf == (void *) -1)
{ perror ("mmap"); exit(1); }

return ptr|ret|buf;
}

Key

Plug-in for Hex-Rays decompiler showing recovered names.
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Highly skilled Department of Defense (DoD) malware 
and vulnerability analysts must devote significant time 
to manual tasks. For several years, the SEI has been 
working on automated solutions to free up limited analyst 
resources for more meaningful work. Three SEI research 
threads highlight these efforts:

•	 recovering meaningful variable names in  
decompiled code 

•	 program reachability for vulnerability and  
malware analysis 

•	 improvements to object-oriented construct  
recovery using OOAnalyzer 

Recovering Meaningful Variable Names in  
Decompiled Code

Understanding executable code is a challenge because 
the compilation process removes much of the source code 
information. Decompilers have been widely believed to 
be unable to recover meaningful variable names, which 
improve code understandability. To meet this challenge, 
we developed the Decompiled Identifier Renaming Engine 
(DIRE), a novel probabilistic technique for variable name 

DR. EDWARD 
SCHWARTZ
Member of the Technical 
Staff/Senior Researcher

Carnegie Mellon University  
Software Engineering Institute

ADVANCING CYBER OPERATOR TRADECRAFT THROUGH 
AUTOMATED STATIC BINARY ANALYSIS

recovery that uses lexical and structural information. 
We also developed a technique for generating corpora 
for training and evaluating models of decompiled code 
renaming, which we used to create a corpus of 164,632 
unique x86-64 binaries generated from C projects mined 
from Github. Surprisingly, our results show that DIRE 
can predict variable names identical to the names in the 
original source code up to 74.3% of the time.

Program Reachability for Vulnerability and  
Malware Analysis

Manually coercing specific portions of executable code to 
run presents a number of challenges, such as determining 
the unknown input conditions required to trigger the 
desired behavior, eliminating non-determinism, and 
coping with missing dependencies complicate this 
effort. We developed capabilities within the CMU SEI’s 
Pharos binary code analysis framework to address these 
challenges by identifying the specific program inputs and 
environments needed to reach an execution of interest to 
an analyst, which we call path finding. Finding paths in an 
executable can be especially useful for bypassing runtime 
anti-analysis checks in the code. 

Improvements to Object-Oriented Construct Recovery 
Using OOAnalyzer 

Object-oriented programs pose many challenges for 
reverse engineers and malware analysts. C++ classes are 
complex and hard to analyze at the machine code level. 
We’ve long sought to simplify the process of reverse 
engineering object-oriented code by creating tools such 
as OOAnalyzer, which automatically recovers C++-style 
classes from executables. OOAnalyzer can export its 
results to other reverse engineering frameworks, and we’ve 
enhanced our Pharos Binary Analysis Framework to import 
OOAnalyzer analysis into the recently released Ghidra 
reverse engineering (SRE) tool suite. Ghidra provides the 
analyst many useful reverse engineering services, including 
disassembly, function partitioning, decompilation, and 
various other types of program analyses.

Principal Investigator

MR. CORY COHEN
Member of the Technical 
Staff/Principal Researcher

Carnegie Mellon University  
Software Engineering Institute

IN CONTEXT: THIS FY2018–20 PROJECT 
•	 extends DoD line-funded research and tool development 

for vulnerability and binary code analysis 

•	 contributes to development and transition of Pharos 
binary code analysis framework 

•	 aligns with the CMU SEI technical objective to make 
software trustworthy in construction, correct in 
implementation, and resilient in the face of operational 
uncertainties including known and yet-unseen adversary 
capabilities

Note: The illustrations on the following two pages describe 
additional threads related to this research.
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A1–2

Program Reachability for Vulnerability and Malware Analysis

2,184 test confi gurations found several successful 
approaches, but none that consistently outperformed 
the others, suggesting a needed hybrid approach. 

Problem
Highly skilled Department of Defense (DoD) 
malware and vulnerability analysts currently 
spend signifi cant amounts of time manually 
coercing specifi c portions of executable code 
to run.

Solution
Automate the analysis of binary code, 
choosing program inputs that will trigger 
specifi c behavior to reduce the time that DoD 
cyber personnel spend performing complex 
software analysis.

Approach
Use model checking techniques to identify 
these inputs and generate a simplifi ed 
executable free of complex and convoluted 
dependencies that can be analyzed by existing 
code analysis tools.

Intended Impact (FY18–20)
Improve the DoD’s ability to measure and 
monitor the advancement of path-reachability 
research, especially as Ghidra decompilation 
quality improve improves.

Pharos Function Summaries
SEI’s Pharos binary analysis 
framework computes symbolic 
function summaries by symbolically 
executing binary code. This technique 
converts these function summaries 
into light-weight constraints. The 
conversion uses a simple model of 
memory that is very effi  cient, but is 
known to be incorrect in the presence 
of interprocedural reasoning.

This approach is very fast, but its 
imprecision results in a large number 
of failures and a small number of 
passing tests.

Test Case 
Confi guration

Weakest Precondition
The weakest precondition algorithm 
fi nds the weakest constraints on 
the program input that are required 
for the program to terminate 
successfully. We force execution to 
the desired program locations by 
adding assertions. This technique 
uses an array encoding of memory, 
which is precise but expensive 
to reason about. It also cannot 
reason generally about loops.

This well-known approach is still the 
benchmark to beat. It performs well 
but has signifi cant defi ciencies when 
analyzing code with loops. 

Property Directed Reachability 
Property Directed Reachability 
(PDR) is a technique used in source 
code software model checking. It 
iteratively generates an inductive 
invariant to prove that the target code 
is unreachable, and it uses counter-
examples to refi ne the invariant, so 
it can prove targets are unreachable 
even when there are loops. It 
uses the same array encoding of 
memory as the previous technique.

This approach is very accurate but 
has severe performance problems 
in the binary domain due the 
array memory model, which is not 
necessary at the source code level.

Ghidra + Seahorn
This technique uses the NSA’s 
Ghidra decompiler to raise the 
executable code to a C-like language 
rather than trying to express the 
binary semantics directly. The 
Seahorn software model checker 
is then used to check reachability 
using PDR. Because it operates 
on a source code representation, 
the encoding is very diff erent 
than the other PDR approach.

PDR can be fast when using a source 
code representation. Unfortunately, 
decompilation can fail in myriad 
ways, and this accounts for the 
majority of failures for this approach.

Testing Method
A total of 91 test programs were compiled 
for three optimization levels and two 
architectures. Each test attempted to fi nd a 
path from a starting location to a reachable 
goal and an unreachable goal. If both 
answers were correct, the test passed.
The test timeout was 30 minutes. 

Optimized Arch Fail Timeout Pass Fail Timeout Pass Fail Timeout Pass Fail Timeout Pass

None 32-bit 55 2 34 16 2 73 3 29 59 21 7 63

None 64-bit 47 0 44 15 3 73 2 36 53 28 2 61

Medium 32-bit 40 0 51 9 3 79 1 13 77 12 7 72

Medium 64-bit 53 0 38 9 4 78 1 17 73 21 6 64

High 32-bit 50 0 41 6 2 83 1 12 78 18 7 66

High 64-bit 32 1 58 28 3 60 2 16 73 32 5 54

Total 257 3 266 83 17 446 10 123 413 132 34 380

Key

Best result

Second best result

Third best result

Worst result
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Improvements to Object-Oriented Construct Recovery Using OOAnalyzer

OOAnalyzer was too slow to be 
used on the programs that the 
DoD needs it for the most.
It is now 50x faster and can 
analyze large programs.

Problem
OOAnalyzer is the state of the art in automatically 
recovering object-oriented abstractions to assist reverse 
engineers in malware analysis, vulnerability analysis, and 
software assurance. First published at the ACM Conference 
on Computer and Communications Security, OOAnalyzer 
uses novel techniques to reason in the presence of 
uncertainty, which is unavoidable in this type of analysis. 
This feature is heavily dependent on OOAnalyzer’s Prolog-
based implementation. Unfortunately, early versions of 
OOAnalyzer were too slow to scale to the large and complex 
programs used in the DoD.

OOAnalyzer Design Overview

Solution
• We worked with the developer of SWI Prolog to create 

novel profi ling and debugging tools for Prolog.
• Many problems were simple to fi x once the problem was 

identifi ed using new tools.
• Unfortunately, we identifi ed systemic issues related 

to the Prolog tabling optimization.
• We avoided these issues with a new technique and are 

working with the SWI developers on a general solution.

101
011

Forward
Reasoning

Hypothetical
Reasoning

Consistency
Checking

Prolog Reasoning Component

OOAnalyzer

Pharos Fact 
Exporter

C++ Component

Input C++ 
Executable

Pharos Framework
OOAnalyzer Tool

Recovered Object 
Oriented Abstractions

C++ Abstractions

INHERITS FROM

COMPOSITION

Decompiled C++ Source
Code Displayed in Ghidra

Program # Class # Method Time
(Old)

Time
(New)

Improv
ement

x3c 6 28 0:00:01 0:00:01 0.6x

Malware d597bee8 19 133 0:00:04 0:00:04 0.0x

Malware 0faaa3d3 21 135 0:00:05 0:00:07 -0.3x

optionparser 11 56 0:00:05 0:00:01 3.8x

MySQL connection.dll 43 166 0:00:07 0:00:04 0.7x

Malware cfa69ff f 39 182 0:00:08 0:00:09 -0.1x

light-pop3-smtp 44 290 0:00:21 0:00:14 0.5x

Malware 29be5a33 19 130 0:00:24 0:00:05 3.7x

CImg 29 220 0:00:52 0:00:11 3.6x

MySQL ha_example.dll 21 256 0:01:04 0:00:16 3.1x

Firefox 141 638 0:01:47 0:01:30 0.2x

PicoHttpD 95 656 0:03:38 0:00:37 4.9x

Malware 6098cb7c 55 339 0:03:54 0:00:15 14.5x

Malware 67b9be3c 400 2072 2:42:19 0:17:31 8.3x

MySQL cfg_editor.exe 190 1270 3:27:50 0:03:53 52.6x

MySQL libmysql.dll 200 1327 4:22:55 0:04:04 63.7x

Malware f101c05e 169 1601 4:25:34 0:07:17 35.5x

MySQL mysql.exe 202 1395 4:34:49 0:04:37 58.5x

MySQL upgrade.exe 333 2069 11:34:56 0:15:30 43.8x

Malware 628053dc 207 1920 11:46:38 0:14:16 48.5x

Malware deb6a7a1 283 2712 17:33:52 0:17:15 60.1x

Before and After Data
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