

Software Engineering Institute

Carnegie Mellon University

4500 Fifth Avenue

Pittsburgh, PA 15213-2612

Phone: 412-268-5800

Toll-free: 1-888-201-4479

www.sei.cmu.edu

Toll-free: 1-888-201-4479

Getting Started with Service-
Oriented Architecture (SOA)
Terminology

This white paper presents basic terminology related to Service-

Oriented Architecture (SOA).1 The goal of the paper is to establish a

baseline of terms for service-oriented systems.

Service-Oriented Architecture and Service-Oriented Systems

Service-Oriented Architecture (SOA) is a way of designing, developing, deploy-

ing, and managing systems, in which

• Services provide reusable business functionality via well-defined interfaces.

• There is a clear separation between service interface and service implemen-

tation.

• Service consumers are built using functionality from available services.

• An SOA infrastructure enables discovery, composition, and invocation of

services.

• Protocols are predominantly, but not exclusively, message-based document

exchanges.

From a more technical point of view, SOA is an architectural style or design pa-

radigm; it is neither a system architecture nor a complete system. Systems that

are built based on the SOA characteristics listed above are called service-

oriented systems. A high-level view of a service-oriented system is presented in

Figure 1.

Services

Services are reusable components that represent business or operational tasks,

such as customer lookup, credit card validation, weather lookup, or line-of-sight

calculation. Reusable is a key element of this definition because it is what

enables the creation of new business and operational processes based on these

services. Services expose their capabilities via well-defined, standard service

interfaces. In a service-oriented environment, service interface definitions are

available in some form of service registry.

__
1
 The basic terminology has been extracted from the SEI course Service-Oriented Architec-

ture: Best Practices for Successful Adoption. For more information about the course, visit

http://www.sei.cmu.edu/training/p81.cfm.

Grace Lewis

September 2010

Service-Oriented

Architecture (SOA) is

a way of designing,

developing,

deploying, and

managing systems …

it is neither a system

architecture nor a

complete system.

1 | GETTING STARTED WITH SERVICE-ORIENTED ARCHITECTURE (SOA)

TERMINOLOGY

Figure 1: High-Level View of a Service-Oriented System

The service implementation corresponds to the actual system capabilities that

implement the service interface. Service implementations typically reside in en-

terprise information systems, such as ERP (Enterprise Resource Planning) sys-

tems; in legacy or new service code built specifically to provide service capabili-

ties; or in external systems. This separation between service interface and service

implementation is what allows platform independence—service consumers

access the services via standardized service interfaces that hide the complexity

and diversity of service implementations from consumers. The organization that

hosts a service implementation is referred to as the service provider.

SOA Infrastructure

An SOA infrastructure is the set of technologies that bind service consumers to

services through an agreed-upon communication model, such as one based on

Web Services, message-oriented middleware (MOM), publish/subscribe, or

Common Object Request Broker Architecture (CORBA). In addition, SOA in-

frastructures typically host infrastructure services that can be used by service

providers and service consumers to perform common tasks or satisfy quality

attribute requirements of the environment. Typical infrastructure services include

security, discovery, and data transformation.

Service Consumers

Service consumers are the clients for the functionality provided by the services.

Examples of service consumers are end-user applications, internal systems, ex-

ternal systems, and composite services. Consumers programmatically bind to

services (i.e., there is a piece of code running on the consumer side that invokes

a piece of code running on the provider side that corresponds to the service inter-

face).

End User

Application

Service
A

SOA Infrastructure

Enterprise
Information System

Portal

Internet

External
System

Service
B

Service
C

Service
D

Internal Users

DiscoverySecurity

Legacy or New
Service Code

Internal
System

Service Consumers

Infrastructure

Service

Implementation

Service Interfaces

External
Consumer

Data

Transformation

The elements of a

service-oriented

system are services,

service consumers,

and the SOA

infrastructure that

binds service

consumers to

services.

2 | GETTING STARTED WITH SERVICE-ORIENTED ARCHITECTURE (SOA)

TERMINOLOGY

Three Basic Operations to Support Service-Oriented Systems

The SOA infrastructure enables the three basic operations to support service-

oriented systems: service discovery, service composition, and service invocation.

Service Discovery

Service discovery is the mechanism by which service consumers become aware

of available services and their capabilities. Service discovery starts with a one-

time operation in which the service provider publishes its service in some form

of service registry. The form of registry can range from a simple web page to a

robust implementation with advanced query capabilities. The service registry is

then queried at design time by the developers of service consumers for services

with desired capabilities.

Even though there is much discussion about runtime discovery of services, the

reality is that current technologies do not support runtime discovery. The word

dynamic is often used to describe the binding between service consumers and

services. There are various degrees of dynamism. At the lower end of the spec-

trum is late binding of a proxy service to a specific service instance that depends

on user context or load-balancing policies. At the higher end of the spectrum is

fully dynamic binding in which service consumers are capable of querying ser-

vice registries at runtime, selecting the “best” service from the list of returned

services, and invoking the selected service—all at runtime, and without human

intervention. Late binding is a common, out-of-the-box feature of many com-

mercial and open-source SOA infrastructures. Fully dynamic binding, on the

other hand, requires semantically described services that use an ontology that is

shared between service consumers and service providers. Semantic Web Servic-

es represent an active area of research, as well as an unsolved problem that is not

yet ready for large-scale deployment.

Service Composition

Service composition is the mechanism by which services are combined to fulfill

a business or operational process. Service composition can be done fully within

the service consumer, but there is also considerable support for service composi-

tion within SOA infrastructures, specifically in Business Process Modeling

(BPM) infrastructure components. Typical BPM components enable a service

consumer developer to graphically compose services available in a registry and

then generate the appropriate code for the orchestration.

Service Invocation

Service invocation is the mechanism by which services are invoked by service

consumers at runtime. There are two basic invocation patterns: point-to-point

and mediated.

Even though there is

much discussion

about runtime

discovery of services,

the reality is that

current technologies

do not support

runtime discovery.

3 | GETTING STARTED WITH SERVICE-ORIENTED ARCHITECTURE (SOA)

TERMINOLOGY

In the point-to-point invocation pattern, service consumers directly invoke ser-

vices over a network. Point-to-point is most acceptable in environments that are

small in number of services and consumers, homogenous in implementation

technologies, and have low pace of change (business and technology).

In the mediated pattern, service consumers invoke services via a middleware

component such as an Enterprise Service Bus (ESB). The mediated pattern is

most acceptable in environments that are large in number of services and con-

sumers, technologically diverse and rapidly changing.

Web Services

Web Services is one technology pattern for implementing service-oriented sys-

tems, as shown in Figure 2. Because it is the most common technology pattern,

Web Services is often equated to SOA. Initially, Web Services were commonly

implemented using the WS* stack. More recently, an alternative called REpre-

sentational State Transfer (REST) has surfaced and is being widely adopted.

Figure 2: Web Services in the Context of Distributed Systems

WS* Web Services

In the simplest implementation of WS* Web Services

• Service interfaces are described using Web Services Description Language

(WSDL).

• Data is transmitted using SOAP over HTTP.

• There is a way for service consumers to discover services and obtain infor-

mation of how to bind to them, such as UDDI-based registries, database-

based service registries, web pages, or wikis.

In a traditional request-response implementation of WS* Web Services, a service

request is formed as an XML document according to the WSDL documentation

of the service and bundled in a SOAP message that is transported via HTTP. The

Distributed Systems

Service-Oriented
Systems

Web Services

Implemented using

Broker Architecture

Peer-to-Peer
Systems

WS*Web Services RESTful Web Services

….

Class of System

Architecture
Pattern

Technology
Pattern

Implementation CORBA

….

Because it is the

most common

technology pattern,

Web Services is often

equated to SOA.

Initially, Web Services

were commonly

implemented using

the WS* stack. In the

last several years, an

alternative called

REST has surfaced

and is being widely

adopted.

4 | GETTING STARTED WITH SERVICE-ORIENTED ARCHITECTURE (SOA)

TERMINOLOGY

service request is parsed and processed appropriately by the service provider,

which then sends back a service response that is also an XML document formed

according to the service’s WSDL document and processed in the same way.

In addition to these base standards, there are many additional standards that deal

with aspects such as service orchestration and choreography, as well as the sup-

port for cross-cutting quality attributes, as shown in Figure 3. Even though the

number changes frequently, there are currently over 100 WS* standards. In Fig-

ure 3, standards names in green mean that the standard is fairly stable, yellow-

orange means that it is becoming the standard, and red means that work on the

standard has stopped but the standard is still used.

Figure 3: WS* Protocol Stack

A problem in WS* Services is that most of the standards related to the cross-

cutting quality attributes are still emerging and even competing. This means that

standards for implementing higher levels or cross-cutting aspects of the protocol

stack require careful evaluation and selection.

Another aspect that is worth mentioning is that interoperability needs agreement

on both syntax and semantics. WS* Web Services enable syntactic interoperabil-

ity but do not guarantee semantic interoperability. Even though XML Schema

Orchestration and

Choreography
WSCL, WSCI, BPEL,

WS-Coordination,

BPML, BPSS

Discovery
UDDI

Description
WSDL

Message Format
SOAP

Encoding
XML

Transport
HTTP

S
e

cu
rity

Q
u

a
lity

 o
f S

e
rv

ice

T
ra

n
sa

ctio
n

s

M
a

n
a

g
e

m
e

n
t

Base

Stack

Adapted from “XML and Web Services Unleashed,” SAMS Publishing

Even though the

number changes

frequently, there are

currently

approximately 100

WS* standards.

5 | GETTING STARTED WITH SERVICE-ORIENTED ARCHITECTURE (SOA)

TERMINOLOGY

defines structure and data types and WSDL defines the service interfaces (opera-

tions, parameters, and return values), XML and WSDL do not define the mean-

ing of data and WSDL does not define what a service does.

From an implementation perspective, what all this means is that systems that

implement the WS* base stack are highly interoperable at the syntactic level, but

this is not a guarantee for systems that implement higher levels or cross-cutting

aspects of the protocol stack. Also, higher levels of interoperability such as se-

mantic interoperability have to be built into the system through the use of data

models or ontologies that describe the data that is being exchanged.

RESTful Web Services

REST provides a much simpler implementation of Web Services. In the REST

implementation of Web Services, every entity that can be identified, named, or

handled is considered a resource that is addressable by using a universal syntax

(i.e., Universal Resource Identifier—URI). Consumers communicate with ser-

vices using basic HTTP operations: GET, POST, PUT, and DELETE.

The main strength of RESTful Web Services is their simplicity: the request is a

simple HTTP operation and the response is plain XML text embedded in an

HTTP response. However, in REST there are no standards to support quality

attributes, other than the basics (e.g., transport-level security using HTTPS). This

means that REST may not be appropriate in environments with demanding quali-

ty attribute requirements.

WS* vs. REST

Web Services are commonly implemented using the WS* stack, but REST is

starting to be widely adopted. The decision to implement WS* or REST will

depend mainly on system quality attributes requirements. WS* implementation

has greater support for security, availability, transaction management, etc.

RESTful implementations, because of their simplicity, are more appropriate for

read-only capabilities, typical of mashups, where there are minimal quality

attribute requirements and concerns.

Enterprise Service Bus (ESB)

An Enterprise Service Bus (ESB) is a “middleware product that connects and

mediates all communications and interactions between service consumers and

services, usually based on standards.”2 Even though an ESB is not required to

implement a service-oriented system, it is useful in large, heterogeneous service-

oriented environments because it reduces the complexity of connecting services

__
2
 Definition from Wikipedia: http://en.wikipedia.org/wiki/Enterprise_service_bus

6 | GETTING STARTED WITH SERVICE-ORIENTED ARCHITECTURE (SOA)

TERMINOLOGY

with their consumers by implementing the VETRO pattern,3 as shown in Figure

4.

Figure 4: The VETRO Pattern

The implementation of the VETRO pattern is the way that the ESB manages as-

pects such as interface compatibility, service versioning, service routing, and

data transformations. In essence, an ESB handles many of the potential incompa-

tibilities between service consumers and services and provides elements to guar-

antee quality attribute requirements such as routing based on load balancing to

promote performance and availability.

Another important component of an ESB is the service registry. As mentioned

previously, the registry contains metadata about services that have been regis-

tered by their providers and are available for use. At a minimum, the registry

contains the specification (or contract) for using the service (e.g., the WSDL

document in the case of WS* Web Services). However, a registry can be confi-

gured to capture additional information that can be used in queries, such as

• Description

• Classification

• Usage history

• Test cases and test results

• Quality attribute metrics

• Additional documentation

A registry can also help keep track of service consumers. This is useful to under-

stand required service levels, facilitate change impact analysis, and notify con-

sumers of service changes.

__
3
 Source: Dave Chappell, Enterprise Service Bus (O’Reilly, 2004, ISBN 0-596-00675-6)

XML

Document

Verify that it is

a well-formed
XML
document and

conforms to a
particular

schema or
WSDL
document that

describes the
message.

Add

additional
data to the
message to

make it more
meaningful

and useful to
a target
service or

system

Convert

message to a
target format

Route

message
based on
content or

environment
conditions

Invoke the

target service
or interact in
some way with

the target
system

E
x
a

m
p

le

7 | GETTING STARTED WITH SERVICE-ORIENTED ARCHITECTURE (SOA)

TERMINOLOGY

Summary

SOA is currently the best option available for systems integration and the leve-

raging of legacy systems. Technologies to implement service-oriented systems

will certainly evolve to address emerging needs, but the concepts will remain. It

is important to have a common SOA terminology and create a baseline for ac-

tivities such as

• evaluating technologies in their context of use

• selecting technologies based on their relationship to business and operational

goals

• understanding situations in which a service-oriented approach is appropriate

and situations in which it is not

• analyzing service-oriented systems from the perspective of the service con-

sumer, the service provider, and the SOA infrastructure

• understanding which parts of the system will come “out-of-the box” and

which will have to be built

Resources

• Learn about SOA through SEI courses. For more information, visit

http://www.sei.cmu.edu/go/soaofferings/index.cfm.

• Explore SEI SOA reports, webinars, podcasts, and presentations. For more

information, visit http://www.sei.cmu.edu/library/abstracts/soa/.

• For information on SEI products and services, write to info@sei.cmu.edu.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE

MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES

NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER

INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR

MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE

MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY

KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark

holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document

for internal use is granted, provided the copyright and “No Warranty” statements are included with all

reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this

document for external and commercial use should be directed to permission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003

with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center. The Government of the United States has a royalty-free govern-

ment-purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to

have or permit others to do so, for government purposes pursuant to the copyright license under the clause

at 252.227-7013.

