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Inspire. Integrate. Innovate.

The Collaboration Effect
Collaboration is an essential characteristic of the Carnegie 
Mellon University Software Engineering Institute (CMU 
SEI). It lies at the heart of our work to establish and 
advance software as a strategic advantage for national 
defense and security. As a federally funded research 
and development center (FFRDC) sponsored by the 
Under Secretary of Defense, Research and Engineering 
(USD(R&E)), collaboration ties together the research, 
development, piloting, transitioning, and policy input we 
conduct for the benefit of our sponsor and customers. 

Collaborative interactions inspire new ideas that we 
integrate with our evolving research agenda to innovate 
new solutions. We call this process “the collaboration effect.” 
This year’s CMU SEI Research Review highlights the ways in 
which the collaboration effect advances the state of the art 
and successfully transitions these advances into practice. 

The collaboration effect rests on three main touchpoints: 
the activities of study, make, and transition. These activities 
enable many connections that intertwine as we work with 
the Department of Defense (DoD), government agencies, 
academia, and industry to integrate our strategic areas of 
work in software engineering, cybersecurity, and artificial 
intelligence (AI). As we study and make, we iterate with 
collaborators on R&D and pilots. This work leads toward 
transition—often of robust, proven tools and techniques, 
sometimes in the form of expert advice that informs 
improved policy. Our work also produces artifacts to 
advance the state of the art and practice for software, such 
as technical articles, reports, and prototype software tools. 

This book provides insights into research in our portfolio 
of public research projects for fiscal 2021 on behalf of our 
DoD sponsor and presented at the 2021 CMU SEI Research 
Review. In distribution parlance, these projects are 
labeled “Distribution A,” which indicates that they may be 
shared openly to anyone without restriction. The projects 
highlighted include recently concluded work and work 

that continues in our research pipeline to study, make, 
and transition results to the benefit of DoD, the USG, 
academia, and the private sector.

In the following pages, we take on the enduring 
challenges facing the DoD. Our decades-long engagement 
has informed our deep and nuanced understanding of 
the challenges faced across software, cyber, and artificial 
intelligence (AI). Our research springs from the DoD’s 
need for software innovation and cybersecurity that 
continually evolves in support of its intensifying mission. 

The DoD needs its software-enabled systems to

• bring capabilities that make new missions possible or 
improve the likelihood of success of existing ones

• be timely to enable the DoD to field new software-enabled 
systems and upgrades faster than our adversaries

• be trustworthy in construction and implementation 
and resilient in the face of operational uncertainties 
including known and yet-unseen adversary capabilities

• be affordable such that the cost of acquisition and 
operations, despite increased capability, is reduced 
and predictable and provides a cost advantage over 
our adversaries

Those requirements drive all CMU SEI work, whether 
for USD(R&E), DoD programs, federal civilian agencies, 
or industry.

I hope you enjoy reading about CMU SEI’s fiscal 2021 
research efforts, and that the following pages demonstrate 
the pride we take in this work. We stand by to work with 
you to help you make a difference, and we encourage you 
to contact us at info@sei.cmu.edu. 

— TOM LONGSTAFF
 Chief Technology Officer, 
 Carnegie Mellon University Software Engineering Institute
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Software architecture enables our ability to innovate 
through extensible design, which provides for future 
growth in capability that is affordable and timely. To 
reduce the time needed to field capabilities and to lower 
lifecycle costs, the DoD has instructed program managers 
to consider a modular open systems approach (MOSA). 
MOSA promotes extensibility through technical standards 
such as the Future Airborne Capability Environment 
(FACE). However, a gap exists in verifying whether 
implemented capabilities satisfy the design constraints of 
a reference architecture such as FACE. 

This project is creating an automated conformance checker 
that can be integrated into the continuous integration 
workflow to detect and report nonconformances in hours 
instead of the months or years it takes to discover these 
problems today. This technology will correctly identify 
design nonconformances with precision greater than 90%. 

The central research of this project is recognizing 
abstractions commonly used in software architecture 
in C++ source code. Extracting design from code is 
hard because there are few indications of intent in the 
code and because implementations show significant 
variations. We see potential in applying code analysis, 
software architecture knowledge, and machine learning 
to extract design as implemented in the code and 
check conformance with the intended design. We are 
focusing on detecting nonconformance with architecture 
communication styles that are essential to achieving the 
goals of MOSA.

Developers can detect problems 
continuously and near the time they 
are introduced, allowing faster and 
more economical realignment of 
implementation and design.
The conformance checker will benefit developers and 
program managers. Developers can detect problems 
continuously and near the time they are introduced, 

allowing faster and more economical realignment of 
implementation and design. Program managers can 
hold developers (contractor or organic) accountable for 
delivering sustainable systems.

IN CONTEXT
This FY2020–22 project

• advances the state of the art in applying machine 
learning (ML) to software engineering tasks

• aligns with SEI strategic focus areas of timely and 
trustworthy software by introducing automation into 
the development and acquisition lifecycle 

Fig 1. Prototype Design Conformance Checker: The approach builds on code analysis, software architecture, and machine learning.

Automated Design 
Conformance 
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Many DoD entities need software assurance for both 
source code and binary code, as well as mixed systems 
(e.g., source code plus binary libraries). While there are 
many existing highly capable tools for static analysis of 
source code, tools for software assurance of binaries are 
fewer and much more limited. The objective of this line of 
work is to evaluate the feasibility of decompiling binaries 
for the purpose of (1) static analysis and (2) localized 
repairs to functions of the binary. More specifically, 
we aim to (1) develop a tool for determining whether 
individual functions have been correctly decompiled, (2) 
measure what percentage of functions are decompiled 
correctly on typical real-world binary code, and (3) 
measure how close static analysis on decompiled code 
approximates static analysis on the original source code. 

We adapt an existing open-source decompiler (in 
particular, Ghidra) to produce decompiled code suitable 
for static analysis and/or repair, and we evaluate it with 
real-world (optimized) binary files. This project lays the 
groundwork for further work (including a follow-on 
FY22 project) to (1) enable the DoD to more accurately 
perform software assurance for projects that include 
binary components and (2) develop a framework for 
making localized repairs (either manual or automated) to 
functions of a binary library or executable. 

This line of work, if successful, 
will enable the DoD to find and 
fix potential vulnerabilities in 
binary code that might otherwise 
be cost prohibitive to investigate 
or repair, thereby increasing the 
trustworthiness of fielded software
This line of work, if successful, will enable the DoD to 
find and fix potential vulnerabilities in binary code that 
might otherwise be cost prohibitive to investigate or repair, 
thereby increasing the trustworthiness of fielded software. 

Combined Analysis 
for Source Code 
and Binary Code for 
Software Assurance

Principal Investigator
DR. WILL KLIEBER
Researcher

Our collaborators and interested transition partners at 
the DoD have binaries for which software assurance is 
desired; they will help us to evaluate and improve our 
tool, and they will be able to benefit from using the tool in 
practice when it is ready.

IN CONTEXT
This FY2021 project

• builds on DoD line-funded research on automated 
repair of code for integer overflow, inference of 
memory bounds, and automated code repair to ensure 
memory safety

• aligns with the CMU SEI technical objective to make 
software trustworthy in construction, correct in 
implementation, and resilient in the face of operational 
uncertainties, including known and yet-unseen 
adversary capabilities

Fig 2. Envisioned Pipeline for Analysis and Repair of a Source-and-Binary Project
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Knowing When  
You Don’t Know:  
AI Engineering in  
an Uncertain World

Principal Investigator
DR. ERIC HEIM
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The DoD is increasingly seeking to deploy AI systems for 
mission-critical tasks. Modern AI systems most commonly 
employ machine learning (ML) models to make important, 
domain-relevant inferences. However, due in part to 
uncertainty, state-of-the-art ML models can produce 
inaccurate inferences in scenarios where humans would 
reasonably expect high accuracy. Furthermore, many 
commonly used models do not provide accurate estimates 
about when they are uncertain about their predictions. 
Consequently, AI system components downstream from 
an ML model, or humans using the model’s output to 
complete a task, must reason with incorrect inferences 
that they expect to be correct. Motivated by this gap, this 
project aims to accomplish the following objectives:

• Develop new techniques, and utilize existing ones, to 
give ML models the ability to express when they are 
likely to be wrong without drastically increasing the 
computational burden, requiring significantly more 
training data, or sacrificing accuracy.

• Develop techniques to detect the cause of uncertainty, 
learning algorithms that allow ML models to be 
improved after the cause of uncertainty is determined, 
and methods for reasoning in the presence of 
uncertainty without explicit retraining. 

• Incorporate uncertainty modeling and methods to 
increase certainty into the ML models of government 
organizations. 

Our work seeks to realize three overarching benefits. 
First, ML models in DoD AI systems will be made more 
transparent, resulting in safer, more reliable use of AI in 
mission-critical applications. Second, ML models will be 
more quickly and efficiently updated to adapt to dynamic 
changes in operational deployment environments. Third, 
we will make adoption of AI possible for missions where AI 
is currently deemed too unreliable or opaque to be used. 

Our SEI team of Eric Heim, John Kirchenbauer, Jon 
Helland, and Jake Oaks brings expertise in the science and 
engineering of AI systems, human-computer interaction, 
enterprise-level infrastructures, and perspectives 
informed by a collective 50 years of experience leading 
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Quantifying Uncertainty: A Key Component for Informative and Robust AI Systems
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By allowing high-level reasoning to be 
informed by predictive uncertainty, AI 

systems can be more robust to failures 
caused by unconfident predictions.

and conducting projects for both government and 
industry. Our CMU collaborators Dr. Zachary Lipton 
and Dr. Aarti Singh bring expertise in monitoring and 
improving ML models in the presence of uncertainty. 
They will provide important insight and graduate student 
support in producing high-quality research on topics 
related to detecting model uncertainty and mitigating its 
effects on the quality of model inference.

IN CONTEXT
This FY2021 project

• builds on DoD line-funded research, including graph 
algorithms and future architectures, big learning 
benchmarks; automated code generation for future-
compatible high-performance graph libraries; data 
validation for large-scale analytics; and events, 
relationships, and script learning for situational 
awareness 

• aligns with the CMU SEI technical objective to be timely 
so that the cadence of acquisition, delivery, and fielding 
is responsive to and anticipatory of the operational 
tempo of DoD warfighters and that the DoD is able to 
field these new software-enabled systems and their 
upgrades faster than our adversaries

SEI COLLABORATORS
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Machine Learning Researcher

Carnegie Mellon University  
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Fig 3. Quantifying Uncertainty: A Key Component for Informative and Robust AI Systems
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Complex, cyber-physical DoD systems, such as aircraft, 
depend on correct timing to properly and reliably execute 
crucial sensing, computing, and actuation functions. Any 
timing failure can have disastrous consequences—an 
expected delay translating sensor data into actuation can 
cause system instability and loss of control. What’s more, 
the complexity of today’s DoD systems has increased the 
demand for use of multicore processors because unicore 
chips are either unavailable or not up to the task. However, 
concerns about timing have led to the practice of disabling 
all processor cores except one.

Any timing failure can have 
disastrous consequences—an 
expected delay translating sensor 
data into actuation can cause 
system instability and loss of control.
In this project, we aim to develop a solution to overcome 
this obstacle. This is a difficult challenge, because timing 
is determined by many shared resources in the memory 
system (including cache, memory banks, memory bus) 
with complex arbitration mechanisms, some of which are 
undocumented. The goal of our research is to demonstrate 
multicore timing confidence by achieving the following 
sub-objectives:

• Verification. Develop a method for timing verification 
that does not depend directly on undocumented design 
qualities and quantities. 

• Parameter extraction. Develop a method for obtaining 
values for parameters in the model of a software 
system suited for the timing verification procedure 
mentioned above. 

• Configuration. Develop a configuration procedure 
(such as assigning threads to processor cores or 
assigning priorities to threads) that takes a model as 
input and produces a configuration for which the 
verification will succeed (if such a configuration exists). 

Multicore Confidence

Principal Investigator
DR. BJÖRN ANDERSSON
Principal Researcher

IN CONTEXT
This FY2019 project

• builds on prior DoD line-funded research 
and sponsored work on timing verification of 
undocumented multicore, verifying distributed 
adaptive real-time systems, high-confidence cyber-
physical systems, and real-time scheduling for 
multicore architectures

• aligns with the CMU SEI technical objective to bring 
capabilities through software that make new missions 
possible or improve the likelihood of success of 
existing ones
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After machine learning (ML) systems are deployed, their 
models need to be retrained to account for differences 
between characteristics of training and production data. 
These differences over time lead to inference degradation—
negative changes in the quality of ML inferences—which 
eventually reduces the trustworthiness of systems [DSB 
2016; Gil 2019]. In DoD systems, failure to recognize 
inference degradation can lead to costly reengineering, 
system decommissioning, and misinformed decisions.

In DoD systems, failure to 
recognize inference degradation 
can lead to costly reengineering, 
system decommissioning, and 
misinformed decisions. 
Ideally, inference degradation would be quickly and 
reliably identified in production ML systems, allowing 
appropriate action to be taken (e.g., retraining, cautioning 
users, or taking a capability offline). The state of 
engineering practice in industry relies on periodic 
retraining and model redeployment strategies to evade 
data drift, without monitoring inference degradation. 
Without an analytic basis for the retraining interval, this 
frequent retraining strategy risks correcting for inference 
degradation too slowly (i.e., bad inference may be the 
basis for actions) or redeploying models too frequently 
(overconsuming potentially limited bandwidth if deployed 
in tactical scenarios and increasing the risk of taking a 
capability offline due to redeployment errors) [Diethe 
2018; Manning 2018; and Tarraf 2019].

We propose to develop novel metrics that predict when  
a model’s inference quality (e.g., positive predictive value 
[PPV], accuracy) will degrade below a threshold. The 
expected benefits of the metrics are that they will be able 
to determine (1) when a model really needs to be retrained 
so as to avoid spending resources on unnecessary 
retraining, and (2) when a model needs to be retrained 
before its scheduled retraining time so as to minimize the 
time that the model is producing sub-optimal results. 

Predicting Inference 
Degradation in 
Production ML Systems

Principal Investigator
DR. GRACE LEWIS
Principal Researcher / TAS Initiative Lead
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We will focus on models based on convolutional neural 
networks (CNNs) for object detection and will use a 
publicly available satellite image data set as the source 
for test data. To further scope our study, we will focus on 
inference degradation stemming from the occurrence of 
data drift (frequency, recurrence, and abruptness drift).

Our vision for this work is that (1) our new metrics 
are incorporated into model development pipelines 
to provide better information on actions to take due 
to inference degradation, which includes starting the 
retraining process in a timely manner in order to provide 
continuous operations within accuracy thresholds, and (2) 
the community starts developing metrics and leveraging 
our test bed for models other than those based on CNNs 
and looks beyond drift metrics as the only predictor of 
inference degradation.

IN CONTEXT
This FY2021 project

• aligns with the CMU SEI technical objectives to 
bring capabilities that make new missions possible 
or improve the likelihood of success of existing 
ones and to be timely to enable the DoD to field new 
software-enabled systems and upgrades faster than our 
adversaries

The models we are developing to 
study inference quality are based on 
convolutional neural networks (CNNs) 
for object detection and will use a 
publicly available satellite image data 
set as the source for test data. To 
further scope our study, we will focus on 
inference degradation stemming from 
the occurrence of data drift (frequency, 
recurrence, and abruptness drift).
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The potential of quantum computing, especially near 
term, is not going to be realized without close integration 
with state-of-the-art classical computing. Universal gate 
(UG) quantum computers share many foundational 
features with classical computers. Furthermore, UG 
quantum computers must show advantage against state-
of-the-art classical software and/or hardware, and the 
two computing paradigms will be critically integrated as 
complementary technologies.

A major gap in achieving quantum advantage is the 
identification of applications in which quantum computing 
could provide computational advantage (in terms of time 
to solution, quality of solution, etc.). It is unclear which 
potential applications will realize quantum advantage 
among a variety of hardware, such as various UG 
technologies (e.g., superconducting qubit, trapped and 
neutral-atoms, photonics). Variation in hardware is typical 
in the near-term, noisy, intermediate-scale quantum (NISQ) 
computing era. This is a software–hardware co-synthesis 
challenge for quantum computing in the near-term.

UG quantum computing has emerged 
as the […] quantum computing 
technology that can demonstrate not 
just quantum supremacy […] but 
also quantum advantage.
This project aims to produce a novel classical computing 
emulation and software–hardware co-synthesis framework 
for quantum computing technology aimed at applications 
driven by the portfolio of DoD research. UG quantum 
computing has emerged as the near-term (5- to 10-year) 
quantum computing technology that can demonstrate not 
just quantum supremacy (performing a computation not 
possible with a classical computer, regardless of usefulness), 
but also quantum advantage (performing a useful 
computation better and/or faster than a classical computer).

Projecting Quantum 
Computational 
Advantage versus 
Classical State of the Art 

Principal Investigator
DR. JASON LARKIN
Senior Researcher
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IN CONTEXT
This FY2019–21 project

• relates to DoD interest in applying quantum computing 
to mission capability

• aligns with the CMU SEI technical objective to 
make software trustworthy in construction, correct 
in implementation, and resilient in the face of 
uncertainties, including known and yet-unseen 
adversary capabilities

• aligns with the CMU SEI technical objective to bring 
capabilities through software that make new missions 
possible or improve the likelihood of success for 
existing missions

• provides a gateway into futuristic computing 
architectures and increased computational power for 
artificial intelligence and machine learning

Fig 4. Quantum Advantage Evaluation Framework (QAEF)
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SEI COLLABORATORSThe DoD has directed a shift toward continuous integration/
continuous deployment (CI/CD) to maintain a competitive 
edge [McMurry 2018]. It is currently standard to run 
automated unit, integration, and stress tests during CI 
builds, but static analysis (SA) tools are not always part of 
builds because CI time frames are too short. However, SA 
tools could detect code flaws that are cheaper to fix earlier 
in the development process during CI builds. 

It is increasingly common to use multiple SA tools and 
combine their alerts to maximize the identification of 
potential security flaws [Delaitre et al. 2018]. However, 
current SA tools produce some false positive (FP) alerts 
that require humans to inspect the code and manually 
adjudicate true vs. false alerts [Heckman 2011]. We use 
the term alertCondition to designate an alert from a 
tool mapped to a member of an external taxonomy of 
conditions (code flaws), for instance, CWE-190 from the 
CWE taxonomy. If SA is used within CI, alertConditions 
could stop a build and force human adjudication of true 
positive (TP) vs. FP, which slows development but might 
net an acceptable tradeoff if the slowdown is limited and/
or occasional. Furthermore, many previously adjudicated 
FP alerts reappear each time an SA tool is run on a 
subsequent code version.

This research project will use 
machine learning and semantic 
analysis of data generated during 
CI/CD to reduce the number 
of alerts requiring human 
adjudication by 50%.
To maintain development velocity, DoD organizations with 
a continuous authority to operate (ATO) process have been 
forced to make tradeoffs in their security development 
testing and evaluation processes. For example, one 
organization removed SA tools from the CI/CD process, 
substituting a more expensive, less agile, and later manual 
review. Another kept SA tools, but reduced their sensitivity 

Rapid Adjudication  
of Static Analysis Alerts 
During Continuous 
Integration

Principal Investigator
DR. LORI FLYNN
Senior Software Security Engineer

and analyzed only a small subset of the alerts, which 
introduced false negatives. We take the latter approach as 
a starting point, our goal being to increase efficiency by 
automating this process.

This research project will use machine learning and 
semantic analysis of data generated during CI/CD to reduce 
the number of alerts requiring human adjudication by 
50% in multiple SA tool deployments without slowing the 
development process. More specifically, this project will

• improve the state of the art in reducing false positives 
and integrating SA tools into CI/CD processes

• improve the state of the practice by delivering  
and validating a prototype system that implements  
the new algorithms and measures the effectiveness  
of the techniques 

IN CONTEXT
This FY2020–21 project

• builds on a number of previous projects, including 
“Rapid Construction of Accurate Automatic Alert 
Handling System: Model & Prototype” and “Running in 
the Cloud Without Breaking the Bank” 

• aligns with the CMU SEI technical objective to make 
software trustworthy in construction, correct in 
implementation, and resilient in the face of operational 
uncertainties, including known and yet-unseen 
adversary capabilities 
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The DoD recognizes the need to field new cyber-physical 
systems (CPS) capabilities at an increasingly rapid pace, 
which is why it maintains a number of initiatives on rapid 
deployment. The demand for more rapid deployment, 
however, creates a need for verification techniques that can 
adapt to a faster deployment cadence, especially for CPS 
that are too big for traditional verification techniques and/
or involve unpredictable aspects, such as machine learning.

The goal of Rapid Certifiable Trust is to reduce the 
deployment time of CPS by reducing the overall 
development and assurance times. We will do this by 
enabling the use of unverified commodity software 
components (e.g., open source drone piloting software) 
guarded by verified enforcers that guarantee the 
containment of unsafe component behavior. We are 
developing compositional verification techniques 
to allow us to use multiple enforced components 
minimizing and automatically removing conflicting 
enforcer assumptions (e.g., reducing a plane’s airspeed 
to avoid a crash while increasing airspeed to prevent 
stalling). These techniques will allow us to assure 
full-scale systems, even if most of their functionality is 
implemented by unverified components.

The goal of Rapid Certifiable Trust 
is to reduce the deployment time 
of CPS by reducing the overall 
development and assurance times.

Rapid Certifiable Trust

Principal Investigator
DR. DIONISIO DE NIZ
Technical Director, Assuring Cyber-Physical Systems

IN CONTEXT
This FY2020–22 project 

• seeks to verify software-reliant systems that interact 
with physical processes (e.g., aircrafts) to which existing 
verification technology does not scale 

• will develop enforcing algorithms to identify unsafe 
control actions and replace them with safe actions

• uses drones to validate our approach in the SEI’s drone lab

• aligns with the CMU SEI technical objective to make 
software trustworthy in construction, correct in 
implementation, and resilient in the face of operation 
uncertainties

• also aligns with the CMU SEI technical objective to 
make software delivery timely so that the cadence of 
acquisition delivery and fielding is responsive to and 
anticipatory of the operation tempo of DoD warfighters
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Modern software documentation processes in 
development, security, and operations (DevSecOps) 
software development lifecycles (SDLCs) are inadequate, 
time consuming, and difficult to quantify quantitatively. 
Anecdotally, any software documentation process can 
be painful [Shorter 2020]. For any given continuous 
integration/continuous deployment (CI/CD) SDLC 
methodology, crafting and maintaining high-quality 
software documentation content can be a subjective, 
tedious, meticulous process requiring significant 
understanding and domain knowledge. Additionally, in 
modern Agile CI/CD or DevSecOps sprinting paradigms, 
human-in-the-loop (HITL) software documentation 
blockers detract from development success-gauging 
metrics. This situation inspires negative perceptions of 
current documentation processes and efforts to mitigate 
the blocker through substandard (or even non-existent) 
iterative documentation efforts. 

The README research initiative is a strategic step forward 
towards a descriptive content generative process in modern 
DoD DevSecOps SDLCs. The README proof of concept 
(POC) is not a templating engine. Rather, the primary 
differentiator between the README POC approach and 
emerging approaches in Development, Documentation, and 
Operations (DevDocOps) is that software documentation 
content is directly inferred from the underlying source code 
itself, backed by the SDLC cadence via DevSecOps policy.

The README approach relies on leveraging a machine 
learning (ML) modular architecture for learning the 
nuanced associations between Python3.8 source code and 
corresponding software engineering (SWE) descriptive 
lexicon language, in an unsupervised manner, from 
thousands of open source publicly available repositories’ 
commit transaction histories. The README POC release 
establishes a viable cross-domain forward inference POC 
model learned from software repositories, and a minimum-
viable-product (MVP) DevSecOps service prototype of the 
model as an exemplar. 

The README ML cross-domain translation architecture 
is defined as a latent translation bridging model nested 
between two pretrained models over orthogonal data 

README: A Learned 
Approach to 
Augmenting Software 
Documentation

Principal Investigator
DAN DECAPRIA
Senior Data Scientist

modalities [Tian 2019]. The README project refers to the 
nesting-based approach of pretrained models for cross-
domain latent translation as the “Matryoshka Technique,” 
facilitating domain modularity with a deeper network-
forward through pretrained nested model reuse. The 
Matryoshka Technique provides a modular experimental 
harness for training and validation (T&V) of multiple 
pretrained models, under varying pretrained configuration 
hyper-parameterizations, for learning a nested, shared, 
latent space modeling structure between them.

For a software documentation content generative process, 
the cross-domain latent translation ML model, identified 
through this README research initiative, at reconstruction 
of each pretrained model’s intermediate latent encodings, 
is a conditional variational auto-encoder (CVAE) nested 
between a pretrained encoder from AST2VEC and a decoder 
from Seq2Seq_SO with StackOverflow SWE vocabularies 
and word-similarity embeddings [Subramanian 2020; 
Paaßen 2021; Cho 2014; Efstathiou 2018].

Results of the README research initiative are a successful 
answer to the research question; the Matryoshka 

Technique for nesting pretrained models for a learned 
cross-domain latent translation between source code 
snippets and SWE subjective language is viable. This 
approach establishes efficacy in a general approach 
facilitating domain modularity with a deeper network-
forward through pretrained nested model reuse.

README will produce the following outcomes and 
deliverables:

• README DevSecOps SDLC MVP Prototype Service; 
Containerized Deployment Service Prototype

• README: A Learned Approach to Augmenting Software 
Documentation technical report

IN CONTEXT
This FY2020–21 project

• contributes to the SEI’s strong portfolio of ongoing work 
in modernizing software development and acquisitions, 
AI, and autonomy

• ligns with the CMU SEI technical objective to bring 
capabilities that make new missions possible or 
improve the likelihood of success of existing ones

• aligns with the CMU SEI technical objective to be 
timely to enable the DoD to field new software-enabled 
systems and upgrades faster than our adversaries

• aligns with the CMU SEI technical objective to be 
affordable such that the cost of acquisition and operations, 
despite increased capability, is reduced and predictable 
and provides a cost advantage over our adversaries
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Fig 7. README POC Model
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Safety Analysis and 
Fault Detection Isolation 
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(SAFIR)
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The operational complexity of cyber-physical systems 
(CPS) forces new autonomous features into day-to-day 
systems, such as vehicles and factories, a phenomenon 
termed Increasingly Autonomous CPS systems (IA-CPS) 
[Alves 2018]. IA-CPS have a complex architecture that 
weaves hardware, AI-enabled functions or decision-
making processes, human operators, and software. They 
are time sensitive and substitute human actions with 
high-frequency real-time algorithms. In such systems, the 
conjunctions of faults and their timed propagation can 
cause fatal incidents, such as those involving autonomous 
cars. In these particular cases, the safety mechanisms 
were either too inefficient to prevent a fault or actually 
caused the incident. 

This situation creates concerns for future DoD programs: 
These systems not only need to be able to detect failures 
and recover once, but they also need to be able to 
reconfigure multiple times—autonomously—as they adapt 
to different situations without human intervention.

The DoD’s AI vision requires advances in safety analysis, 
and fault detection isolation and recovery synthesis (or 
SAFIR) to (1) model and analyze dynamic reconfiguration 
and fault propagation due to fault sequences, and (2) 
enforce safe reconfiguration. For these two concerns, 
SAFIR will improve architecture-led safety assessment 
processes by delivering new tool-supported analysis and 
code generation capabilities to designers.

These systems not only need to be 
able to detect failures and recover 
once, but they also need to be able 
to reconfigure multiple times—
autonomously—as they adapt to 
different situations without human 
intervention. 

SEI COLLABORATORSMore specifically, we will

• improve the state of practice in safety engineering in 
a model-based systems engineering (MBSE) context 
by considering timing propagation of failures in an 
Architecture Analysis & Design Language (AADL) 
based architectural description and improving 
AADL reconfiguration mechanisms to align with 
Dynamic Fault Tree (DFT) operators, and deliver an 
implementation of these operators

• apply DFT analysis to evaluate the effectiveness of 
existing Fault Detection Isolation and Recovery (FDIR) 
policies, synthesize FDIR policies by processing 
DFT simulation traces, and enrich architectural 
descriptions with specific fault detection and 
reconfiguration mechanisms

SAFIR addresses safety analysis of time-sensitive CPS 
in both its theoretical and practical dimensions, and 
contributes to the SEI’s line of research on artificial 
intelligence and autonomy. At the end of the first year, 
SAFIR has established the theoretical foundation to 
perform safety evaluations in the context of time-
dependent failure conditions.

IN CONTEXT
This FY2019–21 project

• builds on SEI expertise in Model-Based Systems 
Engineering, safety analysis and the AADL language, 
and extends past contributions from Integrated Safety 
and Security Engineering (ISSE) and TwinOps 

• aligns with the CMU SEI technical objective to bring 
capabilities through software that make new missions 
possible or improve the likelihood of success of 
existing ones and to be trustworthy in construction and 
implementations

• also aligns with the CMU SEI technical objective to 
be resilient in the face of operational uncertainties, 
including known and yet-unseen adversary capabilities
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DoD cyber-physical systems (CPS) employ commodity 
heterogeneous interconnected computing (CHIC) 
platforms and associated software stacks (e.g., ARM/
Linux) to deliver capabilities at the speed of relevance 
[Osborn 2020; Krazit 2019; Keller 2019; Villarreal 2019]. 
However, the DoD faces a challenge achieving assurance 
in CHIC-centric CPS implementation security, because 
such systems employ multiple hardware platforms and 
multiple, large, layered software. What’s more, these 
systems are frequently produced by disparate developers. 
A recent U.S. Government Accountability Office (GAO) 
report highlights security issues in CHIC-centric CPS 
implementations [GAO 2018].

Our solution focuses on 
development-compatible, 
implementation-level, protected, 
and verifiable execution building 
blocks that retrofit with existing 
code, incrementally, at a fine 
granularity, with composability 
across multiple CHIC stack 
implementation layers.
In this project, we draw from our published broad 
vision and strategy [Vasudevan 2020]. We explore the 
viability of provable, cost-effective, and innocuous 
(applicable on existing software and preserve existing 
functionality, such as NASA innocuity) CHIC-centric CPS 
implementation security [Halloway 2019]. Our solution 
focuses on development-compatible, implementation-
level, protected, and verifiable execution building blocks 
that retrofit with existing code, incrementally, at a fine 
granularity, with composability across multiple CHIC 
stack implementation layers. Our scope in this project is 
the design, implementation, and verification of a critical 
execution path for CPS: secure on-platform sensor access 
that protects the integrity of the existing CPS application 
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Physical Systems

Principal Investigator
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and sensor hardware/driver with trusted control and a 
data path between them. There are three high-level pieces 
to our approach (see Figure 8):

1. Interface confined implementation-level object 
abstractions (überobjects or üobjects): implementation-
level building blocks that form fine-grained monitors 
around a system-level resource (e.g., data memory and 
I/O area) towards a security property

2. Runtime protected set of üobjects (üobject collections): 
a set of üobjects within a given address space at runtime, 
bootstrapped by a platform root-of-trust entity that 
endows memory protection and secure call routings 

3.  An implementation-level assume-guarantee reasoning 
framework that allow us to formally reason about 
interleaved executions of üobjects in the presence 
of unverified (and unavoidable) legacy components 
[Vasudevan 2016]

Among the planned outputs of this project is a 
demonstration of our approach on an off-the-shelf rover 
CPS platform with secure sensor access protection via 
üobjects that allows immunity against an entire class of 
memory integrity attacks. This will serve to showcase 
the viability of our approach to DoD and DoD industrial 
establishments. We will also make open source our 
associated prototype artifacts, code, and documentation 
(e.g., release via GitHub). This will enable DoD and DoD 
industrial establishments to start experimenting with 
üobjects within relevant application domains.

IN CONTEXT
This FY2021 project

• aligns with the CMU SEI technical objective to bring 
capabilities that make new missions possible or 
improve the likelihood of success of existing ones

• aligns with the CMU SEI technical objective to Be 
Trustworthy in construction and implementation, 
and resilient in the face of operational uncertainties 
including known and yet-unseen adversary capabilities.

Fig 8. Technical Approach Overview, Reference Implementation, Evaluation, and Success Criteria
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Commanders and warfighters in the field rely on data, 
and the Department of Defense and U.S. intelligence 
community have an overwhelming data collection 
capability. This capability far outpaces the ability of human 
teams to process, exploit, and disseminate information. 
Artificial intelligence (AI) and machine learning (ML) 
techniques show great promise for augmenting human 
intelligence analysis. However, most AI/ML algorithms are 
computationally expensive, data intensive, and difficult to 
implement efficiently in increasingly complex computer 
hardware and architectures. What’s more, moving very 
large amounts of data through tactical and operational 
military networks requires forward deployment of 
advanced AI/ML techniques to support commanders and 
warfighters in theaters with equipment constrained by cost, 
size, weight, and power (CSWAP). 

If successful, our solution will allow 
platform developers to realize high-
performance AI/ML applications on 
leading-edge hardware architectures 
faster and cheaper.
As the military adopts AI/ML to augment human teams, 
the cost of implementing and re-implementing AI/ML 
software on new hardware platforms will be prohibitive. 
To address these challenges, we propose to build on CMU’s 
Spiral technology, a hardware-software co-optimization 
system that will automatically

• search and select hardware configurations that meet 
CSWAP requirements 

• generate optimized codes for the selected hardware 
configuration and the irregular, data-intensive 
computations required for AI/ML algorithms 

If successful, our solution will allow platform developers 
to realize high-performance AI/ML applications on 
leading-edge hardware architectures faster and cheaper.

These advances will allow for rapid development and 
deployment of capabilities across the spectrum of national 
and tactical needs.
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IN CONTEXT
This FY2019–21 project

• builds on DoD line-funded research and sponsored 
work on automated code generation for future-
compatible high-performance graph libraries, big 
learning benchmarks, GraphBLAS API specification, 
and graph algorithms on future architectures

• is related to a set of programs at the Defense Advanced 
Research Projects Administration (DARPA) under 
the Electronics Resurgence Initiative (ERI) umbrella 
(Hierarchical Identify Verify Exploit [HIVE], Software 
Defined Hardware [SDH], Domain Specific System on 
Chip [DSSoC], etc.) for which the CMU SEI has PWP work

• aligns with the CMU SEI technical objective to be 
affordable such that the cost of acquisition and operations, 
despite increased capability, is reduced and predictable 
and provides a cost advantage over our adversaries

Col. Drew Cukor, USMC, observed, “Rapidly delivering artificial intelligence to a combat zone won’t be easy.” To address this challenge, the 
SEI is developing Spiral/AIML: Co-optimization for High-Performance, Data-Intensive Computing in Resource-Constrained Environments.
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The current challenges to the training and verification of 
secure machine learning (ML) stem from 

1. the difficulty of enforcing quality attributes in a system 
that is trained on data instead of directly constructed 
from requirements 

2. the fundamental advantage that an attacker has, 
namely that the attacker needs to only violate a single 
security policy, while the defender needs to enforce all 
of the security policies

The DoD has not been exempt from these challenges. The 
current state of the art in secure ML is to train systems to 
either enforce a single security policy or train auxiliary 
systems to detect violations of a single security policy. 
Very little extant work focuses on multiple security 
policies. For example, there exist systems in the DoD that 
make high-stakes decisions and yet were also trained on 
sensitive data. This implies that the system should enforce 
at least two security policies simultaneously (i.e., the ML 
system should neither do the wrong thing when presented 
with adversarial input nor reveal sensitive information 
about the training data during its operation).

…the ML system should neither do 
the wrong thing when presented 
with adversarial input nor reveal 
sensitive information about the 
training data during its operation.
In this “Train, but Verify” project, we will attempt to 
address the gap in the state of the art on secure training of 
ML systems with two objectives: 

1. Train secure AI systems by training ML models to 
enforce at least two security policies. 

2. Verify the security of AI systems by testing against 
declarative, realistic threat models.

We consider security policies from the Beieler taxonomy: 
Ensure that an ML system does not learn the wrong thing 
during training (e.g., data poisoning), do the wrong thing 

Train, but Verify: 
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during operation (e.g., adversarial examples), or reveal  
the wrong thing during operation (e.g., model inversion  
or membership inference).

IN CONTEXT
This FY2020-22 project 

• aligns with the CMU SEI technical objective to be 
trustworthy in construction and implementation 
and resilient in the face of operational uncertainties, 
including known and yet-unseen adversary capabilities
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Fig 9. Juneberry, an architecture we created to support our research on Train, but Verify, improves the experience of machine 
learning experimentation by providing a framework for automating the training, evaluation, and comparison of multiple models 
against multiple datasets, reducing errors and improving reproducibility. We’ve made Juneberry available to other researchers 
on GitHub: https://github.com/cmu-sei/Juneberry
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Software-reliant systems need to evolve over time to meet 
new requirements and take advantage of new technology. 
However, all too often the structure of software becomes 
too complicated to allow rapid and cost-effective 
improvements. This challenge is common in long-lived 
DoD systems and not uncommon even in newer systems, 
and it makes isolating a collection of functionality for use 
in a new context, or clean replacement by an improved 
version, difficult. Software refactoring can facilitate such 
changes, but can require tens of thousands of staff hours. 

This project has created a refactoring assistant that generates 
recommended refactorings that isolate functionality from its 
tangle of system dependencies. Our goal is to reduce the time 
required for this kind of software refactoring by two-thirds. 
In one DoD example, a contractor estimated 14 thousand 
hours of software development work alone (excluding 
integration and testing) to isolate a mission capability from 
the underlying hardware platform. If successful, our work 
would reduce the development time required to less than 5 
thousand hours.

Our goal is to reduce the time 
required for this kind of software 
refactoring by two-thirds.
Our prototype combines advances in search-based 
software engineering with static code analysis and 
refactoring knowledge. It is unique in its focus on 
mission-relevant goals as opposed to improving general 
software metrics. This goal is incorporated in genetic 
algorithms through fitness functions that guide the search 
to solutions for the project-specific goal. In practice, 
our prototype recommends solutions that solve more 
than 85% of the problem on typical projects, suggesting 
that our effort reduction goal is obtainable. The search 
algorithm relies on a representation derived from static 
code analysis and uses formalizations of refactorings as 
operations to apply during search.

This work has broad implications for moving existing 
software to modern architectures and infrastructures 
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Our prototype uses a multi-
objective genetic algorithm to 

generate a set of Pareto-optimal 
solutions (recommendations).

Step 1: MoveClass (Duplicati.Server.Database.Notification)
Step 2: MoveInterface (Duplicati.Server.Serialization.Interface.IBackup)
Step 3: MoveClass (Duplicati.Server.Database.Backup)
Step 4: MoveClass (Duplicati.Server.WebServer.RESTMethods.RequestInfo)
Step 5: MoveInterface (Duplicati.Server.Serialization.Interface.ISetting)
Step 6: ExtractStaticClass (Duplicati.Library.AutoUpdater.UpdaterManager, 
{RunFromMostRecent(MethodInfo,System.String,Duplicati.Li-
brary.AutoUpdater.AutoUpdateStrategy), InstalledBaseDir, 
INSTALLED_BASE_DIR}) -> new_class_name_1
   > Supply a more meaningful name for the new Class (new_class_name_1).
Step 7: MoveInstanceMethod (Duplicati.Server.EventPollNotify.SignalNewEv-
ent(), Duplicati.Server.Database.Connection)
   > Convert the instance method to a static method by adding a new 
parameter with a type of the original declaring class.  Also, update all 
references to this within the method to use the new parameter.
   > Convert the member Duplicati.Server.EventPollNotify.m_eventNo to 
public to allow Duplicati.Server.EventPollNotify.SignalNewEvent to 
continue to access it.
   > Convert the member Duplicati.Server.EventPollNotify.m_lock to public 
to allow Duplicati.Server.EventPollNotify.SignalNewEvent to continue to 
access it.
   > Convert the member Duplicati.Server.EventPollNotify.m_waitQueue to 
public to allow Duplicati.Server.EventPollNotify.SignalNewEvent to 
continue to access it.
Step 8: MoveInterface (Duplicati.Server.Serialization.Interface.ISchedule)
Step 9: MoveClass (Duplicati.Server.Strings.Program)
Step 10: ExtractStaticClass (Duplicati.Library.Localization.Short.LC, 
{L(System.String,System.Object), L(System.String), L(System.String,Sys-
tem.Object,System.Object)}) -> new_class_name_2
   > Supply a more meaningful name for the new Class (new_class_name_2).
Step 11: ExtractStaticClass (Duplicati.Library.Common.Platform, 
{IsClientWindows, IsClientPosix}) -> new_class_name_3
   > Supply a more meaningful name for the new Class (new_class_name_3).
Step 12: MoveClass (Duplicati.Server.EventPollNotify)

Select and implement 
a solution that suits 

your context.
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such as service-based, microservice, cloud environments, 
and containers. It also addresses a pervasive research 
challenge in improving automated support for software 
refactoring tasks.

IN CONTEXT
This FY2019–21 project

• builds on prior DoD line-funded research in software 
architecture analysis, static code analysis, and 
identifying technical debt

• aligns with the CMU SEI technical objective to 
make software delivery timely so that the cadence 
of acquisition, delivery, and fielding is responsive 
to and anticipatory of the operational tempo of DoD 
warfighters

• addresses a widespread, recurring need in software 
organizations (as requirements and technology are 
never frozen in time, the need to adapt working 
software to new contexts is likely to remain a common 
need across many software systems)

Fig 10. Generating Refactoring Recommendations
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