
RESEARCH
REVIEW 2021

the collaboration effect

Automated Design Conformance During Continuous Integration ... 2
Principal Investigator Dr. Robert Nord

Combined Analysis for Source Code and Binary Code for Software Assurance ... 4
Principal Investigator Dr. Will Klieber

Knowing When You Don’t Know: AI Engineering in an Uncertain World .. 6
Principal Investigator Dr. Eric Heim

Multicore Confidence... 8
Principal Investigator Dr. Björn Andersson

Predicting Inference Degradation in Production ML Systems ... 10
Principal Investigator Dr. Grace Lewis

Projecting Quantum Computational Advantage versus Classical State of the Art ... 12
Principal Investigator Dr. Jason Larkin

Rapid Adjudication of Static Analysis Alerts During Continuous Integration ... 14
Principal Investigator Dr. Lori Flynn

Rapid Certifiable Trust .. 16
Principal Investigator Dr. Dionisio de Niz

README: A Learned Approach to Augmenting Software Documentation .. 18
Principal Investigator Dan DeCapria

Safety Analysis and Fault Detection Isolation and Recovery Synthesis (SAFIR) .. 20
Principal Investigator Dr. Jérôme Hugues

Safety Analysis and Towards Incremental and Compositionally Verifiable Security of CHIC-Centric Cyber Physical Systems 22
Principal Investigator Dr. Amit Vasudevan

Spiral/AIML: Co-optimization for High-Performance, Data-Intensive Computing in Resource-Constrained Environments 24
Principal Investigator Dr. Scott McMillan

Train, but Verify: Towards Practical AI Robustness... 26
Principal Investigator Dr. Nathan VanHoudnos

Untangling the Knot: Automating Software Isolation .. 28
Principal Investigator James Ivers

References .. 30

Contents

1

Inspire. Integrate. Innovate.

The Collaboration Effect
Collaboration is an essential characteristic of the Carnegie
Mellon University Software Engineering Institute (CMU
SEI). It lies at the heart of our work to establish and
advance software as a strategic advantage for national
defense and security. As a federally funded research
and development center (FFRDC) sponsored by the
Under Secretary of Defense, Research and Engineering
(USD(R&E)), collaboration ties together the research,
development, piloting, transitioning, and policy input we
conduct for the benefit of our sponsor and customers.

Collaborative interactions inspire new ideas that we
integrate with our evolving research agenda to innovate
new solutions. We call this process “the collaboration effect.”
This year’s CMU SEI Research Review highlights the ways in
which the collaboration effect advances the state of the art
and successfully transitions these advances into practice.

The collaboration effect rests on three main touchpoints:
the activities of study, make, and transition. These activities
enable many connections that intertwine as we work with
the Department of Defense (DoD), government agencies,
academia, and industry to integrate our strategic areas of
work in software engineering, cybersecurity, and artificial
intelligence (AI). As we study and make, we iterate with
collaborators on R&D and pilots. This work leads toward
transition—often of robust, proven tools and techniques,
sometimes in the form of expert advice that informs
improved policy. Our work also produces artifacts to
advance the state of the art and practice for software, such
as technical articles, reports, and prototype software tools.

This book provides insights into research in our portfolio
of public research projects for fiscal 2021 on behalf of our
DoD sponsor and presented at the 2021 CMU SEI Research
Review. In distribution parlance, these projects are
labeled “Distribution A,” which indicates that they may be
shared openly to anyone without restriction. The projects
highlighted include recently concluded work and work

that continues in our research pipeline to study, make,
and transition results to the benefit of DoD, the USG,
academia, and the private sector.

In the following pages, we take on the enduring
challenges facing the DoD. Our decades-long engagement
has informed our deep and nuanced understanding of
the challenges faced across software, cyber, and artificial
intelligence (AI). Our research springs from the DoD’s
need for software innovation and cybersecurity that
continually evolves in support of its intensifying mission.

The DoD needs its software-enabled systems to

• bring capabilities that make new missions possible or
improve the likelihood of success of existing ones

• be timely to enable the DoD to field new software-enabled
systems and upgrades faster than our adversaries

• be trustworthy in construction and implementation
and resilient in the face of operational uncertainties
including known and yet-unseen adversary capabilities

• be affordable such that the cost of acquisition and
operations, despite increased capability, is reduced
and predictable and provides a cost advantage over
our adversaries

Those requirements drive all CMU SEI work, whether
for USD(R&E), DoD programs, federal civilian agencies,
or industry.

I hope you enjoy reading about CMU SEI’s fiscal 2021
research efforts, and that the following pages demonstrate
the pride we take in this work. We stand by to work with
you to help you make a difference, and we encourage you
to contact us at info@sei.cmu.edu.

— TOM LONGSTAFF
 Chief Technology Officer,
 Carnegie Mellon University Software Engineering Institute

32

SEI COLLABORATORS

JAMES IVERS
Principal Engineer

Carnegie Mellon University
Software Engineering Institute

LENA PONS
Software Architecture
and AI Researcher

Carnegie Mellon University
Software Engineering Institute

CHRIS SEIFRIED
Associate Engineer

Carnegie Mellon University
Software Engineering Institute

JOHN KLEIN
Principal Member of the
Technical Staff

Carnegie Mellon University
Software Engineering Institute

Software architecture enables our ability to innovate
through extensible design, which provides for future
growth in capability that is affordable and timely. To
reduce the time needed to field capabilities and to lower
lifecycle costs, the DoD has instructed program managers
to consider a modular open systems approach (MOSA).
MOSA promotes extensibility through technical standards
such as the Future Airborne Capability Environment
(FACE). However, a gap exists in verifying whether
implemented capabilities satisfy the design constraints of
a reference architecture such as FACE.

This project is creating an automated conformance checker
that can be integrated into the continuous integration
workflow to detect and report nonconformances in hours
instead of the months or years it takes to discover these
problems today. This technology will correctly identify
design nonconformances with precision greater than 90%.

The central research of this project is recognizing
abstractions commonly used in software architecture
in C++ source code. Extracting design from code is
hard because there are few indications of intent in the
code and because implementations show significant
variations. We see potential in applying code analysis,
software architecture knowledge, and machine learning
to extract design as implemented in the code and
check conformance with the intended design. We are
focusing on detecting nonconformance with architecture
communication styles that are essential to achieving the
goals of MOSA.

Developers can detect problems
continuously and near the time they
are introduced, allowing faster and
more economical realignment of
implementation and design.
The conformance checker will benefit developers and
program managers. Developers can detect problems
continuously and near the time they are introduced,

allowing faster and more economical realignment of
implementation and design. Program managers can
hold developers (contractor or organic) accountable for
delivering sustainable systems.

IN CONTEXT
This FY2020–22 project

• advances the state of the art in applying machine
learning (ML) to software engineering tasks

• aligns with SEI strategic focus areas of timely and
trustworthy software by introducing automation into
the development and acquisition lifecycle

Fig 1. Prototype Design Conformance Checker: The approach builds on code analysis, software architecture, and machine learning.

Automated Design
Conformance
During Continuous
Integration

Principal Investigator
DR. ROBERT NORD
Principal Member of the Technical Staff

Extract Design From Code

Automated Design Conformance Checker

buildCodeGraph

As-Implemented
Design

Check
ConformanceCanonical Design

Knowledge

Non-Conformances

predictDesignConstructs buildDesignFragment

Source
Code

Intended
Design

54

Many DoD entities need software assurance for both
source code and binary code, as well as mixed systems
(e.g., source code plus binary libraries). While there are
many existing highly capable tools for static analysis of
source code, tools for software assurance of binaries are
fewer and much more limited. The objective of this line of
work is to evaluate the feasibility of decompiling binaries
for the purpose of (1) static analysis and (2) localized
repairs to functions of the binary. More specifically,
we aim to (1) develop a tool for determining whether
individual functions have been correctly decompiled, (2)
measure what percentage of functions are decompiled
correctly on typical real-world binary code, and (3)
measure how close static analysis on decompiled code
approximates static analysis on the original source code.

We adapt an existing open-source decompiler (in
particular, Ghidra) to produce decompiled code suitable
for static analysis and/or repair, and we evaluate it with
real-world (optimized) binary files. This project lays the
groundwork for further work (including a follow-on
FY22 project) to (1) enable the DoD to more accurately
perform software assurance for projects that include
binary components and (2) develop a framework for
making localized repairs (either manual or automated) to
functions of a binary library or executable.

This line of work, if successful,
will enable the DoD to find and
fix potential vulnerabilities in
binary code that might otherwise
be cost prohibitive to investigate
or repair, thereby increasing the
trustworthiness of fielded software
This line of work, if successful, will enable the DoD to
find and fix potential vulnerabilities in binary code that
might otherwise be cost prohibitive to investigate or repair,
thereby increasing the trustworthiness of fielded software.

Combined Analysis
for Source Code
and Binary Code for
Software Assurance

Principal Investigator
DR. WILL KLIEBER
Researcher

Our collaborators and interested transition partners at
the DoD have binaries for which software assurance is
desired; they will help us to evaluate and improve our
tool, and they will be able to benefit from using the tool in
practice when it is ready.

IN CONTEXT
This FY2021 project

• builds on DoD line-funded research on automated
repair of code for integer overflow, inference of
memory bounds, and automated code repair to ensure
memory safety

• aligns with the CMU SEI technical objective to make
software trustworthy in construction, correct in
implementation, and resilient in the face of operational
uncertainties, including known and yet-unseen
adversary capabilities

Fig 2. Envisioned Pipeline for Analysis and Repair of a Source-and-Binary Project

SEI COLLABORATORS

EXTERNAL COLLABORATORS

DR. RUBEN MARTINS
Systems Scientist, Computer
Science Department

Carnegie Mellon University

DAVID SVOBODA
Software Security Engineer

Carnegie Mellon University
Software Engineering Institute

76

Knowing When
You Don’t Know:
AI Engineering in
an Uncertain World

Principal Investigator
DR. ERIC HEIM
Senior ML Researcher

The DoD is increasingly seeking to deploy AI systems for
mission-critical tasks. Modern AI systems most commonly
employ machine learning (ML) models to make important,
domain-relevant inferences. However, due in part to
uncertainty, state-of-the-art ML models can produce
inaccurate inferences in scenarios where humans would
reasonably expect high accuracy. Furthermore, many
commonly used models do not provide accurate estimates
about when they are uncertain about their predictions.
Consequently, AI system components downstream from
an ML model, or humans using the model’s output to
complete a task, must reason with incorrect inferences
that they expect to be correct. Motivated by this gap, this
project aims to accomplish the following objectives:

• Develop new techniques, and utilize existing ones, to
give ML models the ability to express when they are
likely to be wrong without drastically increasing the
computational burden, requiring significantly more
training data, or sacrificing accuracy.

• Develop techniques to detect the cause of uncertainty,
learning algorithms that allow ML models to be
improved after the cause of uncertainty is determined,
and methods for reasoning in the presence of
uncertainty without explicit retraining.

• Incorporate uncertainty modeling and methods to
increase certainty into the ML models of government
organizations.

Our work seeks to realize three overarching benefits.
First, ML models in DoD AI systems will be made more
transparent, resulting in safer, more reliable use of AI in
mission-critical applications. Second, ML models will be
more quickly and efficiently updated to adapt to dynamic
changes in operational deployment environments. Third,
we will make adoption of AI possible for missions where AI
is currently deemed too unreliable or opaque to be used.

Our SEI team of Eric Heim, John Kirchenbauer, Jon
Helland, and Jake Oaks brings expertise in the science and
engineering of AI systems, human-computer interaction,
enterprise-level infrastructures, and perspectives
informed by a collective 50 years of experience leading

7Knowing When You Don’t Know
© 2021 Carnegie Mellon University

[DISTRIBUTION STATEMENT A] This material has been approved for public release
and unlimited distribution.

Research Review 2021

Quantifying Uncertainty: A Key Component for Informative and Robust AI Systems

Confidence
≥

0.5

Confidence
<

0.5

If Friendly Truck
is detected

Mark Position of
Friendly Truck

on Map

?

Mark Position of
Unknown Vehicle

on Map

Maneuver Robot
to gain confidence

By allowing high-level reasoning to be
informed by predictive uncertainty, AI

systems can be more robust to failures
caused by unconfident predictions.

and conducting projects for both government and
industry. Our CMU collaborators Dr. Zachary Lipton
and Dr. Aarti Singh bring expertise in monitoring and
improving ML models in the presence of uncertainty.
They will provide important insight and graduate student
support in producing high-quality research on topics
related to detecting model uncertainty and mitigating its
effects on the quality of model inference.

IN CONTEXT
This FY2021 project

• builds on DoD line-funded research, including graph
algorithms and future architectures, big learning
benchmarks; automated code generation for future-
compatible high-performance graph libraries; data
validation for large-scale analytics; and events,
relationships, and script learning for situational
awareness

• aligns with the CMU SEI technical objective to be timely
so that the cadence of acquisition, delivery, and fielding
is responsive to and anticipatory of the operational
tempo of DoD warfighters and that the DoD is able to
field these new software-enabled systems and their
upgrades faster than our adversaries

SEI COLLABORATORS

JON HELLAND
Machine Learning Researcher

Carnegie Mellon University
Software Engineering Institute

JACOB OAKS
Student Intern

Carnegie Mellon University
Software Engineering Institute

ZACHARY LIPTON
Assistant Professor
Machine Learning Department

Carnegie Mellon University

JOHN KIRCHENBAUER
Machine Learning Engineer

Carnegie Mellon University
Software Engineering Institute

AARTI SINGH
Associate Professor
Machine Learning Department

Carnegie Mellon University

EXTERNAL COLLABORATORS
Fig 3. Quantifying Uncertainty: A Key Component for Informative and Robust AI Systems

98

Complex, cyber-physical DoD systems, such as aircraft,
depend on correct timing to properly and reliably execute
crucial sensing, computing, and actuation functions. Any
timing failure can have disastrous consequences—an
expected delay translating sensor data into actuation can
cause system instability and loss of control. What’s more,
the complexity of today’s DoD systems has increased the
demand for use of multicore processors because unicore
chips are either unavailable or not up to the task. However,
concerns about timing have led to the practice of disabling
all processor cores except one.

Any timing failure can have
disastrous consequences—an
expected delay translating sensor
data into actuation can cause
system instability and loss of control.
In this project, we aim to develop a solution to overcome
this obstacle. This is a difficult challenge, because timing
is determined by many shared resources in the memory
system (including cache, memory banks, memory bus)
with complex arbitration mechanisms, some of which are
undocumented. The goal of our research is to demonstrate
multicore timing confidence by achieving the following
sub-objectives:

• Verification. Develop a method for timing verification
that does not depend directly on undocumented design
qualities and quantities.

• Parameter extraction. Develop a method for obtaining
values for parameters in the model of a software
system suited for the timing verification procedure
mentioned above.

• Configuration. Develop a configuration procedure
(such as assigning threads to processor cores or
assigning priorities to threads) that takes a model as
input and produces a configuration for which the
verification will succeed (if such a configuration exists).

Multicore Confidence

Principal Investigator
DR. BJÖRN ANDERSSON
Principal Researcher

IN CONTEXT
This FY2019 project

• builds on prior DoD line-funded research
and sponsored work on timing verification of
undocumented multicore, verifying distributed
adaptive real-time systems, high-confidence cyber-
physical systems, and real-time scheduling for
multicore architectures

• aligns with the CMU SEI technical objective to bring
capabilities through software that make new missions
possible or improve the likelihood of success of
existing ones

EXTERNAL COLLABORATORS

SEI COLLABORATORS

HYOSEUNG KIM
Associate Professor,
Department of Electrical and
Computer Engineering

University of California, Riverside

BILL ANDERSON
Sr. Member of Technical Staff

Carnegie Mellon University
Software Engineering Institute

JOHN LEHOCZKY
Thomas Lord University
Professor of Statistics &
Data Science, Department of
Statistics & Data Science

Carnegie Mellon University

DR. DIONISIO DE NIZ
Technical Director, Assuring
Cyber-Physical Systems

Carnegie Mellon University
Software Engineering Institute

MARK KLEIN
Principal Technical Advisor

Carnegie Mellon University
Software Engineering Institute

ANTON HRISTOZOV
Software Engineer

Carnegie Mellon University
Software Engineering Institute

Photo U.S. Army

1110

After machine learning (ML) systems are deployed, their
models need to be retrained to account for differences
between characteristics of training and production data.
These differences over time lead to inference degradation—
negative changes in the quality of ML inferences—which
eventually reduces the trustworthiness of systems [DSB
2016; Gil 2019]. In DoD systems, failure to recognize
inference degradation can lead to costly reengineering,
system decommissioning, and misinformed decisions.

In DoD systems, failure to
recognize inference degradation
can lead to costly reengineering,
system decommissioning, and
misinformed decisions.
Ideally, inference degradation would be quickly and
reliably identified in production ML systems, allowing
appropriate action to be taken (e.g., retraining, cautioning
users, or taking a capability offline). The state of
engineering practice in industry relies on periodic
retraining and model redeployment strategies to evade
data drift, without monitoring inference degradation.
Without an analytic basis for the retraining interval, this
frequent retraining strategy risks correcting for inference
degradation too slowly (i.e., bad inference may be the
basis for actions) or redeploying models too frequently
(overconsuming potentially limited bandwidth if deployed
in tactical scenarios and increasing the risk of taking a
capability offline due to redeployment errors) [Diethe
2018; Manning 2018; and Tarraf 2019].

We propose to develop novel metrics that predict when
a model’s inference quality (e.g., positive predictive value
[PPV], accuracy) will degrade below a threshold. The
expected benefits of the metrics are that they will be able
to determine (1) when a model really needs to be retrained
so as to avoid spending resources on unnecessary
retraining, and (2) when a model needs to be retrained
before its scheduled retraining time so as to minimize the
time that the model is producing sub-optimal results.

Predicting Inference
Degradation in
Production ML Systems

Principal Investigator
DR. GRACE LEWIS
Principal Researcher / TAS Initiative Lead

SEI COLLABORATORS

LENA PONS
Software Architecture
and AI Researcher

Carnegie Mellon University
Software Engineering Institute

JEFFREY CHRABASZCZ
Machine Learning Research
Scientist

Carnegie Mellon University
Software Engineering Institute

SEBASTIÁN ECHEVERRÍA
Senior Engineer

Carnegie Mellon University
Software Engineering Institute

We will focus on models based on convolutional neural
networks (CNNs) for object detection and will use a
publicly available satellite image data set as the source
for test data. To further scope our study, we will focus on
inference degradation stemming from the occurrence of
data drift (frequency, recurrence, and abruptness drift).

Our vision for this work is that (1) our new metrics
are incorporated into model development pipelines
to provide better information on actions to take due
to inference degradation, which includes starting the
retraining process in a timely manner in order to provide
continuous operations within accuracy thresholds, and (2)
the community starts developing metrics and leveraging
our test bed for models other than those based on CNNs
and looks beyond drift metrics as the only predictor of
inference degradation.

IN CONTEXT
This FY2021 project

• aligns with the CMU SEI technical objectives to
bring capabilities that make new missions possible
or improve the likelihood of success of existing
ones and to be timely to enable the DoD to field new
software-enabled systems and upgrades faster than our
adversaries

The models we are developing to
study inference quality are based on
convolutional neural networks (CNNs)
for object detection and will use a
publicly available satellite image data
set as the source for test data. To
further scope our study, we will focus on
inference degradation stemming from
the occurrence of data drift (frequency,
recurrence, and abruptness drift).

Predictor

Experiment
Configuration:

Metrics

Trained
Model

ProcessSaveModel
File

Dataset
with Drift

Base
Dataset

Prediction
Results

Prediction
Metrics

Experiment
Configuration:

Model

JSON
Data Files

JSON
Configuration

Files

Trainer Trained
Model

Base
Dataset

Experiment
Configuration:

Drift

Drifter Dataset
with Drift

Base
Dataset

Read/Write
File

Legend

Legend

Predictor

Experiment
Configuration:

Metrics

Trained
Model

ProcessSaveModel
File

Dataset
with Drift

Base
Dataset

Prediction
Results

Prediction
Metrics

Experiment
Configuration:

Model

JSON
Data Files

JSON
Configuration

Files

Trainer Trained
Model

Base
Dataset

Experiment
Configuration:

Drift

Drifter Dataset
with Drift

Base
Dataset

Read/Write
File

Legend

Predictor

Experiment
Configuration:

Metrics

Trained
Model

ProcessSaveModel
File

Dataset
with Drift

Base
Dataset

Prediction
Results

Prediction
Metrics

Experiment
Configuration:

Model

JSON
Data Files

JSON
Configuration

Files

Trainer Trained
Model

Base
Dataset

Experiment
Configuration:

Drift

Drifter Dataset
with Drift

Base
Dataset

Read/Write
File

Legend

Predictor

Experiment
Configuration:

Metrics

Trained
Model

ProcessSaveModel
File

Dataset
with Drift

Base
Dataset

Prediction
Results

Prediction
Metrics

Experiment
Configuration:

Model

JSON
Data Files

JSON
Configuration

Files

Trainer Trained
Model

Base
Dataset

Experiment
Configuration:

Drift

Drifter Dataset
with Drift

Base
Dataset

Read/Write
File

Legend

TEST HARNESS
Composed of Three Tools

Trainer trains a CNN-based model
with a given set of parameters—based
on TensorFlow.

Drifter generates a drifted data set from
a base data set and a drift type (python).

Predictor runs a drift detection
experiment and generates metrics
for analysis (python).

1312

The potential of quantum computing, especially near
term, is not going to be realized without close integration
with state-of-the-art classical computing. Universal gate
(UG) quantum computers share many foundational
features with classical computers. Furthermore, UG
quantum computers must show advantage against state-
of-the-art classical software and/or hardware, and the
two computing paradigms will be critically integrated as
complementary technologies.

A major gap in achieving quantum advantage is the
identification of applications in which quantum computing
could provide computational advantage (in terms of time
to solution, quality of solution, etc.). It is unclear which
potential applications will realize quantum advantage
among a variety of hardware, such as various UG
technologies (e.g., superconducting qubit, trapped and
neutral-atoms, photonics). Variation in hardware is typical
in the near-term, noisy, intermediate-scale quantum (NISQ)
computing era. This is a software–hardware co-synthesis
challenge for quantum computing in the near-term.

UG quantum computing has emerged
as the […] quantum computing
technology that can demonstrate not
just quantum supremacy […] but
also quantum advantage.
This project aims to produce a novel classical computing
emulation and software–hardware co-synthesis framework
for quantum computing technology aimed at applications
driven by the portfolio of DoD research. UG quantum
computing has emerged as the near-term (5- to 10-year)
quantum computing technology that can demonstrate not
just quantum supremacy (performing a computation not
possible with a classical computer, regardless of usefulness),
but also quantum advantage (performing a useful
computation better and/or faster than a classical computer).

Projecting Quantum
Computational
Advantage versus
Classical State of the Art

Principal Investigator
DR. JASON LARKIN
Senior Researcher

IC (CPU) QC (QPU)

Applications
CombOp, MatSci, ML

QAEF compares benchmarks for
applications on both quantum and
classical SOTA computing to
determine quantum advantage.

Co-Synthesis

Classical High-Level Language Quantum High-Level Language

Compiler/OS

Architecture

Emulator Emulator

Intel Quantum Simulator,
Qiskit Simulators, etc.

VLSI

QPU (IBM, Rigetti, IonQ …)

Benchmarking

Quantum Circuit

Pulse Schedule

Processor Specific ISA

IN CONTEXT
This FY2019–21 project

• relates to DoD interest in applying quantum computing
to mission capability

• aligns with the CMU SEI technical objective to
make software trustworthy in construction, correct
in implementation, and resilient in the face of
uncertainties, including known and yet-unseen
adversary capabilities

• aligns with the CMU SEI technical objective to bring
capabilities through software that make new missions
possible or improve the likelihood of success for
existing missions

• provides a gateway into futuristic computing
architectures and increased computational power for
artificial intelligence and machine learning

Fig 4. Quantum Advantage Evaluation Framework (QAEF)

SEI COLLABORATORS

CATHERINE BERNACIAK
Machine Learning Research
Scientist

Carnegie Mellon University
Software Engineering Institute

BRENT FRYE
Software Engineer

Carnegie Mellon University
Software Engineering Institute

SCOTT MIONIS
Electrical and Computer
Engineering

Carnegie Mellon University

CHRIS INACIO
Chief Engineer

Carnegie Mellon University
Software Engineering Institute

MARK SHERMAN
Technical Director, Cyber
Security Foundations

Carnegie Mellon University
Software Engineering Institute

BENJAMIN COMMEAU
Research Scientist, Quantum/
Advanced Computing

Carnegie Mellon University
Software Engineering Institute

MATÍAS JONSSON
CS/Physics Student

Carnegie Mellon University

CHARLES HOLLAND
MTS, Principal Researcher

Carnegie Mellon University
Software Engineering Institute

DANIEL JUSTICE
Software Developer

Carnegie Mellon University
Software Engineering Institute

EXTERNAL COLLABORATORS

FRANZ FRANCHETTI
Associate Dean for Research,
College of Engineering

Carnegie Mellon University

1514

SEI COLLABORATORSThe DoD has directed a shift toward continuous integration/
continuous deployment (CI/CD) to maintain a competitive
edge [McMurry 2018]. It is currently standard to run
automated unit, integration, and stress tests during CI
builds, but static analysis (SA) tools are not always part of
builds because CI time frames are too short. However, SA
tools could detect code flaws that are cheaper to fix earlier
in the development process during CI builds.

It is increasingly common to use multiple SA tools and
combine their alerts to maximize the identification of
potential security flaws [Delaitre et al. 2018]. However,
current SA tools produce some false positive (FP) alerts
that require humans to inspect the code and manually
adjudicate true vs. false alerts [Heckman 2011]. We use
the term alertCondition to designate an alert from a
tool mapped to a member of an external taxonomy of
conditions (code flaws), for instance, CWE-190 from the
CWE taxonomy. If SA is used within CI, alertConditions
could stop a build and force human adjudication of true
positive (TP) vs. FP, which slows development but might
net an acceptable tradeoff if the slowdown is limited and/
or occasional. Furthermore, many previously adjudicated
FP alerts reappear each time an SA tool is run on a
subsequent code version.

This research project will use
machine learning and semantic
analysis of data generated during
CI/CD to reduce the number
of alerts requiring human
adjudication by 50%.
To maintain development velocity, DoD organizations with
a continuous authority to operate (ATO) process have been
forced to make tradeoffs in their security development
testing and evaluation processes. For example, one
organization removed SA tools from the CI/CD process,
substituting a more expensive, less agile, and later manual
review. Another kept SA tools, but reduced their sensitivity

Rapid Adjudication
of Static Analysis Alerts
During Continuous
Integration

Principal Investigator
DR. LORI FLYNN
Senior Software Security Engineer

and analyzed only a small subset of the alerts, which
introduced false negatives. We take the latter approach as
a starting point, our goal being to increase efficiency by
automating this process.

This research project will use machine learning and
semantic analysis of data generated during CI/CD to reduce
the number of alerts requiring human adjudication by
50% in multiple SA tool deployments without slowing the
development process. More specifically, this project will

• improve the state of the art in reducing false positives
and integrating SA tools into CI/CD processes

• improve the state of the practice by delivering
and validating a prototype system that implements
the new algorithms and measures the effectiveness
of the techniques

IN CONTEXT
This FY2020–21 project

• builds on a number of previous projects, including
“Rapid Construction of Accurate Automatic Alert
Handling System: Model & Prototype” and “Running in
the Cloud Without Breaking the Bank”

• aligns with the CMU SEI technical objective to make
software trustworthy in construction, correct in
implementation, and resilient in the face of operational
uncertainties, including known and yet-unseen
adversary capabilities

TYLER BROOKS
MTS, Engineer

Carnegie Mellon University
Software Engineering Institute

LYNDSI HUGHES
Systems Engineer

Carnegie Mellon University
Software Engineering Institute

JEFFREY MELLON
Machine Learning Research
Scientist

Carnegie Mellon University
Software Engineering Institute

JOSEPH SIBLE
Associate Software Engineer

Carnegie Mellon University
Software Engineering Institute

DAVID SVOBODA
Software Security Engineer

Carnegie Mellon University
Software Engineering Institute

JOSEPH YANKEL
MTS, Senior Engineer

Carnegie Mellon University
Software Engineering Institute

RHONDA BROWN
Member of the Technical Staff

Carnegie Mellon University
Software Engineering Institute

EBONIE MCNEIL
DevOps Engineer

Carnegie Mellon University
Software Engineering Institute

WEI-REN MURRAY
Software Engineer

Carnegie Mellon University
Software Engineering Institute

MATT SISK
Member of the Technical Staff

Carnegie Mellon University
Software Engineering Institute

DUSTIN UPDYKE
MTS, Senior Engineer

Carnegie Mellon University
Software Engineering Institute

Fig 5. Rapid Handling of Static Analysis Meta-Alerts During CI

1716

The DoD recognizes the need to field new cyber-physical
systems (CPS) capabilities at an increasingly rapid pace,
which is why it maintains a number of initiatives on rapid
deployment. The demand for more rapid deployment,
however, creates a need for verification techniques that can
adapt to a faster deployment cadence, especially for CPS
that are too big for traditional verification techniques and/
or involve unpredictable aspects, such as machine learning.

The goal of Rapid Certifiable Trust is to reduce the
deployment time of CPS by reducing the overall
development and assurance times. We will do this by
enabling the use of unverified commodity software
components (e.g., open source drone piloting software)
guarded by verified enforcers that guarantee the
containment of unsafe component behavior. We are
developing compositional verification techniques
to allow us to use multiple enforced components
minimizing and automatically removing conflicting
enforcer assumptions (e.g., reducing a plane’s airspeed
to avoid a crash while increasing airspeed to prevent
stalling). These techniques will allow us to assure
full-scale systems, even if most of their functionality is
implemented by unverified components.

The goal of Rapid Certifiable Trust
is to reduce the deployment time
of CPS by reducing the overall
development and assurance times.

Rapid Certifiable Trust

Principal Investigator
DR. DIONISIO DE NIZ
Technical Director, Assuring Cyber-Physical Systems

IN CONTEXT
This FY2020–22 project

• seeks to verify software-reliant systems that interact
with physical processes (e.g., aircrafts) to which existing
verification technology does not scale

• will develop enforcing algorithms to identify unsafe
control actions and replace them with safe actions

• uses drones to validate our approach in the SEI’s drone lab

• aligns with the CMU SEI technical objective to make
software trustworthy in construction, correct in
implementation, and resilient in the face of operation
uncertainties

• also aligns with the CMU SEI technical objective to
make software delivery timely so that the cadence of
acquisition delivery and fielding is responsive to and
anticipatory of the operation tempo of DoD warfighters

SEI COLLABORATORS

EXTERNAL COLLABORATORS

DR. BJÖRN ANDERSSON
Principal Researcher

Carnegie Mellon University
Software Engineering Institute

MICHAEL MCCALL
Associate Software Security
Engineer

Carnegie Mellon University
Software Engineering Institute

MARK KLEIN
Principal Technical Advisor

Carnegie Mellon University
Software Engineering Institute

DR. AMIT VASUDEVAN
Senior Researcher

Carnegie Mellon University
Software Engineering Institute

ANTON HRISTOZOV
Software Engineer

Carnegie Mellon University
Software Engineering Institute

DR. GABRIEL MORENO
Senior Researcher

Carnegie Mellon University
Software Engineering Institute

BRUCE KROGH
Faculty Emeritus

Carnegie Mellon University
Software Engineering Institute

time

time

∗

U
nt

ru
st

ed
V

M
Tr

us
te

d
H

yp
er

vi
so

r

= max
∈ ,

max_(

∈ {1 …
, − = −

,
,

= max
∈ 1…

, + − − 1

≤ −

Trusted
Timing

Trusted
Memory

Mixed-Trust Task

UberXMHF
- Verified space protection
- Timing guarantees for temporal enforcer
VM scheduler
- Timing guarantees in absence of failures
- In sync with hypervisor scheduler

Fig 6. Real-Time Mixed-Trust Computation

PAUL GRIFFIOEN
PhD Candidate,
Department of Electrical and
Computer Engineering

Carnegie Mellon University

HYOSEUNG KIM
Associate Professor,
Department of Electrical and
Computer Engineering

University of California, Riverside

JOHN LEHOCZKY
Professor of Statistics and
Mathematics, Department of
Statistics & Data Science

Carnegie Mellon University

DR. RUBEN MARTINS
Systems Scientist, Computer
Science Department

Carnegie Mellon University

BRUNO SINOPOLI
Department Chair and Das
Family Distinguished Professor

Washington University in St. Louis

DR. RAFFAELE ROMAGNOLI
PostDoc Research Associate,
Department of Electrical and
Computer Engineering

Carnegie Mellon University

1918

Modern software documentation processes in
development, security, and operations (DevSecOps)
software development lifecycles (SDLCs) are inadequate,
time consuming, and difficult to quantify quantitatively.
Anecdotally, any software documentation process can
be painful [Shorter 2020]. For any given continuous
integration/continuous deployment (CI/CD) SDLC
methodology, crafting and maintaining high-quality
software documentation content can be a subjective,
tedious, meticulous process requiring significant
understanding and domain knowledge. Additionally, in
modern Agile CI/CD or DevSecOps sprinting paradigms,
human-in-the-loop (HITL) software documentation
blockers detract from development success-gauging
metrics. This situation inspires negative perceptions of
current documentation processes and efforts to mitigate
the blocker through substandard (or even non-existent)
iterative documentation efforts.

The README research initiative is a strategic step forward
towards a descriptive content generative process in modern
DoD DevSecOps SDLCs. The README proof of concept
(POC) is not a templating engine. Rather, the primary
differentiator between the README POC approach and
emerging approaches in Development, Documentation, and
Operations (DevDocOps) is that software documentation
content is directly inferred from the underlying source code
itself, backed by the SDLC cadence via DevSecOps policy.

The README approach relies on leveraging a machine
learning (ML) modular architecture for learning the
nuanced associations between Python3.8 source code and
corresponding software engineering (SWE) descriptive
lexicon language, in an unsupervised manner, from
thousands of open source publicly available repositories’
commit transaction histories. The README POC release
establishes a viable cross-domain forward inference POC
model learned from software repositories, and a minimum-
viable-product (MVP) DevSecOps service prototype of the
model as an exemplar.

The README ML cross-domain translation architecture
is defined as a latent translation bridging model nested
between two pretrained models over orthogonal data

README: A Learned
Approach to
Augmenting Software
Documentation

Principal Investigator
DAN DECAPRIA
Senior Data Scientist

modalities [Tian 2019]. The README project refers to the
nesting-based approach of pretrained models for cross-
domain latent translation as the “Matryoshka Technique,”
facilitating domain modularity with a deeper network-
forward through pretrained nested model reuse. The
Matryoshka Technique provides a modular experimental
harness for training and validation (T&V) of multiple
pretrained models, under varying pretrained configuration
hyper-parameterizations, for learning a nested, shared,
latent space modeling structure between them.

For a software documentation content generative process,
the cross-domain latent translation ML model, identified
through this README research initiative, at reconstruction
of each pretrained model’s intermediate latent encodings,
is a conditional variational auto-encoder (CVAE) nested
between a pretrained encoder from AST2VEC and a decoder
from Seq2Seq_SO with StackOverflow SWE vocabularies
and word-similarity embeddings [Subramanian 2020;
Paaßen 2021; Cho 2014; Efstathiou 2018].

Results of the README research initiative are a successful
answer to the research question; the Matryoshka

Technique for nesting pretrained models for a learned
cross-domain latent translation between source code
snippets and SWE subjective language is viable. This
approach establishes efficacy in a general approach
facilitating domain modularity with a deeper network-
forward through pretrained nested model reuse.

README will produce the following outcomes and
deliverables:

• README DevSecOps SDLC MVP Prototype Service;
Containerized Deployment Service Prototype

• README: A Learned Approach to Augmenting Software
Documentation technical report

IN CONTEXT
This FY2020–21 project

• contributes to the SEI’s strong portfolio of ongoing work
in modernizing software development and acquisitions,
AI, and autonomy

• ligns with the CMU SEI technical objective to bring
capabilities that make new missions possible or
improve the likelihood of success of existing ones

• aligns with the CMU SEI technical objective to be
timely to enable the DoD to field new software-enabled
systems and upgrades faster than our adversaries

• aligns with the CMU SEI technical objective to be
affordable such that the cost of acquisition and operations,
despite increased capability, is reduced and predictable
and provides a cost advantage over our adversaries

SEI COLLABORATORS

VIOLET TURRI
Assistant Software Developer

Carnegie Mellon University
Software Engineering Institute

Fig 7. README POC Model

2120

Safety Analysis and
Fault Detection Isolation
and Recovery Synthesis
(SAFIR)

Principal Investigator
DR. JÉRÔME HUGUES
Senior Architecture Researcher

The operational complexity of cyber-physical systems
(CPS) forces new autonomous features into day-to-day
systems, such as vehicles and factories, a phenomenon
termed Increasingly Autonomous CPS systems (IA-CPS)
[Alves 2018]. IA-CPS have a complex architecture that
weaves hardware, AI-enabled functions or decision-
making processes, human operators, and software. They
are time sensitive and substitute human actions with
high-frequency real-time algorithms. In such systems, the
conjunctions of faults and their timed propagation can
cause fatal incidents, such as those involving autonomous
cars. In these particular cases, the safety mechanisms
were either too inefficient to prevent a fault or actually
caused the incident.

This situation creates concerns for future DoD programs:
These systems not only need to be able to detect failures
and recover once, but they also need to be able to
reconfigure multiple times—autonomously—as they adapt
to different situations without human intervention.

The DoD’s AI vision requires advances in safety analysis,
and fault detection isolation and recovery synthesis (or
SAFIR) to (1) model and analyze dynamic reconfiguration
and fault propagation due to fault sequences, and (2)
enforce safe reconfiguration. For these two concerns,
SAFIR will improve architecture-led safety assessment
processes by delivering new tool-supported analysis and
code generation capabilities to designers.

These systems not only need to be
able to detect failures and recover
once, but they also need to be able
to reconfigure multiple times—
autonomously—as they adapt to
different situations without human
intervention.

SEI COLLABORATORSMore specifically, we will

• improve the state of practice in safety engineering in
a model-based systems engineering (MBSE) context
by considering timing propagation of failures in an
Architecture Analysis & Design Language (AADL)
based architectural description and improving
AADL reconfiguration mechanisms to align with
Dynamic Fault Tree (DFT) operators, and deliver an
implementation of these operators

• apply DFT analysis to evaluate the effectiveness of
existing Fault Detection Isolation and Recovery (FDIR)
policies, synthesize FDIR policies by processing
DFT simulation traces, and enrich architectural
descriptions with specific fault detection and
reconfiguration mechanisms

SAFIR addresses safety analysis of time-sensitive CPS
in both its theoretical and practical dimensions, and
contributes to the SEI’s line of research on artificial
intelligence and autonomy. At the end of the first year,
SAFIR has established the theoretical foundation to
perform safety evaluations in the context of time-
dependent failure conditions.

IN CONTEXT
This FY2019–21 project

• builds on SEI expertise in Model-Based Systems
Engineering, safety analysis and the AADL language,
and extends past contributions from Integrated Safety
and Security Engineering (ISSE) and TwinOps

• aligns with the CMU SEI technical objective to bring
capabilities through software that make new missions
possible or improve the likelihood of success of
existing ones and to be trustworthy in construction and
implementations

• also aligns with the CMU SEI technical objective to
be resilient in the face of operational uncertainties,
including known and yet-unseen adversary capabilities

KEATON HANNA
Assistant Software Engineer

Carnegie Mellon University
Software Engineering Institute

JOHN HUDAK
MTS, Principal Engineer

Carnegie Mellon University
Software Engineering Institute

AARON GREENHOUSE
Senior Architecture Researcher

Carnegie Mellon University
Software Engineering Institute

DAVID GLUCH
Software Architecture
Researcher

Carnegie Mellon University
Software Engineering Institute

DR. SAM PROCTER
Senior Architecture Researcher

Carnegie Mellon University
Software Engineering Institute

CHUCK WEINSTOCK
Principal Researcher

Carnegie Mellon University
Software Engineering Institute

LUTZ WRAGE
Sr. Member of the Technical Staff

Carnegie Mellon University
Software Engineering Institute

Photo A drone produced by ANAFI USA, a manufacturer that has produced drones for the Blue Small Unmanned Aircraft Systems (sUAS)
program sponsored by the U.S. Army and Defense Innovation Unit

2322

DoD cyber-physical systems (CPS) employ commodity
heterogeneous interconnected computing (CHIC)
platforms and associated software stacks (e.g., ARM/
Linux) to deliver capabilities at the speed of relevance
[Osborn 2020; Krazit 2019; Keller 2019; Villarreal 2019].
However, the DoD faces a challenge achieving assurance
in CHIC-centric CPS implementation security, because
such systems employ multiple hardware platforms and
multiple, large, layered software. What’s more, these
systems are frequently produced by disparate developers.
A recent U.S. Government Accountability Office (GAO)
report highlights security issues in CHIC-centric CPS
implementations [GAO 2018].

Our solution focuses on
development-compatible,
implementation-level, protected,
and verifiable execution building
blocks that retrofit with existing
code, incrementally, at a fine
granularity, with composability
across multiple CHIC stack
implementation layers.
In this project, we draw from our published broad
vision and strategy [Vasudevan 2020]. We explore the
viability of provable, cost-effective, and innocuous
(applicable on existing software and preserve existing
functionality, such as NASA innocuity) CHIC-centric CPS
implementation security [Halloway 2019]. Our solution
focuses on development-compatible, implementation-
level, protected, and verifiable execution building blocks
that retrofit with existing code, incrementally, at a fine
granularity, with composability across multiple CHIC
stack implementation layers. Our scope in this project is
the design, implementation, and verification of a critical
execution path for CPS: secure on-platform sensor access
that protects the integrity of the existing CPS application

Safety Analysis and
Towards Incremental
and Compositionally
Verifiable Security of
CHIC-Centric Cyber
Physical Systems

Principal Investigator
DR. AMIT VASUDEVAN
Senior Researcher

and sensor hardware/driver with trusted control and a
data path between them. There are three high-level pieces
to our approach (see Figure 8):

1. Interface confined implementation-level object
abstractions (überobjects or üobjects): implementation-
level building blocks that form fine-grained monitors
around a system-level resource (e.g., data memory and
I/O area) towards a security property

2. Runtime protected set of üobjects (üobject collections):
a set of üobjects within a given address space at runtime,
bootstrapped by a platform root-of-trust entity that
endows memory protection and secure call routings

3. An implementation-level assume-guarantee reasoning
framework that allow us to formally reason about
interleaved executions of üobjects in the presence
of unverified (and unavoidable) legacy components
[Vasudevan 2016]

Among the planned outputs of this project is a
demonstration of our approach on an off-the-shelf rover
CPS platform with secure sensor access protection via
üobjects that allows immunity against an entire class of
memory integrity attacks. This will serve to showcase
the viability of our approach to DoD and DoD industrial
establishments. We will also make open source our
associated prototype artifacts, code, and documentation
(e.g., release via GitHub). This will enable DoD and DoD
industrial establishments to start experimenting with
üobjects within relevant application domains.

IN CONTEXT
This FY2021 project

• aligns with the CMU SEI technical objective to bring
capabilities that make new missions possible or
improve the likelihood of success of existing ones

• aligns with the CMU SEI technical objective to Be
Trustworthy in construction and implementation,
and resilient in the face of operational uncertainties
including known and yet-unseen adversary capabilities.

Fig 8. Technical Approach Overview, Reference Implementation, Evaluation, and Success Criteria

SEI COLLABORATORS

EXTERNAL COLLABORATORS

DR. RUBEN MARTINS
Systems Scientist, Computer
Science Department

Carnegie Mellon University

DR. RAFFAELE ROMAGNOLI
PostDoc Research Associate,
Department of Electrical and
Computer Engineering

Carnegie Mellon University

ANTON HRISTOZOV
Software Engineer

Carnegie Mellon University
Software Engineering Institute

MICHAEL MCCALL
Associate Software Security
Engineer

Carnegie Mellon University
Software Engineering Institute

BRUCE KROGH
Faculty Emeritus

Carnegie Mellon University
Software Engineering Institute

2524

Spiral/AIML:
Co-optimization for
High-Performance,
Data-Intensive
Computing in
Resource-Constrained
Environments

Principal Investigator
DR. SCOTT MCMILLAN
Principal Engineer

Commanders and warfighters in the field rely on data,
and the Department of Defense and U.S. intelligence
community have an overwhelming data collection
capability. This capability far outpaces the ability of human
teams to process, exploit, and disseminate information.
Artificial intelligence (AI) and machine learning (ML)
techniques show great promise for augmenting human
intelligence analysis. However, most AI/ML algorithms are
computationally expensive, data intensive, and difficult to
implement efficiently in increasingly complex computer
hardware and architectures. What’s more, moving very
large amounts of data through tactical and operational
military networks requires forward deployment of
advanced AI/ML techniques to support commanders and
warfighters in theaters with equipment constrained by cost,
size, weight, and power (CSWAP).

If successful, our solution will allow
platform developers to realize high-
performance AI/ML applications on
leading-edge hardware architectures
faster and cheaper.
As the military adopts AI/ML to augment human teams,
the cost of implementing and re-implementing AI/ML
software on new hardware platforms will be prohibitive.
To address these challenges, we propose to build on CMU’s
Spiral technology, a hardware-software co-optimization
system that will automatically

• search and select hardware configurations that meet
CSWAP requirements

• generate optimized codes for the selected hardware
configuration and the irregular, data-intensive
computations required for AI/ML algorithms

If successful, our solution will allow platform developers
to realize high-performance AI/ML applications on
leading-edge hardware architectures faster and cheaper.

These advances will allow for rapid development and
deployment of capabilities across the spectrum of national
and tactical needs.

Acknowledgments
Elliott Binder, Mark Blanco, Paul Brouwer, Mark Cheung,
Anuva Kulkarni, Dr. Het Mankad, Peter Oostema, George
Ralph, Courtney Rankin, Sanil Rao, Dr. Fazle Sadi, Sandra
Sanjeev, John Shi, Dr. Daniele Spampinato, Upasana
Sridhar, Arvind Srinivasan, Guanglin Xu, Vadim Zaliva,
Jiyuan Zhang

IN CONTEXT
This FY2019–21 project

• builds on DoD line-funded research and sponsored
work on automated code generation for future-
compatible high-performance graph libraries, big
learning benchmarks, GraphBLAS API specification,
and graph algorithms on future architectures

• is related to a set of programs at the Defense Advanced
Research Projects Administration (DARPA) under
the Electronics Resurgence Initiative (ERI) umbrella
(Hierarchical Identify Verify Exploit [HIVE], Software
Defined Hardware [SDH], Domain Specific System on
Chip [DSSoC], etc.) for which the CMU SEI has PWP work

• aligns with the CMU SEI technical objective to be
affordable such that the cost of acquisition and operations,
despite increased capability, is reduced and predictable
and provides a cost advantage over our adversaries

Col. Drew Cukor, USMC, observed, “Rapidly delivering artificial intelligence to a combat zone won’t be easy.” To address this challenge, the
SEI is developing Spiral/AIML: Co-optimization for High-Performance, Data-Intensive Computing in Resource-Constrained Environments.

Photo U.S. Army

SEI COLLABORATORS

EXTERNAL COLLABORATORS

JOHN WOHLBIER
Senior Research Scientist

Carnegie Mellon University
Software Engineering Institute

FRANZ FRANCHETTI
Associate Dean for Research,
College of Engineering

Carnegie Mellon University

TZE MENG LOW
Assistant Research Professor,
Electrical and Computer
Engineering

Carnegie Mellon University

JOSÉ MOURA
Professor, Electrical and
Computer Engineering

Carnegie Mellon University

OREN WRIGHT
 Senior Researcher

Carnegie Mellon University
Software Engineering Institute

DR. JASON LARKIN
 Senior Researcher

Carnegie Mellon University
Software Engineering Institute

JAMES C. HOE
Professor, Electrical and
Computer Engineering

Carnegie Mellon University

2726

The current challenges to the training and verification of
secure machine learning (ML) stem from

1. the difficulty of enforcing quality attributes in a system
that is trained on data instead of directly constructed
from requirements

2. the fundamental advantage that an attacker has,
namely that the attacker needs to only violate a single
security policy, while the defender needs to enforce all
of the security policies

The DoD has not been exempt from these challenges. The
current state of the art in secure ML is to train systems to
either enforce a single security policy or train auxiliary
systems to detect violations of a single security policy.
Very little extant work focuses on multiple security
policies. For example, there exist systems in the DoD that
make high-stakes decisions and yet were also trained on
sensitive data. This implies that the system should enforce
at least two security policies simultaneously (i.e., the ML
system should neither do the wrong thing when presented
with adversarial input nor reveal sensitive information
about the training data during its operation).

…the ML system should neither do
the wrong thing when presented
with adversarial input nor reveal
sensitive information about the
training data during its operation.
In this “Train, but Verify” project, we will attempt to
address the gap in the state of the art on secure training of
ML systems with two objectives:

1. Train secure AI systems by training ML models to
enforce at least two security policies.

2. Verify the security of AI systems by testing against
declarative, realistic threat models.

We consider security policies from the Beieler taxonomy:
Ensure that an ML system does not learn the wrong thing
during training (e.g., data poisoning), do the wrong thing

Train, but Verify:
Towards Practical
AI Robustness

Principal Investigator
DR. NATHAN VANHOUDNOS
Senior Machine Learning Research Scientist

during operation (e.g., adversarial examples), or reveal
the wrong thing during operation (e.g., model inversion
or membership inference).

IN CONTEXT
This FY2020-22 project

• aligns with the CMU SEI technical objective to be
trustworthy in construction and implementation
and resilient in the face of operational uncertainties,
including known and yet-unseen adversary capabilities

SEI COLLABORATORS

EXTERNAL COLLABORATORS

LUJO BAUER
Professor

Carnegie Mellon University

BRYAN PARNO
Associate Professor

Carnegie Mellon University

MATT FREDRIKSON
Associate Professor

Carnegie Mellon University

SEI Contributors

• Rob Beveridge
• Matthew Churilla

• Jon Helland
• Annika Horgan

• Bill Shaw
• Violet Turri

• Tina Sciullo-Schade
• Nick Winski

Students

• Aymeric Fromherz (Carnegie Mellon University)
• Clement Fung (Carnegie Mellon University)
• Klas Leino (Carnegie Mellon University)

• Kevin Li (Carnegie Mellon University)
• Weiran Lin (Carnegie Mellon University)
• Zifan Wang (Carnegie Mellon University)

ANDREW MELLINGER
Senior Software Developer

Carnegie Mellon University
Software Engineering Institute

Fig 9. Juneberry, an architecture we created to support our research on Train, but Verify, improves the experience of machine
learning experimentation by providing a framework for automating the training, evaluation, and comparison of multiple models
against multiple datasets, reducing errors and improving reproducibility. We’ve made Juneberry available to other researchers
on GitHub: https://github.com/cmu-sei/Juneberry

2928

Software-reliant systems need to evolve over time to meet
new requirements and take advantage of new technology.
However, all too often the structure of software becomes
too complicated to allow rapid and cost-effective
improvements. This challenge is common in long-lived
DoD systems and not uncommon even in newer systems,
and it makes isolating a collection of functionality for use
in a new context, or clean replacement by an improved
version, difficult. Software refactoring can facilitate such
changes, but can require tens of thousands of staff hours.

This project has created a refactoring assistant that generates
recommended refactorings that isolate functionality from its
tangle of system dependencies. Our goal is to reduce the time
required for this kind of software refactoring by two-thirds.
In one DoD example, a contractor estimated 14 thousand
hours of software development work alone (excluding
integration and testing) to isolate a mission capability from
the underlying hardware platform. If successful, our work
would reduce the development time required to less than 5
thousand hours.

Our goal is to reduce the time
required for this kind of software
refactoring by two-thirds.
Our prototype combines advances in search-based
software engineering with static code analysis and
refactoring knowledge. It is unique in its focus on
mission-relevant goals as opposed to improving general
software metrics. This goal is incorporated in genetic
algorithms through fitness functions that guide the search
to solutions for the project-specific goal. In practice,
our prototype recommends solutions that solve more
than 85% of the problem on typical projects, suggesting
that our effort reduction goal is obtainable. The search
algorithm relies on a representation derived from static
code analysis and uses formalizations of refactorings as
operations to apply during search.

This work has broad implications for moving existing
software to modern architectures and infrastructures

Untangling the Knot:
Automating Software
Isolation

Principal Investigator
JAMES IVERS
Principal Engineer
Lead, Architecture Design, Analysis & Automation

Li
ne

s
of

 C
od

e
(L

O
C)

>1M SLOC

Select Objectives
• minimize problematic
 couplings
• minimize code changes
• maximize code quality
• …

Our prototype uses a multi-
objective genetic algorithm to

generate a set of Pareto-optimal
solutions (recommendations).

Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager,
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Li-
brary.AutoUpdater.AutoUpdateStrategy), InstalledBaseDir,
INSTALLED_BASE_DIR}) -> new_class_name_1
 > Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEv-
ent(), Duplicati.Server.Database.Connection)
 > Convert the instance method to a static method by adding a new
parameter with a type of the original declaring class. Also, update all
references to this within the method to use the new parameter.
 > Convert the member Duplicati.Server.EventPollNotify.m_eventNo to
public to allow Duplicati.Server.EventPollNotify.SignalNewEvent to
continue to access it.
 > Convert the member Duplicati.Server.EventPollNotify.m_lock to public
to allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to
access it.
 > Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to
public to allow Duplicati.Server.EventPollNotify.SignalNewEvent to
continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)
Step 9: MoveClass (Duplicati.Server.Strings.Program)
Step 10: ExtractStaticClass (Duplicati.Library.Localization.Short.LC,
{L(System.String,System.Object), L(System.String), L(System.String,Sys-
tem.Object,System.Object)}) -> new_class_name_2
 > Supply a more meaningful name for the new Class (new_class_name_2).
Step 11: ExtractStaticClass (Duplicati.Library.Common.Platform,
{IsClientWindows, IsClientPosix}) -> new_class_name_3
 > Supply a more meaningful name for the new Class (new_class_name_3).
Step 12: MoveClass (Duplicati.Server.EventPollNotify)

Select and implement
a solution that suits

your context.

0

5000

7500

10000

12500

15000

17500

20000

100 200

Problematic Couplings

300 400

SEI COLLABORATORS

EXTERNAL COLLABORATORS

DR. ROBERT NORD
Principal Member
of the Technical Staff

Carnegie Mellon University
Software Engineering Institute

THIAGO FERREIRA
Assistant Professor

University of Michigan, Dearborn

CHRIS SEIFRIED
Associate Engineer

Carnegie Mellon University
Software Engineering Institute

MAROUANE KESSENTINI
Associate Professor

University of Michigan, Dearborn

SCOTT PAVETTI
Assistant Teaching Professor

Carnegie Mellon University

CHRIS TIMPERLEY
Systems Scientist

Carnegie Mellon University

DR. IPEK OZKAYA
Tech. Director, Engineering
Intelligent Software Systems

Carnegie Mellon University
Software Engineering Institute

CLEM IZURIETA
Associate Professor

Montana State University

such as service-based, microservice, cloud environments,
and containers. It also addresses a pervasive research
challenge in improving automated support for software
refactoring tasks.

IN CONTEXT
This FY2019–21 project

• builds on prior DoD line-funded research in software
architecture analysis, static code analysis, and
identifying technical debt

• aligns with the CMU SEI technical objective to
make software delivery timely so that the cadence
of acquisition, delivery, and fielding is responsive
to and anticipatory of the operational tempo of DoD
warfighters

• addresses a widespread, recurring need in software
organizations (as requirements and technology are
never frozen in time, the need to adapt working
software to new contexts is likely to remain a common
need across many software systems)

Fig 10. Generating Refactoring Recommendations

SEI Contributors

• Mario Benítez
• Vaughn Coates

• Andrew Kotov
• Reed Little

• Craig Mazzotta
• Scott Sinclair

• Jake Tanenbaum

Students

• Chaima Abid (University of Michigan)
• Gavin Austin (Montana State University)
• Jared Frank (University of Pittsburgh)
• Carly Jones (Carnegie Mellon University)

• Katie Li (Carnegie Mellon University)
• Red Rajput (Carnegie Mellon University)
• Amy Tang (Carnegie Mellon University)
• Jeff Yackley (University of Michigan)

30

References

[Alves 2018]
Alves, E. E.; Devesh, B.; Hall, B.; Driscoll, K.; Murugesan,A.;
& Rushby, J. Considerations in Assuring Safety of Increasingly
Autonomous Systems. Technical Report NASA/CR-2018-220080,
NF1676L-30426, NASA Air TransportationAnd Safety. 2018.

[Cho 2014]
Cho, K.; Merrienboer, B.V.; Gülçehre, Ç.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; & Bengio, Y. Learning Phrase
Representations using RNN Encoder–Decoder for Statistical
Machine Translation. Presented at the Conference on Empirical
Methods in Natural Language Processing. October 2014.

[Delaitre et al. 2018]
Delaitre, Aurelien M.; Bertrand C. Stivalet; Paul E. Black;
Vadim Okun; Terry S. Cohen; and Athos Ribeiro. SATE V
Report: Ten Years of Static Analysis Tool Expositions. Special
Publication (NIST SP)-500-326. National Institute of
Standards and Technology. 2018.

[Diethe 2019]
Diethe, T.; Borchert, T.; Thereska, E.; Balle, B.; &
Lawrence, N. Continual Learning in Practice. Presented
at the NeurIPS 2018 Workshop on Continual Learning.
December 2018. https://arxiv.org/pdf/1903.05202.pdf

[DSB 2016]
Defense Science Board. Summer Study on Autonomy.
Office of the Under Secretary of Defense for Acquisition,
Technology and Logistics. June 2016. https://www.hsdl.
org/?view&did=794641

[Efstathiou 2018]
Efstathiou, Vasiliki; Chatzilenas, Christos; & Spinellis,
Diomidis. Pages 38–41. Word embeddings for the software
engineering domain. In Proceedings of the 15th International
Conference on Mining Software Repositories (MSR ’18).
Association for Computing Machinery, New York, New York.
2018. DOI: https://doi.org/10.1145/3196398.3196448

[GAO 2018]
United States Government Accountability Office. Weapon
Systems Cybersecurity: DoD Just Beginning to Grapple with
Scale of Vulnerabilities. October 2018. https://www.gao.gov/
assets/700/694913.pdf

[Gil 2019]
Gil, Y. & Selman, B. A 20-Year Community Roadmap
for Artificial Intelligence Research in the US. Computing
Community Consortium (CCC) and the Association for the
Advancement of Artificial Intelligence (AAAI). Computing
Community Consortium. August 2019. https://arxiv.org/
abs/1908.02624

[Halloway 2019]
Halloway, Michael C. Understanding the Overarching
properties. NASA/TM–2019–220292. National Aeronautics
and Space Administration. July 1, 2019. https://ntrs.nasa.
gov/archive/nasa/casi.ntrs.nasa.gov/20190029284.pdf

[Heckman 2011]
Heckman, Sarah & Laurie Williams. A systematic literature
review of actionable alert identification techniques for
automated static code analysis. Information and Software
Technology. Number 53. Volume 4. April 2011. Pages 363-387.

[Keller 2019]
Keller, John. Navy chooses open-architecture water-cooled
shipboard computers from GTS for SEWIP and self defense
systems. Military Aerospace. January 16, 2019. https://www.
militaryaerospace.com/computers/article/16722033/navy-
chooses-openarchitecture-watercooled-shipboardcomputers-
from-gts-for-sewip-and-self-defense-systems

[Krazit 2019]
Krazit, Tom. How the U.S. Air Force Deployed Kubernetes
and Istio on an F-16 in 45 days. The New Stack. December
24, 2019. https://thenewstack.io/how-the-u-s-air-
forcedeployed-kubernetes-and-istio-on-an-f-16-in-45-days/

[Manning 2018]
Manning, J.; Langerman, D.; Ramesh, B.; Gretok, E.;
Wilson, C.; George, A.; & Crum, G. Machine-Learning
Space Applications on SmallSat Platforms with
TensorFlow. Presented at the 32nd AIAA/USU Conference
on Small Satellites. 2018. https://digitalcommons.usu.edu/
smallsat/2018/all2018/458/

[McMurray 2018]
McMurry, Robert D. & Roper, William B. Establishment
of Air Force Program Executive Officer (PEO) Digital.
[Memorandum for all AFPEOs.] Department of the Air
Force. August 29, 2018. https://www.hanscomreps.org/
wp-content/uploads/2018/09/20180829-PEO-Digital-
Establishment-Memo-Signed.pdf

[Osborn 2020]
Osborn, Kris. New Air Force B-21 stealth bomber takes
key technology step toward war readiness. Fox News. June
2, 2020. https://www.foxnews.com/tech/new-air-force-b-
21-stealthbomber-takes-key-technology-step-toward-war-
readiness

[Paaßen 2021]
Paaßen, B.; McBroom, J.; Jeffries, B.; Koprinska, I.; &
Yacef, K. Mapping Python Programs to Vectors using
Recursive Neural Encodings. Journal of Educational
Datamining. 2021. [In press.]

[Shorter 2020]
Shorter, Cameron. What is good documentation for
software projects? Opensource.com. April 6, 2020. https://
opensource.com/article/20/4/documentation

[Subramanian 2020]
Subramanian, A. PyTorch-VAE. 2020. https://github.com/
AntixK/PyTorch-VAE

[Tarraf 2019]
Tarraf, Danielle C. et al. The Department of Defense
Posture for Artificial Intelligence: Assessment and
Recommendations. RAND Corporation. 2019. https://www.
rand.org/pubs/research_reports/RR4229.html

[Tian 2019]
Tian, Y. & Engel, J. Latent Translation: Crossing Modalities
by Bridging Generative Models. arXiv:1902.08261. arXiv.
February 21, 2019. https://arxiv.org/abs/1902.08261

[Vasudevan 2016]
Vasudevan, Amit; Chaki, Sagar; Maniatis, Petros; Jia,
Limin; & Datta, Anupam. überSpark: Enforcing Verifiable
Object Abstractions for Automated Compositional Security
Analysis of a Hypervisor. Pages 87-104. In Proceedings of
USENIX Security Symposium. Austin, Texas. August 2016.
https://www.usenix.org/sites/default/files/sec16_full_
proceedings.pdf

[Vasudevan 2020]
Vasudevan, Amit; Maniatis, Petros; & Martins, Ruben.
überSpark: Practical, Provable, End-to-End Guarantees
on Commodity Heterogenous Interconnected Computing
Platforms. ACM SIGOPS Operating Systems Review
Journal – Special Issue on Formal Methods & Verification.
Volume 54. Number 1. July 2020. Pages 8-22. https://doi.
org/10.1145/3421473.3421476

[Villarreal 2019]
Villarreal, Jennifer. GE Aviation and Auterion provide All-
in-one hardware and software platform for commercial
drones. GE Aviation. November 5, 2021 [accessed].
https://www.geaviation.com/press-release/systems/ge-
aviation-and-auterion-team-provide-all-one-hardware-
and-software-platform

Copyright
Copyright 2021 Carnegie Mellon University.

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8702-15-D-0002 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded
research and development center.

The view, opinions, and/or findings contained in this material are those of
the author(s) and should not be construed as an official Government position,
policy, or decision, unless designated by other documentation.

This report was prepared for the SEI Administrative Agent AFLCMC/AZS 5 Eglin
Street Hanscom AFB, MA 01731-2100

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

[DISTRIBUTION STATEMENT A] This material has been approved for public
release and unlimited distribution. Please see Copyright notice for non-US
Government use and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative
works from this material for internal use is granted, provided the copyright and “No
Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without
modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other external
and/or commercial use. Requests for permission should be directed to the
Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

DM21-1009

About Us
The Software Engineering Institute (SEI) at Carnegie Mellon University is a Federally Funded
Research and Development Center (FFRDC)—a nonprofit, public–private partnership that
conducts research for the United States government. One of only 10 FFRDCs sponsored by
the U.S. Department of Defense (DoD), the SEI conducts R&D in software engineering, systems
engineering, cybersecurity, and many other
areas of computing, working to introduce private-sector innovations into government.

As the only FFRDC sponsored by the DoD that is also authorized to work with organizations
outside of the DoD, the SEI is unique. We work with partners throughout the U.S. government,
the private sector, and academia. These partnerships enable us to take innovations from
concept to practice, closing the gap between research and use.

Contact Us
Carnegie Mellon University
Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213-2612

412.268.5800 | 888.201.4479
sei.cmu.edu | info@sei.cmu.edu

©2021 Carnegie Mellon University | 5602 | 11.8.2021

	Automated Design Conformance During Continuous Integration
	Combined Analysis for Source Code and Binary Code for Software Assurance
	Knowing When
You Don’t Know:
AI Engineering in
an Uncertain World
	Multicore Confidence
	Predicting Inference Degradation in Production ML Systems
	Projecting Quantum Computational Advantage versus Classical State-of-the-Art
	Rapid Adjudication
of Static Analysis Alerts During Continuous Integration
	Rapid Certifiable Trust
	README: A Learned Approach to Augmenting Software Documentation
	Safety Analysis and Towards Incremental and Compositionally Verifiable Security of CHIC-Centric Cyber Physical Systems
	Spiral/AIML:
Co-optimization for High-Performance, Data-Intensive Computing in Resource-Constrained Environments
	Train, but Verify: Towards Practical
AI Robustness
	Untangling the Knot: Automating Software Isolation
	References

