
RESEARCH
REVIEW
2020

“Our research springs
from the DoD’s need
for software innovation
and cybersecurity that
continually evolves
in support of its
intensifying mission.”

MESSAGE FROM THE CTO
We at the Carnegie Mellon University Software Engineering Institute (CMU SEI) are proud of our designation
as a federally funded research and development center (FFRDC) sponsored by the Under Secretary of Defense,
Research and Engineering (USD(R&E)). That pride shows in our ongoing commitment to establishing and
advancing software as a strategic advantage for national defense and security.

This book highlights the fundamental research we conducted in fiscal 2020 on behalf of our DoD sponsor and
presented at the 2020 CMU SEI Research Review. It presents recently concluded work and work that remains
underway in our pipeline for technology development and transition: study, make, transition, and transfer.

As you will see in the following pages, we dig into the enduring challenges facing the DoD, and our decades-
long engagement has informed our deep and nuanced understanding of the challenges it faces. Our research
springs from the DoD’s need for software innovation and cybersecurity that continually evolves in support of
its intensifying mission.

The DoD needs its software-enabled systems to

•	 bring capabilities that make new missions possible or improve the likelihood of success of existing ones

•	 be timely to enable the DoD to field new software-enabled systems and upgrades faster than our adversaries

•	 be trustworthy in construction and implementation and resilient in the face of operational uncertainties
including known and yet-unseen adversary capabilities

•	 be affordable such that the cost of acquisition and operations, despite increased capability, is reduced,
predictable, and provides a cost advantage over our adversaries

Those four requirements drive all CMU SEI work, whether for USD(R&E), DoD programs, federal civilian
agencies, or industry.

Our work in the problem space often generates fruitful collaborations with CMU academic departments, other
leading universities, and industry that identify promising basic research and emerging technologies of use
to the DoD. We also engage with DoD end users to gain field-level understanding of mission needs, gaps, and
priorities, and with industry to assess existing capabilities.

When creating solutions, CMU SEI develops prototypes using promising early research or technology, maturing it
as we do to meet the needs of the DoD. We conduct initial validation with forward-leaning DoD end users in major
defense acquisition programs, combatant commands, or combat support agencies. We also identify opportunities
for cost sharing with federal agencies facing challenges similar to those of the DoD.

Our transition efforts take place through additional direct engagements, and it is funded from across the inter-
agency to refine prototypes to facilitate broad adoption by the entire DoD or to transfer these technologies to an
industry or DoD partner for further integration or ongoing maintenance.

Across that pipeline, our steadfast purpose is to help the DoD gain and sustain an advantage over adversaries
through the transformation of software acquisition, sustainment, and cyber operations within DoD. We strive
to help the DoD do so in a way that matures and integrates advanced capabilities discovered by academia,
government, and the private sector through a process that is routine, affordable, trustworthy, and timely.

I hope you enjoy reading about CMU SEI’s fiscal 2020 research efforts, and that the following pages demonstrate
the pride we take in this work. We stand by to work with you to help you make a difference, and we encourage
you to contact us at info@sei.cmu.edu.

TOM LONGSTAFF
Chief Technology Officer

Carnegie Mellon University
Software Engineering Institute

iRESEARCH REVIEW 2020

mailto:info%40sei.cmu.edu?subject=

ii RESEARCH REVIEW 2020

CONTENTS

Leverage Emerging Technology Innovation in Computing, Architectures,
and Algorithms

Spiral AI/ML: Co-optimization for High-Performance, Data-Intensive
	 Computing in Resource-Constrained Environments	 3

Quantum Advantage Evaluation Framework 	 5

Video Summarization and Search	 7

A Series of Unlikely Events	 9

Train, but Verify: Towards Practical AI Robustness	 11

Characterizing and Detecting Mismatch in ML-Enabled Systems 	 13

Formalize the Development, Integration, and Use of Models	

Integrated Safety and Security Engineering for Mission-Critical Systems 	 17

Untangling the Knot: Enabling Rapid Software Evolution	 19

Codify Fully Integrated CI/CD Practices	

TwinOps: Digital Twins Meets DevOps 	 23

Automated Design Conformance During Continuous Integration	 25

Integrated Causal Model for Software Cost Prediction & Control (SCOPE)	 27

Improve Designed-In Resilience	

Automated Code Repair to Ensure Memory Safety	 31

Investigating the Feasibility of High-Assurance Software-Defined IoT Security 	 33

Using All Processor Cores While Being Confident about Timing 	 35

Rapid Certifiable Trust	 37

Rapid Adjudication of Static Analysis Alerts During Continuous Integration	 39

Equip the Cyber and Information Operators with Dominant Tradecraft	

Human Decision Making with AI Support 	 43

Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis	 45

References	 48

iiiRESEARCH REVIEW 2020

Leverage Emerging Technology
Innovation in Computing,
Architectures, and Algorithms
CMU SEI takes promising technologies and research relevant

to DoD missions and adapts and enhances them to allow

integration into DoD systems and processes.

SECTION 1

RESEARCH REVIEW 2020

Problems
• The need exists for increased

computational power to process,
exploit, and disseminate information
for decision makers.

• Massive amounts of information,
along with AI/ML algorithms, generate
data and computational-intensive
applications.

• Implementing these applications
effi ciently on increasingly complex HW/
SW architectures is challenging.

• Too few engineers have the expertise to
optimize algorithms for the wide variety
of hardware currently available.

Solution
• Automatic code generation for data-

intensive computations
• Simultaneous, automatic co-

optimization for targeted hardware

Approach
• Identify and encode data-intensive

compute primitives into CMU’s SPIRAL
code generation technology.

• Develop and encode hardware
performance models into Spiral.

• Use Spiral to co-optimize for a set of
target hardware platforms.

Dr. Scott McMillan (SEI PI), Prof. Franz Franchetti (CMU PI), Prof. Tze Meng Low (CMU PI),
Dr. Daniele Spampinato, Mark Blanco, Anurag Kutuluru, Sanil Rao, Upasana Sridhar

info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A11

Spiral AI/ML: Co-optimization for High-Performance, Data-Intensive
Computing in Resource Constrained Environments

Hardware-software co-optimization promises
timely, high-performance, and cost-eff ective
implementation and re-implementation of AI/ML
workloads on new DoD hardware platforms.

Trace File

Code Generation +
HW Spec

SPIRAL

GBTLX Interface

GBTLXProblem

GBTLXSolver

Internal Driver

Wrapped GBTL
Functions

GBTL

User Application

Problem Specification

Problem

Signature

Solver

Main Driver

GBTLX Program

Main Driver

GBTLX Generated
Code

1. S. Rao, A. Kutuluru, S. McMillan, F.
Franchetti, “GBTLX: A First Look”, in 2020
IEEE High Performance Extreme Computing
Conference (HPEC), 2020. Outstanding
Student Paper Award.

2. SPIRAL Project, Version 8.1.2. Available at
https://www.spiral.net.

3. GraphBLAS Template Library (GBTL), Version
3.0. Available at https://github.com/cmu-
sei/gbtl, June 2020.

4. A. Buluç, T. Mattson, S. McMillan, J. Moreira,
and C. Yang, “Design of the GraphBLAS API
for C,” in 2017 IEEE International Parallel
and Distributed Processing Symposium
Workshops (IPDPSW), pp. 643–652, 2017.

5. T. M. Low, V. N. Rao, M. Lee, D. Popovici, F.
Franchetti, and S. McMillan, “First look: Linear
algebra-based triangle counting without
matrix multiplication,” in2017 IEEE High
Performance Extreme ComputingConference
(HPEC), pp. 1–6, 2017.

6. J. Kepner, D. Bader, A. Buluç, F. Franchetti,
J. Gilbert, A. Lumsdaine, T. Mattson,
S. McMillan, et al., “Mathematical
Foundations of the GraphBLAS,” in 2016
IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–9, 2016.

Graph algorithms in the language of linear algebra
supports a rich notation for specifying graph, ML and AI
algorithms. For example, counting triangles in graph L:

∆ = || L .x (L +. ᴧ L) ||

includes use of semiring algebraic operations and
masked matrix multiplies.

GBTL implements the GraphBLAS specifi cation that allows
simpler implementation of the math in code:

uint64 _ t triangle _ count(Matrix<bool> const &L) {
 Matrix<uint64 _ t> B(L. nrows(), L.ncols());

 // Masked matrix multiply: B = L .* (L +.̂ L)
 mxm(B, L, NoAccum(), PlusAndSemiring<uint64 _ t>(), L, L);

 //Perform reduction: ||B||
 uint64 _ t count;
 reduce(count, NoAccum(), PlusMonoid<uint64 _ t>(), B);
 return count;
}

Spiral wraps GBTL functions to build a trace fi le used for
analysis during code generation:

spiral _ session := [
 rec(op := “triangle _ count”), //function name
 rec(op := “MatrixCreation”,row:= 9877,col:= 9877,
 ptr := 0x7fffff45bb60, mat = 0x7fffff45bb60),
 rec(op := “Matrix Multiplication”,
 output = IntHexString(“0x7fffff45bb60”) ,
 mask = IntHexString(“0x7fffff45ba30”),
 inputA = IntHexString(“0x7fffff45bb30”),
 inputB = IntHexString(“0x7fffff45bb30”),
 semiring = “PlusAnd”),
 rec(op := “reduce(matrix->scalar)”,
 /*many more arguments*/),
];[3,4] [1] [1,5]

GBTLX generaged code is on par with hand-tuned code

[6]

[1]

[3]

[2]

References

2 RESEARCH REVIEW 2020

Principal Investigator

DR. SCOTT MCMILLAN
Member of the Technical
Staff/Principal Engineer

Carnegie Mellon University
Software Engineering Institute

Commanders and warfighters in the field rely on data,
and the Department of Defense and U.S. intelligence
community have an overwhelming data collection
capability. This capability far outpaces the ability of
human teams to process, exploit, and disseminate
information. Artificial intelligence (AI) and machine
learning (ML) techniques show great promise for
augmenting human intelligence analysis. However,
most AI/ML algorithms are computationally expensive,
data intensive, and difficult to implement efficiently
in increasingly complex computer hardware and
architectures. What’s more, moving very large amounts of
data through tactical and operational military networks
requires forward deployment of advanced AI/ML
techniques to support commanders and warfighters in
theaters with equipment constrained by cost, size, weight,
and power (CSWAP).

SPIRAL AI/ML: CO-OPTIMIZATION FOR HIGH-PERFORMANCE, DATA-INTENSIVE
COMPUTING IN RESOURCE-CONSTRAINED ENVIRONMENTS

As the military adopts AI/ML to augment human teams,
the cost of implementing and re-implementing AI/ML
software on new hardware platforms will be prohibitive.
To address these challenges, we propose to build on CMU’s
Spiral technology, a hardware-software co-optimization
system that will

•	 automatically search and select hardware configurations
that meet CSWAP requirements

•	 automatically generate optimized codes for the selected
hardware configuration and the irregular, data-intensive
computations required for AI/ML algorithms

If successful, our solution will allow platform developers
to realize high-performance AI/ML applications on
leading-edge hardware architectures faster and cheaper.
These advances will allow for rapid development and
deployment of capabilities across the spectrum of national
and tactical needs.

IN CONTEXT: THIS FY2019–21 PROJECT
•	 builds on DoD line-funded research and sponsored work

on automated code generation for future-compatible
high-performance graph libraries, big learning
benchmarks, GraphBLAS API specification, and graph
algorithms on future architectures

•	 is related to a set of programs at DARPA under the ERI
umbrella (HIVE, SDH DSSOC, etc.) that the CMU SEI
is supporting

•	 aligns with the CMU SEI technical objective to be
affordable such that the cost of acquisition and
operations, despite increased capability, is reduced
and predictable and provides a cost advantage
over our adversaries

3RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Problem
When and where can the DoD benefi t from investing in
quantum computing technology? To answer this question,
we are working with noisy intermediate scale quantum
(NISQ) computers, but we’re also thinking ahead to fault-
tolerant quantum error corrected computation. In particular,
we want to determine when and where quantum advantage
will exist for the following important DoD applications:

Jason Larkin (SEI), Catherine Bernaciak (SEI), Daniel Justice (SEI),
Matias Jonsson (CMU), Scott Mionis (CMU), Franz Franchetti (CMU), Gian Guerreschi (Intel)

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A18

Quantum Advantage Evaluation Framework

QAEF Output: When and where can you leverage
quantum computing to achieve advantage in solving
your organization’s problems?
• Input: the applications that have most potential for

quantum advantage. It is critical to identify “real world”
problem instances.

• Output: when and where will quantum advantage exist?
Establish timeframe for Quantum Advantage Readiness.

0.80 0.85 0.90 0.95 1.00

r

10

6

10

5

10

4

10

3

10

2

10

1

10

0

W
a
l
l
T
i
m

e

(
s
)

p=4 3reg

GW SCS

GW CVXOPT

DESOUSA2013

random FC

random 2D

optimized FC

optimized 2D

AK

2

6

0 1

3

7 8

54

qEmbed([0,1,3,4,5,7,8], T1)
...

qEmbed([2,3], T2) * ...

4

0 1

2 3

5 6

0 1

4

0 3

2 1

5 6

0

1

...

5

2

0 1

43

6 7 8
qEmbed([2,3], T2) * ...

...
0 2

34

5 6

1

0

1

0

1

0 1

43

5 6

2

QFT(3)
CNOT

Juncti...Juncti...Reorder Reorder Reorder Juncti... Juncti... Reorder

0321 0132 0132 0321 0213 02130321 0321

Embed

......

http://spiral.net/
https://github.com/spiralgen/spiral-package-quantum
“Quantum Circuit Optimization with SPIRAL: A First Look,” S Mionis, et al, Supercomputing 2020

Quantum Circuit Optimization in SPiRAL

Scheduling to Quantum “Baremetal”

Framework to evaluate current
and projected quantum
computing advantage.

Where: to determine quantum
advantage, benchmarks on
specifi c problem instances must
be performed on “real world”
scales (O(100-1000+ nodes)
(estimated 3 years IBM, Google)

https://arxiv.org/abs/2006.04831
“Assessment of Alternative Objective Functions for Quantum Variational Combinatorial Optimization,” M. Jonsson, et al, IEEE QCE Quantum Week 2020

Classical State of the Art: PSC

Quantum Computers
(simulated)

Combinatorial
Optimization

C5ISR
DARPA ONISQ

Materials
Science

Superconductivity
DARPA ERI, MatGenome

Timeframe
to Quantum
Advantage

Pr
ob

le
m

 S
iz

e/
Co

m
pl

ex
it

y

Fault Tolerant Quantum

1-3 years

10-20 years
(see IBM,
Google
Roadmaps)

SEi Collaboration with Carnegie Mellon University
Quantum algorithm performance depends critically on
quantum circuit optimization. We are working with CMU ECE
Franz Franchetti’s group to adapt their well-known classical
computing optimization tool, SPIRAL.

Application Evaluation
Results

Quantum Advantage
Evaluation Framework

4 RESEARCH REVIEW 2020

Principal Investigator

DR. JASON LARKIN
Research Scientist

Carnegie Mellon University
Software Engineering Institute

The potential of quantum computing, especially near-
term, is not going to be realized without close integration
with state-of-the-art classical computing. Universal gate
(UG) quantum computers share many foundational
features with classical computers. Furthermore, UG
quantum computers must show advantage against state-
of-the-art classical software and/or hardware, and the
two computing paradigms will be critically integrated as
complimentary technologies.

A major gap in achieving quantum advantage is the
identification of applications in which quantum
computing could provide computational advantage (in
terms of time to solution, quality of solution, etc.). It is
unclear which potential applications will realize quantum
advantage among a variety of hardware, such as various
UG technologies (e.g., superconducting qubit, trapped and
neutral-atom, photonics). Variation in hardware is typical
in the near-term noisy intermediate-scale quantum (NISQ)
computing era. This is a software–hardware co-synthesis
challenge for quantum computing in the near-term.

QUANTUM ADVANTAGE EVALUATION FRAMEWORK

This project aims to produce a novel classical computing
emulation and software–hardware co-synthesis framework
for quantum computing technology aimed at applications
driven by the portfolio of DoD research. UG quantum
computing has emerged as the near-term (5- to 10-year)
quantum computing technology that can demonstrate
not just quantum supremacy (performing a computation
not possible with a classical computer, regardless of
usefulness), but also quantum advantage (performing
a useful computation better and/or faster than a
classical computer).

IN CONTEXT: THIS FY2019–21 PROJECT
•	 relates to DoD interest in applying quantum computing

to mission capability

•	 aligns with the CMU SEI technical objective to
make software trustworthy in construction, correct
in implementation, and resilient in the face of
uncertainties, including known and yet-unseen
adversary capabilities

•	 aligns with the CMU SEI technical objective to bring
capabilities through software that make new missions
possible or improve the likelihood of success for existing
missions

•	 provides a gateway into futuristic computing
architectures and increased computational power for
artificial intelligence and machine learning

5RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Problem:
Aerial surveillance demands full attention to video by
PED teams

• Manual, error-prone process
• Technical barriers including object detection, and tracking
• Limitations result in poor pattern detection in a

surveilled region

• Vehicle tracks used to train LSTM autoencoder that learns
normal behavior in order to identify anomalous tracks

• Results shown are for perfect data -- reality is not so pretty
due to inadequate object detection and tracking

• This results in lost tracks and many “tracklets” that are
diffi cult to correlate

Solution
• Work directly with DoD to improve pattern detection in

aerial surveillance data patterns
• Work with researchers to address core technology

problems of tracking of objects

impact (FY18–20)
• Improved DoD pattern detection in aerial surveillance data
• Developing unsupervised 3D tracking algorithms to

improve on other unsupervised methods and achieve
performance similar to supervised methods

Given 2 viewpoints of the same object:

• a neural 3D mapping for each
• Identify the corresponding voxel pair in the

two mappings
• Treat all other mappings as negative

correspondences
• Train the features to indicate the

correspondences automatically

Given the bounding box for object

• Generate features for the object
• Generate features for search region
• For each voxel of object, compute

correlation with search region
• Estimate the total motion with RANSAC
• Update the box automatically

Early results are promising!

• Work on 3D tracking will continue as part of Adam Harley’s
work toward his PhD at Carnegie Mellon University

Contact:
Ed Morris Adam Harley
info@sei.cmu.edu info@sei.cmu.edu

Ed Morris, Adam Harley
Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

PA5

Video Summarization and Search: Object Tracking

Object Discovery
What if the need is for a system that will discover objects
autonomously?

• Extract 3D features for each frame
• Determine voxel-wise median
• Determine the diff erence from the median for each frame

Results: Tracking based on learned correspondence of points3-D Tracking Research: learning
correspondence from static
3D points causes 3D object
tracking to emerge.
Training

Tracking

Two vehicles meet
on a little-used
road

Vehicles
traveling on
main road

6 RESEARCH REVIEW 2020

The U.S. relies on surveillance video to determine when
activities of interest occur in a surveilled location.
Yet, there is a lack of automated tools available to assist
analysts in monitoring real-time video or analyzing
archived video [Seligman 2016]. Consequently, analysts
now need to dedicate full attention to video streams to
avoid missing important information about ongoing
activities and patterns of life; and, in tactical settings,
warfighters miss critical information for improved
situational awareness because they cannot stare at a
tablet strapped to their chest.

In this work, we are developing machine learning
algorithms necessary for detecting objects, better tracking
those objects, and recognizing patterns of objects and
object interactions.

VIDEO SUMMARIZATION AND SEARCH

IN CONTEXT: THIS FY2018–20 PROJECT
•	 builds on prior DoD line-funded research into the

foundations for summarizing and learning latent
structure in video

•	 draws from sponsored engagements for DoD programs
and agencies

•	 aligns with the CMU SEI technical objective to bring
capabilities through software that make new missions
possible or improve the likelihood of success of
existing ones

Principal Investigator

MR. EDWIN MORRIS
Senior Member of the
Technical Staff

Carnegie Mellon University
Software Engineering Institute

7RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Introduction
Modeling patterns of sequential behavior is a task that
underlies numerous diffi cult artifi cial intelligence tasks:

• How do I detect when adversaries are deviating from
normal routines?

• How can I predict where a ship is going to dock?
• How can I automate the teaching of novice analysts to

perform complex tasks as if they were experts?

In this work, we use a class of techniques called Imitation
Learning (IL) to model sequential behavior to answer
questions like these and others.

Methodology
Given observations of behavior:

ℬ = {((𝑠1,𝑎1),(𝑠2,𝑎2),…)1,…,((𝑠1,𝑎1)…)𝑛 }
Learn a policy 𝜋:𝒮↦ 𝒜 that best explains the behaviors.

Two Kinds of Imitation Learning Algorithms
1. Inverse Reinforcement Learning: Learn a reward function

𝑅:𝒮×𝒜↦ℝ that models the preference exhibited in
behavior. Then, learn policy 𝜋 that maximizes expected
reward.

2. Behavioral Cloning: Learn 𝜋 directly to mimic the actions
exhibited in the behaviors.

How to use Imitation Learning for...
Activity-based Intelligence:
• Learn 𝜋 from observed behaviors of entities of interest.
• Project future behavior by successively applying 𝜋 to state.
• Detect anomalous behavior when 𝜋 deems an action to be

of low probability (assumes probabilistic policy).

Teaching expert behavior:
1. Learn 𝜋 from expert behavior.
2. When a novice is in a state for which she doesn’t know the

proper action, suggest the one produced by 𝜋.

Eric Heim,
 Jonathan Hoyle, Jay Palat, Dan DeCapria, Jake Oaks

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A3

A Series of Unlikely Events
Learning from Sequential Behavior for Activity-Based Intelligence and Modeling Human Expertise

Goals of this work
1. Investigate the practicality (assumptions made, effi ciency,

scalability, expressiveness) of applying IL to behavioral
modeling problems.

2. Apply IL Techniques to DoD/IC relevant problems:

• Perform effi cient implementations that scale to a large
number of observations.

• Build demonstration from data ingestion to
visualization tools.

3. Develop techniques that are able to explain, simulate, and
demonstrate expert behavior.

Accomplishments
1. Performed technical evaluation of Generative Adversarial

Imitation Learning (GAIL) (Ho and Ermon, 2016) and
Disturbances for Augmenting Robot Trajectories (DART)
(Lee et al., 2017) when applied to modeling nautical
vessel behavior.

• With careful engineering and domain-specifi c modeling
assumptions, we were able to achieve a policy that was
able to predict a ship’s end destination state within 0.001%
of their actual state (technical report forthcoming).

2. Created implementation of Maximum Causal Entropy IRL
(MCEIRL) (Ziebart et al., 2010) that is 500x+ faster than
academic implementation (to be publicly released).

3. Created demonstration of MCEIRL model applied to U.S.
Coast Guard Nautical Vessel Data. (https://resources.sei.
cmu.edu/downloads/IRL-demo)

4. Developed model with Stephanie Rosenthal (CMU/CSD)
and Reid Simmons (CMU/RI) of expert data scientist
behavior for the purpose of guiding novice data scientists
through challenging tasks (technical report forthcoming).

Ho, Jonathan and Ermon, Stefano. Generative Adversarial
Imitation Learning. Advances in Neural Information Processing
Systems (NIPS), 29. D. D. Lee et al. (eds]. NIPS Foundation. 2016.
Lee, Jonathan et al. DART: Disturbances for Augmenting Robot
Trajectories. 1st Conf. on Robot Learning (CORL) Project. Nov. 2017.
Ziebart, Brian D, et al. Maximum Causal Entropy IRL (MCEIRL).
School of Computer Science, Carnegie Mellon University. 2010.

imitation Learning techniques
are an effi cient and eff ective
means to perform activity-
based intelligence or to
help automate the education
of novices on how to perform
tasks like experts.

8 RESEARCH REVIEW 2020

Principal Investigator

DR. ERIC HEIM
Senior Research Scientist—
Machine Learning

Carnegie Mellon University
Software Engineering Institute

The Department of Defense (DoD) and the intelligence
community (IC) frequently analyze activity based
intelligence (ABI) to inform missions about routine
patterns of life (POL) and unlikely events that signal
important changes. For example, monitoring parking
lots of military bases may indicate changing threat levels
or upcoming military action. Despite growing research
on general solutions for routine detection technologies,
current algorithms are typically hand-crafted for
particular applications, require labeled anomalous data,
and have high false-positive rates that require verification
by human analysts.

We propose an alternative approach, inverse
reinforcement learning (IRL), that observes all states and
actions in data and computes a statistical model of the
world that includes whether each behavior is part of a
routine. Deviations from routines have a low likelihood
of occurrence within the model. The statistical model
can also explain why an action is labeled as routine or
anomalous and could be used by analysts to prioritize the
anomalies and to retrain models to reduce false positives.

A SERIES OF UNLIKELY EVENTS

Though powerful, IRL techniques pose a number of both
practical and fundamental challenges when applying
them to dynamic, large-scale, DoD and IC missions. In this
project, we focus on three of these challenges: 1) scaling
IRL methods to DoD/IC-scale problem domains using
efficient implementations of state-of-the-art techniques
and high-performance computing, 2) making IRL
techniques robust to novelty, thus allowing them to reason
about never-seen-before behaviors, and 3) developing IRL
techniques that expose key characteristics in data that
could explain observed behaviors.

IN CONTEXT: THIS FY2018–20 PROJECT
•	 builds on DoD line-funded research, including

graph algorithms and future architectures, big
learning benchmarks, automated code generation
for future-compatible high-performance graph
libraries, data validation for large-scale analytics,
and events, relationships, and script learning for
situational awareness

•	 aligns with the CMU SEI technical objective to
bring capabilities through software that make
new missions possible or improve the likelihood
of success for existing missions

9RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Problem
The Beieler Taxonomy (2019) categorizes three ways a
machine learning system can be attacked. The three
matching security policies for a defender to enforce are:

1. Learn the right thing, even from adversary
infl uenced data.

2. Do the right thing, even with adversarial
examples present.

3. Never Reveal sensitive information about the model/data.

Existing defense research primarily focuses on only one
of these security policies at a time. This is an important
limitation, because recent research demonstrates that state
of the art methods for enforcing do policies can lead to
violations of reveal policies.

Train\Verify Verify learn Verify do Verify reveal

Train for learn

Train for do
Train, but Verify

Train for reveal

Solution
1. Train secure AI systems by training ML models to

enforce at least two security policies.
2. Verify the security of AI systems by testing against

realistic threat models across multiple policies.

Intended Impact (FY20-22)
• Provide proof-of-concept defenses that either enforce

multiple policies, or trade off between those policy goals.
• Provide proof-of-concept tooling to verify security policies

across multiple policies.

Matt Churilla, Jon Helland, Nathan VanHoudnos, and Oren Wright
info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A12

Train, but Verify: Towards Practical AI Robustness

An AI system trained for
high-stakes decisions may reveal
critical information about its
training data.

The ImageNet stingray class contains swimmers

... Caulifl ower class contains purple caulifl ower

For models trained on CIFAR 10 to enforce a do policy (TRADES, Zhang et al., 2019),
adversaries with both full-model access and query-only access can recover the presence of
riders on horses (about 20% of the class).

Start Deer Horse Start Deer Horse

Adversary w/ full model access

Examples of horses with riders from CIFAR10 (about 20% of the class)

Adversary w/ query only access

Adversary with model
access, but no data First 9 examples of synset

n01498041 (stingray)

Adversary with model
access, but no data

First 9 examples of synset
n07715103 (caulifl ower)

CIFAR 10 data set documented in Krizhevsky, Alex. “Learning Multiple Layers of Features from
Tiny Images.” April 8, 2009.

ImageNet photos courtesy of ImageNet.

10 RESEARCH REVIEW 2020

The current challenges to the training and verification of
secure machine learning (ML) stem from

1.	the difficulty of enforcing quality attributes in a system
that is trained on data instead of directly constructed
from requirements

2.	the fundamental advantage that an attacker has, namely
that the attacker needs to only violate a single security
policy, while the defender needs to enforce all of the
security policies

The DoD has not been exempt from these challenges.
The current state of the art in secure ML is to train
systems to either enforce a single security policy or train
auxiliary systems to detect violations of a single security
policy. Very little extant work focuses on multiple security
policies. For example, there exist systems in the DoD that
make high-stakes decisions and yet were also trained on
sensitive data. This implies that the system should enforce
at least two security policies simultaneously (i.e., the ML
system should neither do the wrong thing when presented
with adversarial input nor reveal sensitive information
about the training data during its operation).

TRAIN, BUT VERIFY: TOWARDS PRACTICAL
AI ROBUSTNESS

In this “Train, but Verify” project, we will attempt to
address the gap in the state of the art on secure training of
ML systems with two objectives:

1.	Train secure AI systems by training ML models to
enforce at least two security policies.

2.	Verify the security of AI systems by testing against
declarative, realistic threat models.

We consider security policies from the Beieler taxonomy:
ensure that an ML system does not learn the wrong thing
during training (e.g., data poisoning), do the wrong thing
during operation (e.g., adversarial examples), or reveal the
wrong thing during operation (e.g., model inversion or
membership inference).

IN CONTEXT: THIS FY2020–22 PROJECT
•	 aligns with the CMU SEI technical objective to be

trustworthy in construction and implementation
and resilient in the face of operational uncertainties,
including known and yet-unseen adversary capabilities.

MR. JON HELLAND
Associate Machine Learning
Researcher

Carnegie Mellon University
Software Engineering Institute

Principal Investigator

DR. NATHAN
VAN HOUDNOS
Senior Machine Learning
Research Scientist

Carnegie Mellon University
Software Engineering Institute

11RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Problem
Development, deployment, and operation of ML systems
involves three perspectives, often with three completely
separate workfl ows and people: data scientists build the
model; software engineers integrate the model into a larger
system; and then operations staff deploy, operate, and
monitor the system.

Because these perspectives operate separately and
often speak diff erent languages, there are opportunities
for mismatch between the assumptions made by each
perspective with respect to the elements of the ML-enabled
system, and the actual guarantees provided by each
element.

Solution
Develop descriptors for elements of ML-enabled systems
by eliciting examples of mismatch from practitioners;
formalizing defi nitions of each mismatch in terms of data
needed to support detection; and identifying potential for
using this data for automation of mismatch detection.

Descriptors for ML system elements
make stakeholder assumptions
explicit and prevent mismatch.

Principal Investigator, Grace A. Lewis
Stephany Bellomo, Ipek Ozkaya, April Galyardt

info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

PA17

Characterizing and Detecting Mismatch in ML-Enabled Systems

Looking Ahead: Automated Mismatch Detection

Phase 1 Findings

Phase 1: Practitioner interviews to elicit examples of
mismatch and their consequences

Operational Data 8%

5% Data Rates

5% Development & Integration Timelines

21% Data Sources16% Data Syntax &
Semantics

21% Data Pipelines 37% Data Statistics

Development Environment 9%

40% Upstream and Downstream
System Components

10% Computing Resources 45% Programming Language/
ML Framework/ Tools/ Libraries

4% Anonymization

2% Data Buffering

13% Proxy Data

18% Task

31% Data Dictionary4% Restrictions

15% Usage Context

14% Required Model Inference Time 54% Runtime Metrics & Data32% Computing Resources

14% Decisions, Assumptions,
Limitations & Constraints

17% API/
Specifications

17% Test Cases
& Data

14% Model Output
Interpretation

62% Data Preparation Pipelines 15% Versioning 23% Data Statistics

12% Programming Language/
ML Framework/ Tools/ Libraries

11% Evaluation
Metrics

8% Versioning

48% Metadata

26% Success Criteria 29% Business Goals

Raw Data 10%

Task and Purpose 15%

Operational Environment 16%

Trained Model 36%

Training Data 6%

5% System Configuration
Requirements

12% Data Rights & Policies

Training Data mismatches are mostly due to lack of clarity
on data preparation pipelines (37%) and lack of data
statistics (21%).
Operational Data mismatches are mostly due to lack of
data statistics (37%) and lack of clarity on data pipelines
(21%).
Development Environment mismatches are mostly due to
diff erences in programming languages … (45%) and lack of
knowledge of upstream and downstream components (40%).
Raw Data mismatches are mostly associated with lack of
metadata (48%) and lack of a “data dictionary” (31%).
Task and Purpose mismatches are mostly associated with
unknown business goals (29%) or success criteria (26%).
Operational Environment mismatches are mostly
associated with unavailable runtime metrics and data (54%)
and unawareness of computing resources available for
model serving (32%).
Trained Model mismatches are mostly associated with
lack of test cases and test data (17%) and lack of model
specifi cations and APIs (17%).

Distribution
Monitor

Training Data
Descriptor

Operations
Dashboard

Operational
Data

Alerts

Predictions

Distribution={Label, Percentage}

Predictions Over
Period of Time

Input+Prediction+Other Metrics

Chi Square Test
Between Distributions

JSON

Upstream
Components

Downstream
ComponentsML Component

Logs

!
"#! $ %&!'"

%&!
()

#

!$%$&'()*+

!

6% Training Data 10% Raw Data 16% Operational
Environment

8% Operational Data
9% Development Environment

15% Task and Purpose 36% Trained Model

Resulting Mismatch Categories from Practitioner Interviews

Descriptors Being Used for Automated Drift Detection

12 RESEARCH REVIEW 2020

Principal Investigator

DR. GRACE A. LEWIS
Principal Researcher/
Tactical AI-Enabled Systems
Initiative Lead

Carnegie Mellon University
Software Engineering Institute

Despite the growing interest in machine learning (ML) and
artificial intelligence (AI) among the DoD, government,
and public sector organizations, development of ML and
AI capabilities remains primarily a research activity or
stand-alone project (with the exception of large companies
such as Google and Microsoft). [Ghelani 2019] Deploying
ML models in operational systems remains a significant
challenge. [Amershi et al. 2019; Ransbotham et al. 2017;
Sculley et al. 2015]

The development and operation of ML-enabled systems
involve three perspectives with three different and
often completely separate workflows and people: the
data scientist builds the model; the software engineer
integrates the model into a larger system; and operations
staff deploy, operate, and monitor the system. Because
these perspectives operate separately and often speak
different languages, mismatches can arise between the
assumptions of each perspective about the elements of the
ML-enabled system and the actual guarantees provided
by each element. Furthermore, these system elements,
such as the trained model, training data, raw data, and
operational environment, evolve independently and

CHARACTERIZING AND DETECTING MISMATCH IN
ML-ENABLED SYSTEMS

at a different rhythm, which could, over time, lead to
unintentional mismatch. Such mismatch can manifest in
poor system performance, poor model accuracy, the need
for large amounts of glue code to accommodate operational
data types, monitoring tools incapable of detecting
diminishing model accuracy, and even system failure.

This project addresses the following questions:

•	 What are common types of mismatch that occur in the
end-to-end development of ML-enabled systems?

•	 What are best practices for documenting data, models,
and other system elements that will enable detection
of mismatch?

•	 What are examples of mismatch that could be detected
in an automated way, based on the codification of
best practices in machine-readable descriptors for
ML system elements?

We are developing machine-readable ML-Enabled System
Element Descriptors to enable mismatch detection and
prevention in ML-enabled systems. These descriptors
codify attributes of system elements and make all

assumptions explicit. They can be used by system
stakeholders manually, for information awareness
and evaluation activities, and by automated mismatch
detectors at design time and runtime for cases in which
attributes lend themselves to automation.

IN CONTEXT: THIS FY2020 PROJECT
•	 aligns with the CMU SEI technical objective to 1) be

trustworthy in construction and implementation and
resilient in the face of operational uncertainties, including
known and yet unseen adversary capabilities, and 2) bring
capabilities that make new missions possible or improve
the likelihood of success of existing ones

13RESEARCH REVIEW 2020

Formalize the Development,
Integration, and Use of Models
CMU SEI seeks to 1) improve the fidelity and expressiveness

of languages, models, and tools that allow the specification

of software systems, and 2) ensure the ability to create these

formalisms for new activities or extract them from legacy

systems where critical documentation, development artifacts,

source code, or formal descriptions may not exist.

SECTION 2

RESEARCH REVIEW 2020

Problem
Software increasingly dominates safety- and mission-critical
system development. Issues are discovered long after they
are created.

Solutions
Our three-year project aims to make systems safer and
more secure by enabling early discovery of system-level
issues through virtual integration and incremental analytical
assurance. This project consists of four eff orts, all of which
use the Architecture Analysis and Design Language (AADL),
an SEI-created, internationally standardized language for
designing software-centric critical systems.

Security Requirements
A new security annex to AADL and verifi cation plugins
We developed an extension to AADL that enables system
designers to describe how their system meets security goals
by, for example, encrypting information or dealing with
private keys. We also developed tools to verify that a system
conforms to various policies, and we are publishing papers
and documentation on how to use them.

Reusable Safety Patterns
A collection of patterns expressed using AADL
We proposed a library of safety design patterns that capture
key safety architecture fragments. Each pattern is described
using AADL, complemented by a machine-readable
description of applicable error scenarios, a behavioral
description of the nominal case, and a verifi cation plan
defi ned using custom tooling and AGREE / Resolute (tooling
developed by Collins Aerospace). These formalizations are
AADL implementations of existing patterns, and they equip
system architects with modeling techniques and verifi cation
methods that are adaptable to various domains.

Architecture-Supported Audit Processor
A collection of system viewpoints for certifi cation authorities
Performing a hazard analysis is a common way of
examining a system for safety or security issues. This eff ort
integrates a number of sources of system information—
system architecture, error behavior, Kansas State’s AWAS
technology, and more—into a set of dynamic reports. The
Architecture-Supported Audit Processor (ASAP) will allow
system analysts to query interesting portions of a system’s
architecture interactively, rather than read only what an
analysis format specifi es.

[Off -]Nominal Behavior
Unifi ed behavioral description
There are several ways to specify behavior in AADL,
depending on what is being specifi ed: (nominal) component
behavior, off -nominal (i.e., erroneous) behavior, or mode-
transition semantics. We produced a proposal to unify
behavior specifi cations, which will make the language
simpler and enable more powerful automated analyses.

Sam Procter, Peter Feiler,Dave Gluch, Aaron Greenhouse, Jerome Hugues, Lutz Wrage, Joe Seibel (info@sei.cmu.edu)
Kansas State University: John Hatcliff , Eugene Vasserman, Robby, Hari Thiagarajan, Jason Belt

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

PA6

Integrated Safety and Security Engineering for Mission-Critical Systems

Requirements
Validation

System
Architecture

Validation

Requirements
Engineering

Integration
Test

Integration
Build

Acceptance
Test

Deployment
Build

Unit
Test

Code
Development

System
Design

Build the
System

Build the
Assurance Case

Architecture
Modeling
Analysis &
Generation

Software
Architecture

Validation

Software
Architecture

Design

System
Test

Target
Build

Component
Software
Design

Design
Validation

We’re making it easier to
specify, design, and assure
critical systems that are safer
and more secure.

Safety and Security Across the System Development Lifecycle

AADL has been used in a variety of safety-critical domains, including medical devices, automotive components, and
military and commercial aviation.

16 RESEARCH REVIEW 2020

Principal Investigator

DR. SAM PROCTER
Senior Architecture
Researcher

Carnegie Mellon University
Software Engineering Institute

Critical systems must be both safe from inadvertent harm
and secure from malicious actors. However, safety and
security practices have historically evolved in isolation.
Safety-critical systems, such as aircraft and medical
devices, were long considered standalone systems
without security concerns. Security communities, on
the other hand, have focused on information security
and cybersecurity. Mechanisms such as partitioning,
redundancy, and encryption are often deployed solely
from a safety or security perspective, resulting in over-
provisioning and conflicts between mechanisms. Despite
the recognition that this disconnect is harmful, there is
limited understanding of the interactions between safety
and security. [Friedberg 2017]

To combat this lack of understanding, we are developing
an integrated safety and security engineering approach
based on system theory and supported by an AADL-based
workbench. This approach

•	 unifies safety and security analysis through a formalized
taxonomy that is used to drive system verification via
fault-injection and simulation

INTEGRATED SAFETY AND SECURITY ENGINEERING FOR
MISSION-CRITICAL SYSTEMS

•	 provides a design framework to combine safety and
security mechanisms into a more robust and resilient
system architecture through continuous analytic
verification

•	 ensures traceability by linking machine-readable
requirements to the tests that verify them and the system
elements that implement them

In the Joint Multi-Role Rotorcraft (JMR) program,
contractor teams are piloting Architecture-Centric
Virtual Integration Practice (ACVIP) as a key technology
on a mission-critical system architecture. Our ongoing
partnership with JMR provides an excellent transition
pathway for our research results and influences the Army’s
Future Vertical Lift (FVL) program.

The following individuals also provided key contributions
to this work:

•	 CMU SEI: Peter Feiler, Dave Gluch, Aaron Greenhouse,
Jerome Hugues, Lutz Wrage, and Joe Seibel

•	 Kansas State University: John Hatcliff, Eugene
Vasserman, Robby, Hari Thiagarajan, and Jason Belt

IN CONTEXT: THIS FY2018–20 PROJECT
•	 extends AADL with a standardized security-

documentation format, builds example safety and
security patterns into the OSATE toolbench, and uses
novel program-slicing technology developed by our
partners at Kansas State University

•	 aligns with the SEI’s technical objective to make
software trustworthy in construction, correct
in implementation, and resilient in the face of
operational uncertainties including known and yet-
unseen adversary capabilities

17RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Out of 1M+ SLOC, changes
should focus on only 24 classes

2040 Problematic Couplings

Select Objectives
• minimize problematic couplings
• minimize code changes
• maximize code quality
• …

>1M SLOC

By Relation Type By Target Type

Target Type PC Count
Unique

Targets

Class 363 15

Event 8 1

Method 334 51

Property 1335 77

2040 144

Calls
334

Writes
434

Uses Type
193Reads

1046

Inherits
33

Best solution:
Fitness = 33
Step 1: MoveStaticProperty (Duplicati.Server.Strings.Program.PortablemodeCommandDe-
scription, Duplicati.Server.Program)
Step 2: MoveClass (Duplicati.Library.AutoUpdater.AutoUpdateSettings)
Step 3: MoveClass (Duplicati.Library.Utility.WorkerThread<>)
Step 4: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 6: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 7: MoveClass (Duplicati.Server.Strings.Program)
Step 8: MoveClass (Duplicati.Server.Database.Backup)
Step 9: MoveClass (Duplicati.Library.Localization.Short.LC)
Step 10: MoveClass (Duplicati.Server.Database.Notification)
Step 11: MoveClass (Duplicati.Server.WebServer.IndexHtmlHandler)
Step 12: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 13: MoveClass (Duplicati.Server.Database.TempFile)
Step 14: MoveClass (Duplicati.Server.WebServer.BodyWriter)
Step 15: MoveClass (Duplicati.Library.Interface.CommandLineArgument)
Step 16: MoveInterface (Duplicati.Library.Interface.ICommandLineArgument)
Step 17: MoveClass (Duplicati.Server.EventPollNotify)
Step 18: MoveClass (Duplicati.Library.Utility.Utility)
Step 19: MoveClass (Duplicati.Library.Common.Platform)
Step 20: MoveClass (Duplicati.Server.LiveControls)
Step 21: MoveClass (Duplicati.Library.Interface.Strings.DataTypes)
Step 22: MoveClass (Duplicati.Library.Utility.Strings.Utility)
Step 23: MoveInterface (Duplicati.Server.Serialization.Interface.IFilter)
Step 24: MoveInterface (Duplicati.Library.Localization.ILocalizationService)
Step 25: MoveClass (Duplicati.Server.Database.Schedule)
Step 26: MoveInterface (Duplicati.Server.WebServer.RESTMethods.IRESTMethodPOST)
Step 27: MoveClass (Duplicati.Library.Utility.Sizeparser)
Step 28: MoveStaticMethod (Duplicati.Library.Utility.Strings.Sizeparser.InvalidSizeVal-
ueError, Duplicati.Library.Utility.Sizeparser)
Step 29: MoveStaticMethod (Duplicati.Library.Utility.Timeparser.ParseTimeSpan,
Duplicati.Server.Database.Connection)
Step 30: MoveClass (Duplicati.Library.Interface.UserInformationException)
Step 31: MoveClass (Duplicati.Library.Interface.Strings.CommandLineArgument)
Step 32: MoveClass (Duplicati.Server.UpdatePollThread)
Step 33: MoveClass (Duplicati.Library.AutoUpdater.UpdateInfo)
Step 34: MoveClass (Duplicati.Server.Strings.Server)
Step 35: MoveClass (Duplicati.Library.Common.IO.Util)
Step 36: MoveInterface (Duplicati.Library.Utility.IFilter)
Step 37: MoveStaticProperty (Duplicati.Library.AutoUpdater.UpdaterManager.InstalledBas-
eDir, Duplicati.Server.Program)
Step 38: MoveInterface (Duplicati.Library.Common.IO.ISystemIO)
Step 39: MoveStaticField (Duplicati.Library.AutoUpdater.UpdaterManager.BaseVersion,
Duplicati.Library.AutoUpdater.AutoUpdateSettings)
Step 40: MoveClass (Duplicati.Server.Serialization.SettingsCreator)

Property
1335

Class
363

Event
8

Method
334

Problem
To quickly deliver new capabilities and
take advantage of new technologies, DoD
needs the ability to effi ciently restructure
software for common scenarios like:

• migrating a capability to the cloud
• harvesting software for reuse
• containerizing software

One recent anecdote estimates the eff ort
to isolate a capability from the platform at
14,000 staff hours just for development.

Solution
Create an automated assistant that
rapidly refactors software to support
software isolation goals that enable
software evolution.

• Allows users to specify project-
specifi c goals.

• Uses genetic algorithms to recommend
refactorings.

• Navigates multiple, competing objectives.

intended Outcomes (FY19–21)
• Refactoring recommendations

outperform those based only on quality
metrics, reducing problematic couplings
by at least 75%.

• Our automation reduces the time to
restructure software to 1/3 of the time
compared to manual eff ort.

Read more about our vision:
J. Ivers, I. Ozkaya, R. L. Nord, C. Seifried,
Next Generation Automated Software Evolution:
Refactoring at Scale. 2020. 28th Joint European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE ‘20). ACM,
Virtual Event, USA.

James Ivers, Ipek Ozkaya, Robert Nord, Chris Seifried
Mario Benitez, Jared Frank, Carly Jones, Andrew Kotov, Reed Little, Craig Mazzotta, Scott Pavetti, Jeff Yackley

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A8

Untangling the Knot
Enabling Rapid Software Evolution

Automated refactoring can improve the
structure of existing software in 1/3 of the
time it takes to manually refactor.

Our prototype can help with
common evolution scenarios:

Scenario
Gather data to assess the diffi culty associated with
project-specifi c goals as input to funding decisions.

Maturity
Available now (TRL 4)

Expected Results
Enumeration of problematic couplings, their
locations, and types potentially impacted by
proposed change as data to inform cost estimates.

Scenario
Compare the diffi culty of diff erent refactoring
approaches.

Maturity
Available now (TRL 4)

Expected Results
Enumeration of problematic couplings, their
locations, and types potentially impacted by
proposed change as data
to inform cost estimates.

Scenario
Automatically refactor software to isolate
software and speed its evolution.

Maturity
Ready for pilot application in 3–6 months

Expected Results
Recommended refactorings that enable the
proposed change address multiple criteria.

Automated analysis identifi es
all problematic couplings

Specify a goal

Analysis reduces
to unique targets

Prototype uses a multi-objective genetic algorithm to
generate a set of Pareto optimal solutions (recommendations)

Select a solution that
addresses your context

Contact us at info@sei.cmu.edu if you
are interested in partnering with us.

18 RESEARCH REVIEW 2020

Principal Investigator

MR. JAMES IVERS
Principal Engineer

Carnegie Mellon University
Software Engineering Institute

CHRIS SEIFRIED
Associate Engineer

Carnegie Mellon University
Software Engineering Institute

CARLY JONES
Data Analytics Intern

Carnegie Mellon University
Software Engineering Institute

Software-reliant systems need to evolve over time to meet
new requirements and take advantage of new technology.
However, all too often the structure of software becomes
too complicated to allow rapid and cost-effective
improvements. This challenge is common in long-lived
DoD systems and not uncommon even in newer systems,
which makes isolating a collection of functionality for use
in a new context, or clean replacement by an improved
version, difficult. Software refactoring can facilitate such
changes, but can require tens of thousands of staff hours.

This project aims to use AI techniques to create
software engineering automation to recommend a set of
refactorings that isolates functionality from its tangle of
system dependencies. We aim to reduce the time required
for this kind of architecture refactoring by two-thirds.
In one DoD example, a contractor estimated 14 thousand
hours of software development work alone (excluding
integration and testing) to isolate a mission capability
from the underlying hardware platform. If successful,
our work would reduce the development time required
to less than 5 thousand hours.

UNTANGLING THE KNOT: ENABLING
RAPID SOFTWARE EVOLUTION

Our solution combines advances in search-based software
engineering with static code analysis and refactoring
knowledge. It is unique in its focus on mission-relevant
goals as opposed to improving general software metrics.
This goal is incorporated in genetic algorithms through
fitness functions that guide the search to solutions for
the project-specific goal. The search algorithm relies on a
representation derived from static code analysis and uses
formalizations of refactorings as operators to apply
during search.

This work has broad implications for moving existing
software to modern architectures and infrastructures,
such as service-based, microservice, cloud environments,
and containers. It also addresses a pervasive research
challenge in improving automated support for
architecture refactoring tasks.

IN CONTEXT: THIS FY2019–21 PROJECT
•	 builds on prior DoD line-funded research in software

architecture analysis, static code analysis, and
identifying technical debt

•	 aligns with the CMU SEI technical objective to make
software delivery timely so that the cadence of
acquisition, delivery, and fielding is responsive to and
anticipatory of the operational tempo of DoD warfighters

•	 addresses a widespread, recurring need in software
organizations: as requirements and technology are never
frozen in time, the need to adapt working software to
new contexts is likely to remain a common need across
many software systems

19RESEARCH REVIEW 2020

Codify Fully Integrated
CI/CD Practices
CMU SEI seeks to fully integrate continuous integration/

continuous delivery (CI/CD) process across the entire

acquisition lifecycle to give the DoD reduced cost, traceability

through the acquisition phases, and faster deployment of

incremental capability.

SECTION 3

RESEARCH REVIEW 2020

introduction
Cyber-Physical Systems (CPS) exhibit multiple
engineering, verifi cation and validation (V&V),
and testing challenges. In this project, we
aimed at reducing the time to get fi rst test
results by leveraging state-of-the-art system
and software engineering approaches.

TwinOps explored the interplay between
three core technologies:

• Model-Based Engineering (MBE): model-
based engineering relies on models as
fi rst-class abstraction of a system to
support engineering activities;

• DevOps: an organizational eff ort to support
continuous delivery of software through
a better coupling between (Dev)elopment
and (Op)erations activities;

• Digital Twins: an infrastructure to support
system monitoring and diagnosis in
real-time and enable continuous system
improvement.

Achievements
SEI delivers a ModDevOps exemplar

ModDevOps extends DevOps through
MBE and its V&V and code generation
capabilities. We demonstrate how
MBE enables rapid system prototyping
through a DevOps cycle.

SEI enhances analysis and testing process
for systems architects who build software-
intensive CPS with the TwinOps process

TwinOps builds on ModDevOps and
Digital Twins to collect data on a system
at runtime, and compare it to other
engineering artifacts: model simulation
and analysis. This comparison enables
rapid system diagnosis.

Jerome Hugues
Joe Yankel, Anton Hristosov, John Hudak

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A16

TwinOps
Digital Twins Meet DevOps

Approach
ModDevOps is defi ned as an abstract
process using OMG SysML. This captures
the key steps of the process as a
collection of use cases, block diagrams,
and activities.

 ⇒ Each project will adapt ModDevOps to
its own problem/solution spaces

TwinOps is an instance of ModDevOps
tailored for CPS. It combines

• AADL modeling for CPS architecture
• Simulink or C for the functional code
• Modelica for modeling the environment

The defi nition of the process as SysML
models guides engineering phases:

• Orchestrate modeling, code generation,
and compilation

• Continuous integration/continuous
deployment used to deploy the system
on the target, using Azure IoT cloud-
based solutions

Code generation from model enables
multiple scenarios: deployment on target
and digital twins to support various
operating scenarios.

ModDevOps adds Model-Based
early V&V and code generation
to DevOps automation.

Mod/Dev Ops/
Digital Twins

1

4

2

3

5 6

8 7

Assembly
• Simulation
• Instrumented platform
• Digital Twin

Run || Simulate

MonitorVirtual
integration

Modeling
architecture

and parts

Data Analysis

Code generation
run-time observers

Plan requirements
and properties

Digital Twins

Instrumented Platform

1. Plant (Modelica) 2. Controller (Simulink)

3. AADL

4. C

22 RESEARCH REVIEW 2020

Principal Investigator

DR. JEROME HUGUES
Senior Architecture
Researcher

Carnegie Mellon University
Software Engineering Institute

The engineering of cyber-physical systems (CPS)
requires a large set of expertise to capture the system
requirements and derive a correct solution. Key issues,
such as sensor timing jitter, bias, or imprecise component
characterization (in the functional, timing, or safety
viewpoints) are still only discovered during testing or after
the system has been deployed. Recent accidents involving
airliners and autonomous vehicles were in part caused by
imprecise characterizations of system behavior, causing a
significant and costly rework of the software. Model-based
engineering (MBE) and DevOps aim to efficiently deliver
software with increased quality. In this project, we have
proposed new ways to combine them.

Model-based engineering relies on models as first-class
artifacts to analyze, simulate, and ultimately generate
parts of a system. DevOps focuses on software engineering
activities, from early development to integration, and then
improvement through the monitoring of the system at
runtime. We claim these can be efficiently combined to
improve the engineering process of CPS.

TWINOPS: DIGITAL TWINS MEETS DEVOPS

LENS TwinOps proposes a process that unifies MBE,
digital twins, and DevOps practice in a uniform workflow.
TwinOps leverages several best practices in MBE and
DevOps for the engineering cyber-physical systems.
We illustrate our contribution using a digital twins case
study to illustrate TwinOps benefits, combining AADL
and Modelica models, and an IoT platform.

This project extends our line of research aimed to improve
both the state of the art and the state of practice of
designing and analyzing cyber-physical systems. Through
the Architectural Analysis Design Language (AADL) and
the Architecture Centric Virtual Integration Process
(ACVIP), we addressed both system and software concerns
(safety, security, performance, and code generation).
Analytical frameworks based on AADL evaluate system
integrability prior to the performance of actual integration
testing activities.

The following SEI researchers also provided key
contributions to this work: Anton Hristozov, John Hudak,
and Joe Yankel

IN CONTEXT: THIS FY2020 PROJECT
•	 builds on the foundations of digital twins and DevOps as

well as on prior research on AADL and the Open Source
AADL Tool Environment (OSATE)

•	 aligns with the CMU SEI technical objectives to
1) bring capabilities through software that make new
missions possible or improve the likelihood of success
of existing ones and to be trustworthy in construction
and implementation, and 2) be resilient in the face of
operational uncertainties, including known and yet-
unseen adversary capabilities

23RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Problem
Code often does not conform to designs, undermining
properties such as extensibility and composability. Late
detection increases cost and delays delivering capability
to the fi eld.

Solution
Use code analysis, software architecture knowledge,
and machine learning to automatically extract design as
implemented in the code and check conformance with the
intended design.

Intended Impact (FY20–22)
• Recommendations correctly identify nonconformance and

detect at the commit that introduces nonconformance.
• Automation enables early detection and allows remediation

before the violation gets “baked in” to the implementation.
• Detection of nonconformances allows program managers

to hold developers (contractor or organic) accountable.

Read more about our approach:
Nord (2020). Using Machine Learning to Detect Design Patterns,
SEI Blog.

Automated Design Conformance Checker

Code-Design Abstraction Gap

Robert Nord, Ben Cohen, Shane Ficorilli,
James Ivers, John Klein, Lena Pons, Chris Seifried

 info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

PA14

Automated Design Conformance during Continuous Integration

Approach
Our solution builds on code analysis, software architecture,
machine learning, and continuous integration. We ingest
a software repository and build a graph representation
of the code structure based on code analysis. We apply
machine learning to bridge the abstraction gap to extract
design constructs from the code. We build the design
fragments that comprise the as-implemented design. The as-
implemented design can then be checked for conformance
against the intended design at each code commit during
continuous integration.

The central research of this project uses machine learning to
extract features by recognizing abstractions commonly used
in software architecture in C++ source code.

Feature engineering is key to extracting design and
bridging the gap. Structural and behavioral features link
elements (e.g., classes) though relations (e.g., inheritance,
method call).

Our prototype advances the state of the art in applying
machine learning to software engineering tasks and aligns
with SEI strategic focus areas of timely and trustworthy
software by introducing automation into the development
and acquisition lifecycle.

Check
ConformanceCanonical Design

Knowledge

Non-Conformances
Intended

Design

buildCodeGraph

As-implemented
Design

predictDesignConstructs buildDesignFragment

Source
Code

pipelinestatic structures filter pipe

Code-design
abstraction gap

Extract Design
From Code

An automated design
conformance checker
integrated into a continuous
integration workfl ow will reduce
time to detect violations from
months or years to hours.

Source
Code

Intended
Design

Automated
Design

Conformance
Checker

Nonconformances

Implements

Leaf Class
Node
ClassRedirect in

family

24 RESEARCH REVIEW 2020

Principal Investigator

DR. ROBERT (ROD)
NORD
Principal Member of the
Technical Staff

Carnegie Mellon University
Software Engineering Institute

To reduce the time needed to field capabilities and to
lower lifecycle costs, the DoD has instructed program
managers to consider a modular open systems approach
(MOSA). MOSA promotes extensibility and composability
of platforms through technical standards such as the
Future Airborne Capability Environment (FACE). However,
a gap exists in verifying whether implemented capabilities
satisfy the design constraints of a reference architecture
such as FACE.

This project is creating an automated conformance
checker that can be integrated into the continuous
integration workflow to detect and report
nonconformances in hours instead of the months
or years that it takes to discover these problems
today. This technology will correctly identify design
nonconformances with precision greater than 90%.

Our solution builds on code analysis, software
architecture, machine learning, and continuous
integration. The central research of this project is using
machine learning to recognize abstractions commonly
used in software architecture in C++ source code. We
are focusing on detecting nonconformance with design

AUTOMATED DESIGN CONFORMANCE DURING
CONTINUOUS INTEGRATION

approaches that are essential to achieving the goals of
MOSA and common platforms: communication over
distributed interfaces, isolation and encapsulation of
functionality, and separation of concerns.

The conformance checker will benefit developers and
program managers. Developers can detect problems
continuously and near the time when they are introduced,
allowing faster and more economical realignment of
implementation and design. Program managers can
hold developers (contractor or organic) accountable for
delivering sustainable systems.

IN CONTEXT: THIS FY2020–22 PROJECT
•	 advances the state of the art in applying ML to software

engineering tasks

•	 aligns with CMU SEI’s strategic focus areas of timely and
trustworthy software by introducing automation into the
development and acquisition lifecycle

25RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Probability of No Edge

Randomized Variables

0 1

How can we control costs in software development and
sustainment? We are collaborating with other researchers to
apply causal learning to learn how.

DoD Problem
• DoD leadership needs to understand why software costs

so much.
• DoD program offi ces need to know where to intervene to

control software costs.

Why Causal Learning?
To reduce costs, the causes of an outcome (good or bad)
need to be considered. Correlations are insuffi cient in part
due to Simpson’s Paradox. For example, in the fi gure below,
if you did not segment your data by team (User Interface
[UI] and Database [DB]), you might conclude that increasing
domain experience reduces code quality (downward line);
however, within each team, it’s clear that the opposite is
true (two upward lines). Causal learning identifi es when
factors such as team membership explain away (or mediate)
correlations, and it works for much more complicated data
sets too.

Mike Konrad, Bob Stoddard, William Nichols, and Dave Zubrow
Michele Falce, Rhonda Brown, and Bryar Wassum

info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

PA7

Causal Models for Software Cost Prediction & Control (SCOPE)

Summary
Causal models off er better insight for program control
than models based on correlation. Knowing which factors
drive which program outcomes is essential to sustain the
warfi ghter by providing high-quality, secure software in a
timely and aff ordable manner.

For More Information
For more information, including causal analyses of other
data sets, see our SCOPE Project website.

Co
de

 Q
ua

lit
y

Domain Experience

UI Team

DB Team

Simpson’s Paradox as Applied to UI/DB Data

COCOMO® II Mini-Cost Estimation Model Consensus Graph for U.S. Army Software Sustainment

COCOMO® II – Eff ort Drivers
Size (SLOC), Team Cohesion, Platform
Volatility, Reliability, Storage Constraints, Time
Constraints, Product Complexity, Process
Maturity, Architecture/Risk Resolution (RESL)

COCOMO® II – Schedule Drivers
Size (SLOC), Platform Experience, Schedule
Constraint, and Eff ort

COSYSMO 3.0 – Eff ort Drivers
Size and Level of Service Requirements

After identifying which of over 40 factors
directly drive costs, we used Tetrad to generate
mini cost-estimation models that fi t well. (In
the fi gure, RESL_LS is the product of RESL and
Log_Size.)

A U.S. Army Sustainment data set was segmented
into (Superdomain, ACAT Level) pairs resulting in
fi ve sets of data to search and estimate. Splitting
addressed high fan-out for common causes, which
can lead to structures typical of Simpson’s Paradox.
A consensus graph (see above) was built from the
resulting fi ve searched and fi tted models.

For consensus estimation, the data from individual
searches was pooled with previously excluded data
because of missing values. The resulting 337 releases
were used to estimate the consensus graph using
Mplus with Bootstrap in estimation.

There was no cherry picking or re-do’s—this model
is a direct out-of-the-box estimation, achieving good
model fi t on the fi rst try.

Acknowledgments
Our thanks to Anandi Hira and Jim Alstad of USC; and
Cheryl Jones and her team at U.S. Army AFC-CCDC
and DASA-CE.

Our Solution
Our approach to causal inference is principled (i.e., no
cherry picking) and robust (to outliers). This approach is
especially useful for small samples—when the number of
cases is < 5-10 times the number of variables.
1. Inject null variables by appending an independently

randomized copy of each original variable.

2. Search (FGES or PC with default settings) with Bootstrap
to determine each edge’s Probability of No Edge (PNE)
across the search.

3. Set a threshold (10th percentile) among the edges
involving a null variable. (Of edges involving a null
variable, 90% have a PNE exceeding that threshold.)
Then drop the null variables but apply this same
threshold to determine which edges to keep among the
original variables.

Original Variables

Recent Results

Causal learning reduces costs.
Log_PM

RESL_LS

PVOL

Log_Size

1.064215.8070

0.11500.1937

-0.0654
STOR

TDEV

Months

SC

K_HW_Plat

HW_Var

K_Hrs_Total

ApprCnt

ServiceCnt

SW_Base

135.070

0.127

-0.002 0.147

5.150

0.436

0.113

-0.003

0.035

-0.419

-2.646

-1.561 -0.501

3.275

0.021

-7.912

-0.128

-0.087

26 RESEARCH REVIEW 2020

DR. WILLIAM NICHOLS
Senior Member of the
Technical Staff

Carnegie Mellon University
Software Engineering Institute

Principal Investigator

DR. MICHAEL KONRAD
Principal Researcher

Carnegie Mellon University
Software Engineering Institute

Correlation is not causation, and yet what we experience
often confuses the two. This extends to software
engineering research, where changes in project
stakeholders, requirements, architecture, solution
approach, personnel, and development platform and
practices are shown to correlate with improved project
outcomes; and yet, in reality, it might be only a few factors
that directly drive project cost and schedule. Research
in other fields (e.g., medicine) has shown causal models
are superior to traditional statistical models because, by
identifying truly causal factors, proactive control of a
system or situation is possible.

How would we build a causal model for software project
costs? Until recently, we did not have a way to obtain
or validate causal models from primarily observational
data, a challenge shared across nearly all systems and
software engineering research, where randomized control
trials are nearly impossible. The SCOPE project will apply
recent advances in causal modeling algorithms and tools
to project data to identify, measure, and test causality.
[Glymour 2019]

INTEGRATED CAUSAL MODEL FOR SOFTWARE COST
PREDICTION & CONTROL (SCOPE)

In this project, which concluded at the end of FY20, we
achieved the following:

•	 identified, from among 40 software engineering
and systems engineering factors, which are more likely
to improve program costs (“control knobs” for a
program dashboard)

•	 completed the first stitching (and estimation) of a software
engineering dataset, resulting in an integrated causal
model covering multiple domains and acquisition
category (ACAT) levels for determining the number of
software changes released

•	 identified cognitive fog and system behavior stability as
causes of program failure (from among 30 measures of
project complexity)

•	 concluded that communication misbehaviors increase
the amount of Common Vulnerabilities & Exposures
(CVE) remediation effort, not just immediately, but for a
longer time (open source projects)

•	 concluded that variation within programmers is
approximately the same as between programmers;
thus, rather than trying to hire the 10X programmer,
organizations would do better to invest in training,
processes, platforms and tools

•	 completed updates to Quantifying Uncertainty in Early
Lifecycle Costs (QUELCE) for improved cost estimation

•	 transitioned causal discovery capability to the
U.S. Army and University of Southern California cost
estimation researchers

•	 developed a methodology for applying causal discovery
to small datasets to improve robustness and reduce
cherry picking of results

Thus, an immediate benefit of this work is the
identification of causal factors that provide a basis for
controlling program costs. A longer-term benefit is the
use of causal models in negotiating software contracts,
designing policy and incentives, and informing could/
should cost and affordability efforts.

Key contributors to this project were team members
Rhonda Brown, Michele Falce, Madelyn Glymour,
Michael Konrad, Chris Miller, William Nichols,
Bob Stoddard, Bryar Wassum, and Dave Zubrow.

IN CONTEXT: THIS FY2018–20 PROJECT
•	 contributes to a longer-term research roadmap to build

causal models for the software developer, software
development team, organization, and acquirer

•	 aligns with the CMU SEI technical objective to make
software affordable such that the cost of acquisition and
operations, despite increased capability, is reduced and
more predictable

27RESEARCH REVIEW 2020

Improve Designed-In Resilience
CMU SEI seeks to increase the trustworthiness and

confidence in DoD platforms through practices that imbue

rigorous designed-in resilience properties.

SECTION 4

RESEARCH REVIEW 2020

Problem
Software vulnerabilities constitute a major threat to
DoD. Memory violations are among the most common
and most severe types of vulnerabilities. Spatial memory
vulnerabilities constitute 15% of CVEs in the NIST National
Vulnerability Database and 24% of critical-severity CVEs.

Solution
We developed and implemented a technique to
automatically repair source code to assure spatial memory
safety. Our tool inserts code to abort the program (or call
user-specifi ed error-handling code) immediately before
a memory violation would occur, preventing exploitation
by attackers.

The main technique that we use (fat pointers) has been
previously researched to repair code as part of the
compilation process. Our work is novel in applying it as a
source-code repair, which poses the diffi culty of translating
the repairs on the intermediate representation (IR) back to
source code. The pipeline is shown below:

Ensuring spatial memory safety with fat pointers
Our tool replaces raw pointers with fat pointers, which are
structs that include bounds information in addition to the
pointer itself. Before dereferencing a fat pointer, a bounds
check is performed. For each pointer type T*, we defi ne a
new struct:
struct FatPtr_T {
 T* rp; /* raw pointer */
 char* base; /* of mem region */
 size_t size; /* in bytes */
};

To preserve compatibility with third-party binary libraries,
we identify and refrain from fattening any pointers stored in
heap memory that is reachable by external binary code.
The C preprocessor can include or exclude pieces of C code
depending on the confi guration chosen at compile time. We
repair confi gurations separately and merge the results:

Results
The runtime overhead of our repair is around 50% on bzip2. Our DoD partners said this is too high for
many of their use cases. Can we signifi cantly reduce the overhead while still guaranteeing memory
safety? Probably not, but automated repair is valuable even if it fi xes only the likeliest bugs. To reduce
the overhead time, we added an option to insert bounds checks only for memory accesses that are
warned about by an external static analyzer. This reduced the overhead to 6% on bzip2.

Intended Impact
With further development, this technology can be used
by DoD to ensure memory safety as part of all software
projects with code written in memory-unsafe languages
(such as C and C++).

Will Klieber
Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

PA2

Automated Code Repair to Ensure Memory Safety

#define BUF_SIZE 256

char nondet_char();

int main() {

 char* p = malloc(BUF_SIZE);

 char c;

 while ((c = nondet_char()) != 0) {

 *p = c;

 p = p + 1;

 }

 return 0;

}

#include "fat_header.h"

#include "fat_stdlib.h"

#define BUF_SIZE 256

char nondet_char();

int main() {

 FatPtr_char p = fatmalloc_char(BUF_SIZE);

 char c;

 while ((c = nondet_char()) != 0) {

 *bound_check(p) = c;

 p = fatp_add(p, 1);

 }

 return 0;

}

Figure 1(a): Original Source Code Figure 1(b): Repaired Source Code

We developed an automated
technique to repair C source
code to eliminate memory-
safety vulnerabilities.

Source
Code

Abstract
Syntax Tree

(AST)

Intermediate
Representation (IR)map map

2. Record
 AST IR
 mapping

3. Perform analysis
 and repair at
 IR level

4. Map repaired IR
 back to AST

5. Map repaired AST
 back to source

1. Record
 Source AST
 mapping

h e l l o w o r l d

Original: p

p.rp
p.base
(p.base + p.size)Repaired:

Original:

void foo(

#ifdef USE_LONG

 long* x

#else

 int* x

#endif

);

Repaired Config 1:

void foo(

#ifdef USE_LONG

 FatPtr_long x

#else

 int* x

#endif

);

Repaired Config 2:

void foo(

#ifdef USE_LONG

 long* x

#else

 FatPtr_int x

#endif

);

Merged:

void foo(

#ifdef USE_LONG

 FatPtr_long x

#else

 FatPtr_int x

#endif

);

30 RESEARCH REVIEW 2020

Software vulnerabilities constitute a major threat to
the DoD, and memory violations are among the most
common and most severe types of vulnerabilities. In
recent years, spatial memory violations (e.g., buffer
overflows) constituted 24% of critical-severity Common
Vulnerabilities & Exposures in the NIST National
Vulnerability Database.

We have designed and implemented a technique for
automatically repairing all potential violations of spatial
memory safety in source code. For this, we do not need
to solve the challenging problem of distinguishing false
alarms from true vulnerabilities: we can simply apply a
repair to all potential memory-safety vulnerabilities, at a
cost of runtime overhead. If the runtime overhead turns
out to be too high, it can be reduced by limiting repairs to
those lines of code that are flagged as likely vulnerabilities
by an external static analyzer.

Principal Investigator

DR. WILL KLIEBER
Software Security Engineer

Carnegie Mellon University
Software Engineering Institute

AUTOMATED CODE REPAIR TO ENSURE MEMORY SAFETY

IN CONTEXT: THIS FY2018–20 PROJECT
•	 extends prior DoD line-funded research in automated

repair of code for integer overflow and the inference of
memory bounds

•	 is related to CMU SEI technical work into advancements
based on the Pharos static binary analysis framework,
vulnerability discovery, and code diversification to avoid
detection of vulnerabilities by adversaries

•	 aligns with the CMU SEI technical objective to make
software trustworthy in construction, correct in
implementation, and resilient in the face of operational
uncertainties including known and yet unseen adversary
capabilities

31RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Problem
Despite the DoD’s current use of Internet of Things (loT)
devices in supervisory control and data acquisition
(SCADA) systems, and its interest in using such devices in
tactical systems, adoption of loT has been slow, mainly
due to security concerns (e.g., reported vulnerabilities,
untrusted supply chains). At the same time, the DoD
recognizes the rapid pace at which the loT commercial
marketplace is evolving, and its urgency to embrace
commodity technologies to match its adversaries.

Solution
Move part of security enforcement to the network
to enable the integration of loT devices into DoD
systems, even if the loT devices are not fully trusted or
confi gurable, by creating an loT security platform that is
provably resilient to a collection of prescribed threats.

The “Software-Defi ned” Aspect
Use software-defi ned networking (SDN) and
network function virtualization (NFV) to create
a highly dynamic loT security platform.

The “High Assurance” Aspect
Use the open-source uber eXtensible Micro-
Hypervisor Framework (uberXMHF) to develop
secure extensions that enforce security properties of
critical elements of the software-defi ned IoT security
platform at runtime, on commodity platforms.

KalKi IoT Security Platform Features
• Has fl exible policies to defi ne states, transitions

and actions.
• Can protect from both cyber and kinetic attacks.
• Uses diff erent network defenses for each device and state.
• Adapts to device-specifi c vulnerabilities or limitations.

Sebastián Echeverría, Dr. Grace A. Lewis, Craig Mazzotta, Matthew McCormack, Marc Novakouski, Kyle O’Meara, Dr. Vyas Sekar, Dr. Amit Vasudevan
info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A3

KalKi: High Assurance Software-Defi ned IoT Security

The KalKi IoT Security Platform
enables the integration of IoT
devices into DoD systems, even
if the IoT devices are not fully
trusted or confi gurable.

Year 3 Highlights
1. The new version of the platform prototype using docker

containers showed signifi cant performance and scalability
improvements—threat reaction time is 3 seconds (90%
improvement) with support for up to 125 connected
devices (80% improvement).

2. User interface improvements to the
Dashboard UI signifi cantly reduce the time
and complexity of adding new IoT devices,
especially with respect to policy defi nition.

{EV1}

D1

{EV1} {EV2}
SS1 SS2

...

...
{EVn}
SSn

Policies

loT Controller

Control Node

μmbox
images

μmbox[SS1]

{EV2}

D2

Device Node

μmbox[SS2]

{EVn}

Dn
μmbox[SSn]

Data Node Router

GatewayAlert

Deploy
μmbox

...

...

1

Each loT Device D
senses/controls a set of
environment variables EV

Network traffic to/from each
device is tunneled through
μmboxes that implement the
desired network defense for
the current system state
 D1 μmbox[SS1] = Firewall
 D2 μmbox[SS2] = IPS, ...

loT Controller maintains a
shared statespace composed
of {EV} and security state (SS)
for each device
 SS= {Normal, Suspicious, Attack}

Changes in the shared
statespace are evaluated
by policies and may result
in the deployment of new
μmbox(es)

1

2
4

Security sensitive areas of the system are
protected by the uberXMHF extensible and
performant micro-hypervisor framework that
provides three key runtime capabilities:

a. isolation,
b. mediation,
c. attestation.

• The micro-hypervisor verifi es the integrity
of the μmbox images when they are loaded,
to ensure that each device has the correct
network defenses.

• Signing network packets ensures that they are
routed through the proper μmboxes for each
specifi c device in the Data Node.

3. Architecture changes enable the system to adapt to
diff erent network layouts and to be deployed on
low-cost hardware such as a Raspberry Pi.

4. We created a formal model of our security architecture
using the Alloy modeling language and successfully
validated its designed-in resilience properties.

5. We demonstrated that the architecture provides
intrinsic security against a broad spectrum of
attacks, including nine published attacks against
such software-defi ned architectures.

6. Kalki code is available as open-source on Github to invite
the community to test or adapt the platform.
KalKi platform:
https://github.com/SEI-TAS/kalki-node-setup/wiki ;
uberXMHF microhypervisor: https://uberxmhf.org/

32 RESEARCH REVIEW 2020

Principal Investigator

MR. SEBASTIAN
ECHEVERRIA
Member of the Technical
Staff/Senior Engineer

Carnegie Mellon University
Software Engineering Institute

Despite its use of Internet of Things (IoT) devices in
supervisory control and data acquisition (SCADA) systems
and its interest in using such devices in tactical systems,
the DoD has been slow to adopt IoT. In particular, the DoD
is reluctant to use commodity IoT devices, especially in
tactical systems, because of untrusted supply chains and
a growing amount of reported vulnerabilities in these
devices. At the same time, the DoD recognizes the rapid
pace at which the IoT commercial marketplace is evolving
and its urgency to embrace commodity technologies, to
match its adversaries.

INVESTIGATING THE FEASIBILITY OF HIGH-ASSURANCE
SOFTWARE-DEFINED IOT SECURITY

Our proposed solution moves part of security enforcement
to the network to enable the integration of IoT devices into
DoD systems, even if the IoT devices are not fully trusted
or configurable, by creating an IoT security infrastructure
that is provably resilient to a collection of prescribed
threats. It uses

•	 software-defined networking (SDN) and network
function virtualization (NFV) to create a highly dynamic
IoT security framework

•	 überSpark (a framework for building secure software
stacks) to incrementally develop and verify security
properties of elements of the software-defined IoT
security infrastructure [Vasudevan 2016]

IN CONTEXT: THIS FY2018–20 PROJECT
•	 builds on prior CMU SEI technical work in the mobile

communication and computing needs of edge users and
the authentication and authorization for IoT devices

•	 draws from our collaboration with CMU researchers
and sponsored engagements to reduce risk through
architecture analysis

•	 aligns with the CMU SEI technical objective to make
software trustworthy in construction, correct in
implementation, and resilient in the face of operational
uncertainties

33RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Today, almost all computers use multicore processors.
Unfortunately, satisfying hard real-time requirements
of software executing on such computers is challenging
because the timing depends on how resources in the
memory system are shared, and this information is typically
not publicly available. This project addresses this problem.

Multicore processors
Today, almost all computers use multicore processors.
These computers have many processor cores such that
one program can execute on one processor core and
another program can execute on another processor core
simultaneously (true parallelism). Typically, processor
cores share memory. In today’s memory system, a large
number of resources are used to make memory accesses
faster in general but, unfortunately, also make execution
time more unpredictable and dependent on execution of
other programs (because these other programs use shared
resources in the memory system). A simplifi ed view of a
multicore processor with the memory system is shown
in Figure 1.

Embedded real-time cyber-physical systems
These systems are pervasive in society in general, as shown
by the fact that 99% of all processors produced are used in
embedded systems. In many of these systems, computing
the correct result is not enough; it is also necessary to
compute the correct result at the right time.

Dr. Bjorn Andersson | info@sei.cmu.edu
Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

A9

Using All Processor Cores While Being Confi dent about Timing

These methods assume that
one knows the resources in the
memory system; unfortunately,
most chip vendors do not make
this information available.

Department of Defense (DoD)
Embedded real-time cyber-physical systems are pervasive in
the DoD. Because of the importance of achieving predictable
timing, it is common for practitioners to disable all processor
cores except one (hence making a multicore processor
behave as a single processor system). The importance of
timing was recently stressed by AMRDEC’s S3I director [1]:

“The trick there, when you’re processing fl ight critical
information, it has to be a deterministic environment,
meaning we know exactly where a piece of data
is going to be exactly when we need to—no room
for error,” [Jeff] Langhout says. “On a multi-core
processor there’s a lot of sharing going on across the
cores, so right now we’re not able to do that.”

Current solutions
The current state of the art makes solutions available for
managing contention for resources in the memory system
and for analyzing the impact of this contention on timing for
the case that we know the resources in the memory system.

Problem addressed
In this project, we have addressed the problem of
verifying timing of software executing on a multicore
processor assuming that we do not know the resources in
the memory system.

Results
We have developed a preliminary method—see Andersson,
B. et al., “Schedulability Analysis of Tasks with Co-Runner-
Dependent Execution Times,” ACM Transactions on
Embedded Computing Systems, 2018.
[1] ”Army still working on multi-core processor
for UH-60V,” May 2017, Available at https://www.
fl ightglobal.com/news/articles/army-still-working-
on-multi-core-processor-for-uh-6-436895/

Memory Bus (and Memory Controller)

Last-Level Cache (L3)

3

Core 1

L1/L2

Core 2

L1/L2

...

Core 3

L1/L2

DRAM
Bank 0

DRAM
Bank 1

DRAM
Bank 2

DRAM
Bank 3

DRAM
Bank B

Figure 1: A simplifi ed view of a multicore processor with shared memory

34 RESEARCH REVIEW 2020

Principal Investigator

DR. BJORN ANDERSSON
Member of the Technical
Staff/Principal Researcher

Carnegie Mellon University
Software Engineering Institute

Complex, cyber-physical DoD systems, such as aircraft,
depend on correct timing to properly and reliably execute
crucial sensing, computing, and actuation functions. Any
timing failure can have disastrous consequences—a large
unexpected delay translating sensor data into actuation
can cause system instability and loss of control. What’s
more, the complexity of today’s DoD systems has increased
the demand for use of multicore processors, because
unicore chips are either unavailable or not up to the task.
However, concerns about timing have led to the practice
of disabling all processor cores except one.

In this project, we aim to develop a solution to overcome
this obstacle. This is a difficult challenge, because timing
is determined by many shared resources in the memory
system (including cache, memory banks, and memory
bus) with complex arbitration mechanisms, some of
which are undocumented. The goal of our research is to
demonstrate multicore timing confidence by achieving
the following sub-objectives:

•	 Verification. Develop a method for timing verification
that does not depend directly on undocumented design
qualities and quantities.

USING ALL PROCESSOR CORES WHILE BEING
CONFIDENT ABOUT TIMING

•	 Parameter extraction. Develop a method for obtaining
values for parameters in the model of a software
system suited for the timing verification procedure
mentioned above.

•	 Configuration. Develop a configuration procedure (such
as assigning threads to processor cores or assigning
priorities to threads) that takes a model as input and
produces a configuration for which the verification will
succeed (if such a configuration exists).

IN CONTEXT: THIS FY2019–20 PROJECT
•	 builds on prior DoD line-funded research and sponsored

work on timing verification of undocumented multicore,
verifying distributed adaptive real-time systems,
high-confidence cyber-physical systems, and real-time
scheduling for multicore architectures

•	 aligns with the CMU SEI technical objective to bring
capabilities through software that make new missions
possible or improve the likelihood of success of
existing ones

35RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Fielding new technologies is essential to preserve
defense superiority. However, this is only possible if these
technologies can be validated for safety.

Challenges for Validation
• Increasingly complex systems
• Changing behavior at runtime (e.g., machine learning)
• Interactions with physical world (e.g., vehicles)

 - Must have correct value
 - Occur at right time (i.e., before crash)

Methods
Formal automatic verifi cation

• Scalable

 - Unverifi ed components
 - Monitored and enforced by verifi ed components
 - Verifi ed components protected from unverifi ed
components

• Verifi ed

 - Physics: verify reaction of physical model
(e.g., physical vehicle)

 - Logic: correct value with correct protection
 - Timing: occurs at the right time

• Protect verifi ed components

Results
Real-time Mixed-Trust Computation

• Verifi ed protection mechanism (micro-hypervisor:
uber XMHF)

• Timing verifi cation of combined trusted/untrusted
(mixed-trust)

• Physics verifi cation of enforcement

Dio DeNiz
Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

P10

Rapid Certifi able Trust

NEW RESULTS
Predictive Mixed-Trust Scheduling

Resilient Mixed-Trust Autonomy Scheduling

Preserve safety by verifying
only a small part of the system.
Assure trust by protecting the
verifi ed part.
Trust = Verifi ed + Protected

time

time

U
nt

ru
st

ed
V

M
Tr

us
te

d
H

yp
er

vi
so

r

Mixed-Trust Task

Minimum Risk Conditions and Minimum Risk Maneuver

Nominal
Operation

MRC
m

Final
MRC

l

MRC
n

Degraded Operation

NFM n1

Capabilities
fully available

Capabilities
not fully
available

NFM n1

NFM n2

NFM l1

NFM m2

NFM l2
Recovery

36 RESEARCH REVIEW 2020

Principal Investigator

DR. DIONISIO DE NIZ
Technical Director, Assuring
Cyber-Physical Systems

Carnegie Mellon University
Software Engineering Institute

The DoD recognizes the need to field new cyber-physical
systems (CPS) capabilities at an increasingly rapid
pace, which is why it maintains a number of initiatives
on rapid deployment. The demand for more rapid
deployment, however, creates a need for verification
techniques that can adapt to a faster deployment
cadence, especially for CPS that are too big for traditional
verification techniques and/or involve unpredictable
aspects, such as machine learning.

The goal of Rapid Certifiable Trust is to reduce the
deployment time of CPS by reducing the overall
development and assurance times. We will do this by
enabling the use of unverified commodity software
components (e.g., open source drone piloting software)
guarded by verified enforcers that guarantee the
containment of unsafe component behavior. We are
developing compositional verification techniques
to allow us to use multiple enforced components
minimizing and automatically removing conflicting
enforcer assumptions (e.g., reducing a plane’s airspeed
to avoid crash while increasing airspeed to prevent
stalling). These techniques will allow us to assure

RAPID CERTIFIABLE TRUST

full-scale systems, even if most of their functionality is
implemented by unverified components. Our objective is
to develop enforcement verification techniques that scale
to at least 10 enforced controllers.

IN CONTEXT: THIS FY19–21 PROJECT
•	 builds on line-funded work on Certifiable Distributed

Runtime Assurance, the goal of which was to facilitate
confident and rapid deployment of autonomous
distributed real-time systems (DRTS) operating in
uncertain and contested environments

•	 seeks to verify software-reliant systems that interact
with physical processes (e.g., aircraft) to which existing
verification technology does not scale

•	 will develop enforcing algorithms to identify unsafe
control actions and replace them with safe actions

•	 drones are used to validate our approach in the SEI’s
drone lab

•	 aligns with the CMU SEI technical objective to
make software trustworthy in construction, correct
in implementation, and resilient in the face of
operational uncertainties

•	 also aligns with the CMU SEI technical objective to
make software delivery timely so that the cadence of
acquisition, delivery, and fielding is responsive to and
anticipatory of the operational tempo of DoD warfighters

37RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Problem
Manual adjudication of static analysis meta-alerts
requires too much eff ort in short CI build and PR-
approval time frames to address many (if any) of them.
This problem is technically challenging. Developing a new
static analysis to precisely match fl aws in diff erent version
of Java or C++ code requires language-specifi c algorithms,
and the matching must be fast to work in a CI/CD system.
Also, when cascading is imprecise, mis-labeled data worsens
classifi er performance, and no eff ective systems exist that
use automated classifi ers for multiple static analysis tools in
a CI system.

Solution
The solution involves (1) a system that supports classifi cation
integrated with CI, and builds on the SCAIFE API and
implementation we developed for an extensible architecture
that supports classifi cation, and (2) precise cascading
algorithms for C++ code.

We (1) designed a model for integrated SCAIFE-CI systems,
including SCAIFE changes, performance measures, and
new classifi er features; (2) implemented parts of the design
(collaborators tested and reviewed subsequent versions);
(3) performed an experiment using diff -based (imprecise)
cascading and generated data for comparison to precise
cascading. Future plans are to develop a precise cascading
algorithm, improve classifi ers, and fully integrate them.

Dr. Lori Flynn
Ebonie McNeil, Matt Sisk, David Svoboda, Hasan Yasar, Joseph Yankel, David Shepard, and Shane Ficorilli

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

PA13

Rapid Adjudication of Static Analysis Meta-Alerts During Continuous Integration (CI)

FY20 Code and API Artifacts
• (Sep 2020) SCAIFE System v 1.2.2 is released with signifi cant

CI-SCAIFE integration progress; it includes fi ve APIs, an
HTML manual, SCALe, and the rest of the software system.
(collaborators)

• (Sep 2020) SCALe is released for SCALe v. r.6.2.2.2.A. (public)
• (Sep 2020) Five SCAIFE APIs are released. (collaborators,

public)
• (Jul 2020) SCAIFE System v 1.1.1 is released with API modules

and SCALe automation for CI-SCAIFE integration; the system
includes separable SCALe v. r.6.1.1.1.A, fi ve APIs, and an
HTML manual. (collaborators)

• (Mar 2020) SCAIFE System v 1.0.0 is released with containers
for CI-SCAIFE integration; the system includes a SCALe
separable module, new APIs, and an HTML manual.
(collaborators)

• (Feb 2020) SCAIFE API v 0.0.9-beta is published.
(collaborators, GitHub)

• (Oct 2019) SCAIFE System Beta VM v 2.1 is released with a
bill of materials. (collaborators)

FY20 Additional Artifacts
• (Sep 2020) Diff -based cascading experiment artifacts are

produced.
• (Sep 2020) A SCAIFE/SCALe HTML manual is released for

SCALe v r.7.0.0.0.A. (public, collaborators)
• (Jul 2020) “How to Instantiate SCAIFE API Calls” manual is

released. (public)
• (Apr 2020) “Open Dataset RC_Data for Classifi er Research” is

published. (public)
• (Mar 2020) “How to Test and Review the SCAIFE System v

1.0.0 Release” manual is published. (collaborators)
• (Feb 2020) “SCAIFE API Version 0.0.9-Beta: Reviewer

Roadmap” manual is published. (collaborators)

The team developed progressive versions of (1) a design
for CI-classifi er (CI-SCAIFE) integration and (2) an API
defi nition. The team also implemented a system for
modular classifi cation with features to enable CI-
integration and to measure performance.

Statistics Module
• Creates, runs, and stores classifiers
• Stores adaptive heuristic algorithms
• Stores automated hyperparameter
 optimization algorithms

DataHub Module
• Stores tool and alert information
• Stores test suite meta-data and
 meta-alert determinations
• Generates speculative
 mappings

Continuous Integration
(CI) Server

Registration-Orchestration Module
• Generates registration tokens
• Provides authentication and basic
authentication for other services
• Enables data and state coordination per
 CI Build between SCAIFE and the CI server

UI ModuleModifications for CI-SCAIFE integration
• Uploads tool output warnings
• Stores local projects
• Displays project and alert data

Prioritization Module
• Stores and evaluates
 prioritization formulas

NEW+Updated
API Calls

NEW
API Calls

NEW
API Calls

NEW
API Calls

NEW+Updated
API Calls

API Calls

NEW
API Calls

NEW+Updated
API Calls

Any static analysis tool can
instantiate APIs to become
a UI Module. For example

• SEI SCALe
• DHS SWAMP
• CCDC C5ISR SwAT

• Other aggregator tools
• Single static analysis tools

User
Interface

To overcome barriers to using
automated classifi ers during
CI, we designed a system
that enables classifi cation to
be used in CI builds, including
cascading adjudications.

38 RESEARCH REVIEW 2020

Principal Investigator

DR. LORI FLYNN
Senior Software Security
Engineer

Carnegie Mellon University
Software Engineering Institute

The DoD has directed a shift toward continuous
integration/continuous deployment (CI/CD) to maintain a
competitive edge. [McMurry 2018] It is currently standard
to run automated unit, integration, and stress tests during
CI builds, but static analysis (SA) tools are not always part
of builds because CI time frames are too short. However,
SA tools could detect code flaws that are cheaper to fix
earlier in the development process during CI builds.

It is increasingly common to use multiple SA tools and
combine their alerts to maximize the identification of
potential security flaws. [Delaitre et al. 2018] However,
current SA tools produce some false positive (FP) alerts
that require humans to inspect the code and manually
adjudicate true alerts vs. false. [Heckman 2011] We use
the term alertCondition to designate an alert from a
tool mapped to a member of an external taxonomy of
conditions (code flaws); for instance, CWE-190 from the
CWE taxonomy. If SA is used within CI, alertConditions
could stop a build and force human adjudication of true
positive (TP) vs. FP, which slows development but might
net an acceptable tradeoff if the slowdown is limited and/
or occasional. Furthermore, many previously adjudicated

RAPID ADJUDICATION OF STATIC ANALYSIS ALERTS
DURING CONTINUOUS INTEGRATION

FP alerts reappear each time an SA tool is run on a
subsequent code version.

To maintain development velocity, DoD organizations with
a continuous authority to operate (ATO) process have been
forced to make tradeoffs in their security development
testing and evaluation processes. For example, one
organization removed SA tools from the CI/CD process,
substituting a more expensive, less agile, and later manual
review. Another kept SA tools, but reduced their sensitivity
and analyzed only a small subset of the alerts, which
introduced false negatives. We take the latter approach as
a starting point, our goal being to increase efficiency by
automating this process.

This research project will use machine learning and
semantic analysis of data generated during CI/CD to reduce
the number of alerts requiring human adjudication by
50% in multiple SA tool deployments without slowing the
development process. More specifically, this project will

•	 improve the state of the art in reducing false positives
and integrating SA tools into CI/CD processes

•	 improve the state of the practice by delivering and
validating a prototype system that implements the
new algorithms and measures the effectiveness of the
techniques

IN CONTEXT: THIS FY20–21 PROJECT
•	 builds on a number of previous projects, including

“Rapid Construction of Accurate Automatic Alert
Handling System: Model & Prototype” and “Running in
the Cloud Without Breaking the Bank”

•	 aligns with the CMU SEI technical objective to make
software trustworthy in construction, correct in
implementation, and resilient in the face of operational
uncertainties, including known and yet-unseen
adversary capabilities

39RESEARCH REVIEW 2020

Equip the Cyber and
Information Operators with
Dominant Tradecraft
CMU SEI seeks to move the human operator “out of the

loop” by developing automation and autonomy in key cyber

tradecraft areas needed for agile, risk-informed cyber

response actions (for instance, malware analysis, forensics,

situational awareness, adversary assessment and incident

management).

SECTION 5

RESEARCH REVIEW 2020

The Problem:
Time and again we’ve seen humans making poor choices
while relying on (or ignoring) existing AI decision support
systems. These failures have led several systems to be
abandoned. Preliminary research indicates that a failure to
communicate model output understandably may contribute
to this problem, but it is currently unknown what the best
practices in AI system design are that would alleviate it.

The Solution:
If you want to know what humans will do, you usually need
to check what a human will do. Our goal is to collect data on
real human decision making and use that data to determine
appropriate best practices for AI system interface design
within a chosen domain.

The Approach:
We created the Human-AI Decision Evaluation System
(HADES). This test harness allows the collection of human
decision making data on an arbitrarily large set of possible
AI interfaces.

The optimal setting for collecting this data requires a human
to repeatedly make the same type of decision over and over
again, each time with slightly diff erent information available.
Such a task presented directly can quickly induce fatigue
and disinterest in a subject. However, this repeated decision
making is a common characteristic of games. The specifi c
information available to a player may be modifi ed from turn
to turn, but the core game mechanics rarely change.

The Innovation:
Integrate HADES test harness into game environments
to observe the eff ect of AI decision support systems on
gameplay outcomes.

Rotem Guttman
Distribution Statement A: Approved for Public Release;

Distribution is Unlimited

A15

Human Decision Making with AI Support

Interface Features Tested
Explainability Variables Contextual Variables

Input Visibility Underlying Model Accuracy

Selected Features Visibility Risk / Stakes of Decision

Threshold Types Cost of Choices

Threshold Adjustability Unmodelled Information

Confi dence Measure Visibility

HADES Capabilities
• Ability to simulate not-yet-implemented AI systems

 - Allows for data-driven system requirements development

• Slot-In capability for implemented AI systems

 - Useful for verifi cation and validation (V&V) use case

• Standards-Compliant RESTful interface
• Support for multiple experimental designs

Neo Security Lab: Student-developed game leveraging the HADES test harnessTo test human decision making,
you need to test humans
making decisions.

Special thanks to our collaborators, Dr. Jessica Hammer, Erik Harpstead, and the students of the CMU Entertainment
Technology Center and CMU’s OH!Lab, without which the testing of the HADES test harness would have been impossible.

42 RESEARCH REVIEW 2020

Principal Investigator

MR. ROTEM GUTTMAN
Cybersecurity Researcher

Carnegie Mellon University
Software Engineering Institute

The field of artificial intelligence (AI) is still in its infancy,
and vulnerabilities introduced by human-AI interactions
are not well understood. Recent failures of systems using
AI underscore this point. To best understand the (mis)
use of AI-enabled systems, we must be able to collect
data on how these systems will be used under a variety of
circumstances. However, the current research literature
is insufficient to provide actionable guidance to DoD
AI-enabled decision support system designers.

Two distinct bodies of research literature bear on this
problem: psychological research on human decision
making and how humans interpret and react to
uncertainty, and nascent research on explainable AI.
The literature on explainable AI, including the majority
of DARPA XAI projects, focuses on extracting information
from an AI model. However, recent research has
indicated that, for many individuals, this information is
incomprehensible for the purpose of decision making.
Extensive literature from the field of psychology and
decision sciences documents how humans process
information and make decisions in the face of uncertainty.
Yet, to date, there has been little work integrating these
disparate research threads.

HUMAN DECISION MAKING WITH AI SUPPORT

This project aims to create the Human-AI Decision
Evaluation System (HADES). HADES allows the
investigation and evaluation of AI-assisted human
decision making in a variety of simulation environments
by exposing a standards-compliant API interface. This is a
necessary first step to closing the gap in the literature.

Our test environment will focus on cybersecurity
decision making, a domain of critical interest to the
DoD. By aligning the test environment with those used in
operational settings, we can ensure operational validity.
Our criteria for success is an improvement in the average
test subject’s decision-making quality by at least 50% from
their baseline performance.

IN CONTEXT: THIS FY2020 PROJECT
•	 allows for the testing of AI systems across the development

cycle; critically, HADES allows the testing of proposed
systems prior to their development to drive requirement
setting, as well as verification and validation activities after
system development is complete.

•	 contributes best practices to reduce risk and increase
confidence in AI enabled mission support systems;
enables testing of new tactics, techniques, and procedures
(TTPs), and operations with AI-enabled mission support
systems; enables better training for human-AI teaming;
and enables testing of AI products for human-AI teaming
at all stages of the software lifecycle

•	 aligns with the CMU SEI technical objective to reduce
risk and increase confidence in cyber-enabled mission
elements by defining and documenting best practices
that align defense operators to mission metrics
and through the invention of innovative training
environments that allow mission rehearsal
for new tactics, techniques, and procedures (TTPs)
and operations

43RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Introduction
Conventional wisdom tells us that when a compiler
transforms a program from source code to executable, some
information is lost and cannot be recovered. For example,
variable names are not included in a compiled executable,
and have been assumed to be lost. Although state of the
art decompilers can recover the presence of variables, they
make attempt to recover their original names. Instead, they
name the variables v1, v2, and so on. This is unfortunate
since several studies have shown that programmers
carefully select variable names to make the program easier
to understand.

In this project, we showed that the conventional wisdom that
variable names cannot be recovered is wrong. Specifi cally,
we showed that variable names can largely be predicted
based on the context of code in which they are used and
accessed. We trained a neural network to predict variable
names on a large corpus of C source code that we collected
from GitHub.

Corpus
To generate our corpus, we scraped GitHub for projects
written in C. We then automatically built 164,632 binaries
from these projects and extracted 1,259,935 functions. For
each function, we generated a corpus entry that consisted
of the original source code with placeholder variables, as
shown in the code fi gure to the right. Each corpus entry also
included a mapping from placeholder variable to the original
identifi er in the source code and the decompiler’s identifi er.

Edward J. Schwartz , Bogdan Vasilescu
info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A1–3

Recovering Meaningful Variable Names in Decompiled Code

We can exactly predict 74.3%
of variable names in decompiled
executable code by training a
neural network on a large corpus
of C source code from GitHub.

Results

Experiment Accuracy
Overall 74.3
Function in Training 85.5
Function not in Training 35.3

An important consideration when evaluating a
solution based on machine learning such as ours is the
construction of the training and testing sets. Each binary
was randomly assigned to either the training or testing
set. As in real reverse-engineering scenarios, library
functions may be present in multiple binaries, and thus
may be present in both the training and testing sets. To
better understand the eff ect of this on our system, we
partitioned our testing set into the set of functions that
were also in the training set, and those that were not
in the training set. As demonstrated in the table below,
DIRE achieves 85.5% accuracy on functions it has been
trained on, compared to 74.3% overall. On functions that
it has not seen in training, it yields 35.3% accuracy.

Decompiled Original Recovered

void *file_mmap(int v1|fd|fd, int v2|size|size)
{
void *ptr|ret|buf;
ptr|ret|buf = mmap (0, v2|size|size, 1, 2, v1|fd|fd, 0);
if (ptr|ret|buf == (void *) -1)
{ perror ("mmap"); exit(1); }

return ptr|ret|buf;
}

Key

Plug-in for Hex-Rays decompiler showing recovered names.

44 RESEARCH REVIEW 2020

Highly skilled Department of Defense (DoD) malware
and vulnerability analysts must devote significant time
to manual tasks. For several years, the SEI has been
working on automated solutions to free up limited analyst
resources for more meaningful work. Three SEI research
threads highlight these efforts:

•	 recovering meaningful variable names in
decompiled code

•	 program reachability for vulnerability and
malware analysis

•	 improvements to object-oriented construct
recovery using OOAnalyzer

Recovering Meaningful Variable Names in
Decompiled Code

Understanding executable code is a challenge because
the compilation process removes much of the source code
information. Decompilers have been widely believed to
be unable to recover meaningful variable names, which
improve code understandability. To meet this challenge,
we developed the Decompiled Identifier Renaming Engine
(DIRE), a novel probabilistic technique for variable name

DR. EDWARD
SCHWARTZ
Member of the Technical
Staff/Senior Researcher

Carnegie Mellon University
Software Engineering Institute

ADVANCING CYBER OPERATOR TRADECRAFT THROUGH
AUTOMATED STATIC BINARY ANALYSIS

recovery that uses lexical and structural information.
We also developed a technique for generating corpora
for training and evaluating models of decompiled code
renaming, which we used to create a corpus of 164,632
unique x86-64 binaries generated from C projects mined
from Github. Surprisingly, our results show that DIRE
can predict variable names identical to the names in the
original source code up to 74.3% of the time.

Program Reachability for Vulnerability and
Malware Analysis

Manually coercing specific portions of executable code to
run presents a number of challenges, such as determining
the unknown input conditions required to trigger the
desired behavior, eliminating non-determinism, and
coping with missing dependencies complicate this
effort. We developed capabilities within the CMU SEI’s
Pharos binary code analysis framework to address these
challenges by identifying the specific program inputs and
environments needed to reach an execution of interest to
an analyst, which we call path finding. Finding paths in an
executable can be especially useful for bypassing runtime
anti-analysis checks in the code.

Improvements to Object-Oriented Construct Recovery
Using OOAnalyzer

Object-oriented programs pose many challenges for
reverse engineers and malware analysts. C++ classes are
complex and hard to analyze at the machine code level.
We’ve long sought to simplify the process of reverse
engineering object-oriented code by creating tools such
as OOAnalyzer, which automatically recovers C++-style
classes from executables. OOAnalyzer can export its
results to other reverse engineering frameworks, and we’ve
enhanced our Pharos Binary Analysis Framework to import
OOAnalyzer analysis into the recently released Ghidra
reverse engineering (SRE) tool suite. Ghidra provides the
analyst many useful reverse engineering services, including
disassembly, function partitioning, decompilation, and
various other types of program analyses.

Principal Investigator

MR. CORY COHEN
Member of the Technical
Staff/Principal Researcher

Carnegie Mellon University
Software Engineering Institute

IN CONTEXT: THIS FY2018–20 PROJECT
•	 extends DoD line-funded research and tool development

for vulnerability and binary code analysis

•	 contributes to development and transition of Pharos
binary code analysis framework

•	 aligns with the CMU SEI technical objective to make
software trustworthy in construction, correct in
implementation, and resilient in the face of operational
uncertainties including known and yet-unseen adversary
capabilities

Note: The illustrations on the following two pages describe
additional threads related to this research.

45RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Cory F Cohen, Edward J Schwartz
info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A1–2

Program Reachability for Vulnerability and Malware Analysis

2,184 test confi gurations found several successful
approaches, but none that consistently outperformed
the others, suggesting a needed hybrid approach.

Problem
Highly skilled Department of Defense (DoD)
malware and vulnerability analysts currently
spend signifi cant amounts of time manually
coercing specifi c portions of executable code
to run.

Solution
Automate the analysis of binary code,
choosing program inputs that will trigger
specifi c behavior to reduce the time that DoD
cyber personnel spend performing complex
software analysis.

Approach
Use model checking techniques to identify
these inputs and generate a simplifi ed
executable free of complex and convoluted
dependencies that can be analyzed by existing
code analysis tools.

Intended Impact (FY18–20)
Improve the DoD’s ability to measure and
monitor the advancement of path-reachability
research, especially as Ghidra decompilation
quality improve improves.

Pharos Function Summaries
SEI’s Pharos binary analysis
framework computes symbolic
function summaries by symbolically
executing binary code. This technique
converts these function summaries
into light-weight constraints. The
conversion uses a simple model of
memory that is very effi cient, but is
known to be incorrect in the presence
of interprocedural reasoning.

This approach is very fast, but its
imprecision results in a large number
of failures and a small number of
passing tests.

Test Case
Confi guration

Weakest Precondition
The weakest precondition algorithm
fi nds the weakest constraints on
the program input that are required
for the program to terminate
successfully. We force execution to
the desired program locations by
adding assertions. This technique
uses an array encoding of memory,
which is precise but expensive
to reason about. It also cannot
reason generally about loops.

This well-known approach is still the
benchmark to beat. It performs well
but has signifi cant defi ciencies when
analyzing code with loops.

Property Directed Reachability
Property Directed Reachability
(PDR) is a technique used in source
code software model checking. It
iteratively generates an inductive
invariant to prove that the target code
is unreachable, and it uses counter-
examples to refi ne the invariant, so
it can prove targets are unreachable
even when there are loops. It
uses the same array encoding of
memory as the previous technique.

This approach is very accurate but
has severe performance problems
in the binary domain due the
array memory model, which is not
necessary at the source code level.

Ghidra + Seahorn
This technique uses the NSA’s
Ghidra decompiler to raise the
executable code to a C-like language
rather than trying to express the
binary semantics directly. The
Seahorn software model checker
is then used to check reachability
using PDR. Because it operates
on a source code representation,
the encoding is very diff erent
than the other PDR approach.

PDR can be fast when using a source
code representation. Unfortunately,
decompilation can fail in myriad
ways, and this accounts for the
majority of failures for this approach.

Testing Method
A total of 91 test programs were compiled
for three optimization levels and two
architectures. Each test attempted to fi nd a
path from a starting location to a reachable
goal and an unreachable goal. If both
answers were correct, the test passed.
The test timeout was 30 minutes.

Optimized Arch Fail Timeout Pass Fail Timeout Pass Fail Timeout Pass Fail Timeout Pass

None 32-bit 55 2 34 16 2 73 3 29 59 21 7 63

None 64-bit 47 0 44 15 3 73 2 36 53 28 2 61

Medium 32-bit 40 0 51 9 3 79 1 13 77 12 7 72

Medium 64-bit 53 0 38 9 4 78 1 17 73 21 6 64

High 32-bit 50 0 41 6 2 83 1 12 78 18 7 66

High 64-bit 32 1 58 28 3 60 2 16 73 32 5 54

Total 257 3 266 83 17 446 10 123 413 132 34 380

Key

Best result

Second best result

Third best result

Worst result

46 RESEARCH REVIEW 2020

RESEARCH REVIEW 2020

Cory F Cohen
info@sei.cmu.edu

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

A1–1

Improvements to Object-Oriented Construct Recovery Using OOAnalyzer

OOAnalyzer was too slow to be
used on the programs that the
DoD needs it for the most.
It is now 50x faster and can
analyze large programs.

Problem
OOAnalyzer is the state of the art in automatically
recovering object-oriented abstractions to assist reverse
engineers in malware analysis, vulnerability analysis, and
software assurance. First published at the ACM Conference
on Computer and Communications Security, OOAnalyzer
uses novel techniques to reason in the presence of
uncertainty, which is unavoidable in this type of analysis.
This feature is heavily dependent on OOAnalyzer’s Prolog-
based implementation. Unfortunately, early versions of
OOAnalyzer were too slow to scale to the large and complex
programs used in the DoD.

OOAnalyzer Design Overview

Solution
• We worked with the developer of SWI Prolog to create

novel profi ling and debugging tools for Prolog.
• Many problems were simple to fi x once the problem was

identifi ed using new tools.
• Unfortunately, we identifi ed systemic issues related

to the Prolog tabling optimization.
• We avoided these issues with a new technique and are

working with the SWI developers on a general solution.

101
011

Forward
Reasoning

Hypothetical
Reasoning

Consistency
Checking

Prolog Reasoning Component

OOAnalyzer

Pharos Fact
Exporter

C++ Component

Input C++
Executable

Pharos Framework
OOAnalyzer Tool

Recovered Object
Oriented Abstractions

C++ Abstractions

INHERITS FROM

COMPOSITION

Decompiled C++ Source
Code Displayed in Ghidra

Program # Class # Method Time
(Old)

Time
(New)

Improv
ement

x3c 6 28 0:00:01 0:00:01 0.6x

Malware d597bee8 19 133 0:00:04 0:00:04 0.0x

Malware 0faaa3d3 21 135 0:00:05 0:00:07 -0.3x

optionparser 11 56 0:00:05 0:00:01 3.8x

MySQL connection.dll 43 166 0:00:07 0:00:04 0.7x

Malware cfa69ff f 39 182 0:00:08 0:00:09 -0.1x

light-pop3-smtp 44 290 0:00:21 0:00:14 0.5x

Malware 29be5a33 19 130 0:00:24 0:00:05 3.7x

CImg 29 220 0:00:52 0:00:11 3.6x

MySQL ha_example.dll 21 256 0:01:04 0:00:16 3.1x

Firefox 141 638 0:01:47 0:01:30 0.2x

PicoHttpD 95 656 0:03:38 0:00:37 4.9x

Malware 6098cb7c 55 339 0:03:54 0:00:15 14.5x

Malware 67b9be3c 400 2072 2:42:19 0:17:31 8.3x

MySQL cfg_editor.exe 190 1270 3:27:50 0:03:53 52.6x

MySQL libmysql.dll 200 1327 4:22:55 0:04:04 63.7x

Malware f101c05e 169 1601 4:25:34 0:07:17 35.5x

MySQL mysql.exe 202 1395 4:34:49 0:04:37 58.5x

MySQL upgrade.exe 333 2069 11:34:56 0:15:30 43.8x

Malware 628053dc 207 1920 11:46:38 0:14:16 48.5x

Malware deb6a7a1 283 2712 17:33:52 0:17:15 60.1x

Before and After Data

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000

H
ou

rs

Number of Methods

mysqld.exe

mysql.exe
D

ay
s

Number of Methods
Time (old) Time (new)

47RESEARCH REVIEW 2020

REFERENCES
[Amershi et al. 2019] Amershi, S.; Begel, A.; Bird, C.; Deline, R.; Gall, H.; Kamar, E.; Nagappan, N.;
Nushi, B.; and Zimmermann, T. Software Engineering for Machine Learning: A Case Study.
Pages 291-300. In Proceedings of the 41st International Conference on Software Engineering:
Software Engineering in Practice (ICSE-SEIP ‘19). Montreal, Canada. May 2019. URL:
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/amershi-icse-2019_Software_
Engineering_for_Machine_Learning.pdf.

[Delaitre et al. 2018] Delaitre, Aurelien M.; Stivalet, Bertrand C.; Black, Paul E.; Okun, Vadim;
Cohen, Terry S.; and Ribeiro, Athos. SATE V Report: Ten Years of Static Analysis Tool Expositions.
No. Special Publication (NIST SP)-500-326. 2018.

[Ghelani 2019] Ghelani, S. ML Models—Prototype to Production. Towards Data Science. October 20, 2019
[accessed]. https://towardsdatascience.com/ml-models-prototype-to-production-6bfe47973123.

[Glymour et al. 2019] Glymour, Clark; Zhang, Kun; and Spirtes, Peter. Review of causal discovery
methods based on graphical models. Frontiers in Genetics. Volume 10. June 4, 2019. Page 524.
https://www.frontiersin.org/articles/10.3389/fgene.2019.00524/full.

[Heckman 2011] Heckman, Sarah and Williams, Laurie. A systematic literature review of actionable
alert identification techniques for automated static code analysis. Information and Software Technology.
Volume 53. Number 4. Pages 363–387. April 2011.

[McMurray et al. 2018] McMurry, Robert D. and Roper, William B. Establishment of Air Force Program
Executive Officer (PEO) Digital. Memorandum for all AFPEOs. Washington, D.C., Department of the Air
Force. August 29, 2018. https://www.hanscomreps.org/wp-content/uploads/2018/09/20180829-PEO-
Digital-Establishment-Memo-Signed.pdf.

[Ransbotham et al. 2017] Ransbotham, S.; Kiron, D.; Gerbert, P.; and Reeves, M. Reshaping business with
artificial intelligence: Closing the gap between ambition and action. MIT Sloan Management Review.
Volume 59. Number 1. September 6, 2017.

[Sculley et al. 2015] Sculley, D.; Holt, G.; Golovin, D.; Davydov, E.; Phillips, T.; Ebner, D.; and
Dennison, D. Hidden Technical Debt in Machine Learning Systems. Pages 2503-2511. In Advances in
Neural Information Processing Systems. 2015. http://papers.nips.cc/paper/5656-hidden-technical-
debt-in-machine-learning-systems.pdf.

[Seligman 2016] Seligman, Lara. Interview: Air Force Chief Scientist Dr. Greg Zacharias. Defense
News. February 20, 2016. http://www.defensenews.com/story/defense/policy-budget/leaders/
interviews/2016/02/20/interview-air-force-chief-scientist-dr-greg-zacharias/80424570/.

[Vasudevan 2016] Vasudevan, Amit; Chaki, Sagar; Maniatis, Petros; Jia, Limin; & Datta, Anupam.
überspark: Enforcing verifiable object abstractions for automated compositional security analysis of a
hypervisor. 87-104. Proc. of the 25th USENIX Security Symposium. August 2016.

WE CAN HELP YOU MAKE A DIFFERENCE
The SEI works with the DoD, government, industry, and academia to help organizations in all
these sectors make a positive difference in a rapidly evolving world. How can we help you make a
difference? We encourage you to contact us at info@sei.cmu.edu. To learn more about how we work
with organizations in your sector, visit sei.cmu.edu/about/work-with-us/index.cfm.

48 RESEARCH REVIEW 2020

https://www.microsoft.com/en-us/research/uploads/prod/2019/03/amershi-icse-2019_Software_Engineering_for_Machine_Learning.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/amershi-icse-2019_Software_Engineering_for_Machine_Learning.pdf
https://towardsdatascience.com/ml-models-prototype-to-production-6bfe47973123
https://www.frontiersin.org/articles/10.3389/fgene.2019.00524/full
https://www.hanscomreps.org/wp-content/uploads/2018/09/20180829-PEO-Digital-Establishment-Memo-Signed.pdf
https://www.hanscomreps.org/wp-content/uploads/2018/09/20180829-PEO-Digital-Establishment-Memo-Signed.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf
http://www.defensenews.com/story/defense/policy-budget/leaders/interviews/2016/02/20/interview-air-force-chief-scientist-dr-greg-zacharias/80424570/
http://www.defensenews.com/story/defense/policy-budget/leaders/interviews/2016/02/20/interview-air-force-chief-scientist-dr-greg-zacharias/80424570/
mailto:info%40sei.cmu.edu?subject=
http://sei.cmu.edu/about/work-with-us/index.cfm

COPYRIGHT
© Copyright 2020 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8702-
15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally
funded research and development center.

The view, opinions, and/or findings contained in this material are those of the author(s) and should not be construed
as an official Government position, policy, or decision, unless designated by other documentation.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public release and unlimited distribution.
Please see Copyright notice for non-US Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in
written or electronic form without requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM20-1015

mailto:permission@sei.cmu.edu

©2020 Carnegie Mellon University | 5455 | 10.09.2020

About Us
The Software Engineering Institute (SEI) at Carnegie Mellon University
is a Federally Funded Research and Development Center (FFRDC)—
a nonprofit, public–private partnership that conducts research for the
United States government. One of only 10 FFRDCs sponsored by the
U.S. Department of Defense (DoD), the SEI conducts R&D in software
engineering, systems engineering, cybersecurity, and many other
areas of computing, working to introduce private-sector innovations
into government.

As the only FFRDC sponsored by the DoD that is also authorized to
work with organizations outside of the DoD, the SEI is unique.
We work with partners throughout the U.S. government, the private
sector, and academia. These partnerships enable us to take
innovations from concept to practice, closing the gap between
research and use.

Contact Us
Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

412.268.5800 | 888.201.4479
sei.cmu.edu | info@sei.cmu.edu

http://sei.cmu.edu
mailto:info%40sei.cmu.edu?subject=

	Leverage Emerging Technology Innovation in Computing, Architectures, and Algorithms
	Spiral AI/ML: Co-optimization for High-Performance, Data-Intensive Computing in Resource-Constrained Environments
	Quantum Advantage Evaluation Framework
	Video Summarization and Search
	A Series of Unlikely Events
	Train, but Verify: Towards Practical AI Robustness
	Characterizing and Detecting Mismatch in ML-Enabled Systems

	Formalize the Development, Integration, and Use of Models
	Integrated Safety and Security Engineering for Mission-Critical Systems
	Untangling the Knot: Enabling Rapid Software Evolution

	Codify Fully Integrated CI/CD Practices
	TwinOps: Digital Twins Meets DevOps
	Automated Design Conformance During Continuous Integration
	Integrated Causal Model for Software Cost Prediction & Control (SCOPE)

	Improve Designed-In Resilience
	Automated Code Repair to Ensure Memory Safety
	Investigating the Feasibility of High-Assurance Software-Defined IoT Security
	Using All Processor Cores While Being Confident about Timing
	Rapid Certifiable Trust
	Rapid Adjudication of Static Analysis Alerts During Continuous Integration

	Equip the Cyber and Information Operators with Dominant Tradecraft
	Human Decision Making with AI Support
	Advancing Cyber Operator Tradecraft through Automated Static Binary Analysis
	References

