
A Taxonomy of Security-Related Requirements

Donald G. Firesmith
Software Engineering Institute

dgf@sei.cmu.edu

Abstract

Safety and security are closely related subtypes of
defensibility, another quality factor in a quality model.
The close similarity between these two quality factors
implies that a taxonomy of safety-related requirements
is a good place to begin when developing an
analogous taxonomy of security-related requirements.
The resulting taxonomy consists of pure security
requirements specifying minimum acceptable amounts
of security, security-significant requirements which are
non-security requirements with important security
ramifications, security system requirements specifying
requirements for security architectural components,
and security constraints.

1. The Problem

Security engineering has historically emphasized
the use of industry best practices (e.g., firewalls,
encryption) as well as performing vulnerability
analysis and security (e.g., penetration) testing of
existing systems to ensure adequate security. Most
books and articles on security do not provide much
content with regard to security requirements, and what
little that is published tends to emphasize the
specification of ambiguous security goals or else
focuses on architectural constraints. Rarely is either
the required amount of a specific type of security
specified or the security ramifications of non-security
requirements addressed in security processes.
Although security requirements may be mentioned,
they are rarely defined and a clear taxonomy of the
different kinds of security requirements is rarely if ever
used.

This paper addresses the problems associated with a
lack of a clear security taxonomy by identifying four
different types of security-related requirements,
providing them with clear definitions, and placing
them within an organizing hierarchical taxonomy.
This paper does this by recognizing the significant
similarity between safety and security as sister
subtypes of defensibility within a quality model and
reusing the similar identifications, definitions, and
taxonomy of safety requirements [1].

2. Similarities to Safety

2.1. Quality Model and Quality Requirements

A quality model is a concept from the quality and
measurement communities, in which it is used to make
the general term “quality” specific and useful. As
illustrated in Figure 1, a quality model consists of a
taxonomy of constituent quality factors, their
component quality subfactors, and the associated
measures that provide a means to quantify and thereby
measure them. Thus, quality is primarily defined in
terms of quality factors, which are attributes,
properties, or characteristics of a work product that
characterize important aspects of its overall quality.
When a quality model is applied to define the quality
of a specific system, system-specific quality criteria are
developed which describe the system in terms of the
quality factors and subfactors and thereby provide
evidence for the existence of those quality factors and
subfactors. For example, performance is a quality
factor and throughput is one of its quality subfactors.
Throughput can be measured in terms of operations
completed per unit time. Thus, “the system updates
the radar display every 50 milliseconds” is an example
quality criterion using the measure “number of updates
per millisecond.” As illustrated in Figure 2, it is only a
small step to add a minimum acceptable threshold to
turn the performance criterion into the unambiguous
and testable performance requirement: “The system
shall update the radar display at least once every 50
milliseconds.”

As illustrated in Figure 3, safety, security, and
[military] survivability are all subtypes of defensibility,
which is a subtype of dependability, which in turn is a
type of quality factor [1][2]. As illustrated in Figure 4,
safety and security share a great many quality
subfactors because they are both subtypes of the same
quality factor. These subfactors can be classified using
multiple inheritance into the two inheritance trees for
defensibility problem types and defensibility solution
types.

Safety and security are closely related quality
factors in a system’s quality model because they both

describe important related attributes or characteristics
of the system’s overall quality [3][4]. Safety and
security are subtypes of defensibility quality factor
because they are both primarily concerned with the
protection of valuable assets from harm, which is a
significant negative consequence to the asset. These
assets are people, property, services, and the
environment that are significantly valuable to
legitimate stakeholders and for which the system is
responsible for protecting from harm.

As illustrated in Figure 5, the essential difference
between safety and security is that safety deals with
accidental harm, whereas security deals with
malicious harm, which is harm resulting from attacks
or probes by someone or something (e.g., viruses)
playing the role of attacker.

Quality Model

Quality
Subfactor

Quality
Factor

System-Specific
Quality Criterion

Quality
Measure

measuresprovides
evidence for
existence of

System

describes quality of

is measured
using

provides
evidence for
existence of

Figure 1: Quality Model

Quality Model

Quality
Subfactor

Quality
Factor

System-Specific
Quality Criterion

Quality
Measure

measuresprovides
evidence for
existence of

System

describes quality of

is measured
using

provides
evidence for
existence of

Quality Requirement

Quality
Measurement
with Threshold

limits

provides
unit of

measure for

Figure 2: Quality Requirements

As illustrated in Figure 6, unauthorized harm to
valuable assets occurs during incidents, which are any

unplanned, unintended, unauthorized, (but not
necessarily unexpected) events or series of related
events that could cause unintended harm to one or
more valuable assets. Safety incidents are either
accidents (harm occurs) or near misses, whereas
security incidents are successful attacks (harm occurs),
unsuccessful attacks (harm does not occur), and probes
or scans (i.e., preparations for attacks). Note that
attacks can be classified multiple ways and that there
are many different kinds of attacks. This leads to the
existence of multiple security requirements mandating
that the system properly handle such attacks.

Figure 3: Safety and Security as Kinds of
Defensibility

Defensibility
SubfactorDefensibility

Defensibility
Problem Type

Defensibility
Solution Type

Incident

Danger

Risk

Harm

Quality SubfactorQuality Factor

System-Specific
Quality Criterion

Quality
Measure

measures
provides

evidence for
existence of

System

describes the
quality of the

is measured
using

provides
evidence for
existence of

Prevention

Detection

Reaction

Adaptation

Safety

Figure 4: Defensibility Subfactors

may occur to a

Unintentional
(Accidental)

Harm

Attacker-Caused
(Malicious)

Harm

Authorized
Harm

Unauthorized
Harm

Harm Valuable
Asset

Harm to
People

Harm to
Property

Harm to
Service

Denial of
Service (DOS)

Unauthorized
Usage (Theft)

CorruptionDestruction

Damage

Corruption

Theft

Unauthorized
Access

Unauthorized
Disclosure

Harm to
Environment

Destruction

Damage

Death

Injury

Illness

Kidnap

Corruption
(bribery or
extortion)

Safety Security

Loss of Use

Hardship

e.g., caused to
enemy forces by

weapons systems

Repudiation of
Transaction

Survivability

Accidental
Loss of Service

Figure 5: Accidental vs. Malicious Harm

Figure 6: Safety and Security Incidents

In order to prevent these undesired incidents, one
typically begins by identifying the dangers that can
cause them. Specifically, a danger is one or more
conditions, situations, or states of a system that in
conjunction with conditions in the environment of the
system can cause or contribute to the occurrence of
one or more related incidents. As illustrated in Figure

7, dangers are classified into hazards and threats,
whereby hazards can cause safety incidents and threats
can cause security incidents. For example, a safety
hazard for an automated people mover would be a
moving train (condition 1) with open doors (condition
2).

Environment System

relevant

Incident

Unauthorized Harm

Attacker
involves the

existence and profile of

Valuable Asset

may occur to

may cause

Danger

Hazard Threat

may result in

SecuritySafety Survivability

State

is responsible for
protecting or

not harming any

Figure 7: Safety Hazards vs. Security Threats

One reason that hazard or threat analysis is used to
analyze dangers is to determine the associated risks so
that risk mitigation can occur. Risk is usually defined
as the probable magnitude of the potential harm to one
or more assets that can occur due to a danger and is
conservatively estimated as the maximum credible
harm multiplied by the estimated probability that the
associated accident or successful attack occurs. And
as before, risks can be classified as either safety risks
due to hazards or security risks due to threats.

2.2. Safety-Related Requirements Taxonomy

The great similarity between safety and security
implies that it would be beneficial to first look at a
previously published taxonomy of the different kinds
of safety-related requirements [5] [6] before attempting
to produce an analogous taxonomy of security-related
requirements.

As illustrated in Figure 8, the taxonomy of safety-
related requirements includes:
• Safety requirements, which specify a minimum

acceptable amount of safety in terms of a pair of
orthogonal defensibility subfactors. Such ‘pure’
safety requirements are specified in terms of a
quality criterion involving these safety subfactors

and minimum acceptable thresholds on associated
quality measures.

Figure 8: Taxonomy of Safety-Related
Requirements

Because as illustrated in Figure 4, there are four
defensibility problem types (i.e., harm, incident,
danger, and risk) and four defensibility solution
types (i.e., prevention, detection, reaction, and
adaptation) that can be independently selected,
there are 16 different kinds of associated safety
requirements. An example of a harm prevention
safety requirement is “The automated people
mover (APM) system shall not cause a passenger
injury requiring hospitalization more than an
average of once every 10,000 passenger trips.”
An example of an incident detection safety
requirement is “The APM system shall detect the
collision of two vehicles with a relative velocity of
more than 2 miles per hour at least 99.9% of the
time.” An example of a hazard reaction safety
requirement is: “If the APM system detects the
‘train movement with open doors’ hazard, then the
APM system shall within 1 second (1) notify the
passengers that the train will stop, (2) notify the

passengers in the affected cars to stay away from
the open doors, (3) begin stopping at the
maximum safe speed, and (4) notify the operator.”

• Safety-significant requirements, which are non-
safety requirements that have significant safety
ramifications (e.g., safety-critical requirements).
These are the requirements along the upper left
side of Figure 8 that have a safety importance
level (SIL) from 1 (Minor) through 5 (Intolerable).
For example, the functional requirements to open
doors, close doors, starting trains, and stopping
trains all have significant safety ramifications and
a SIL of 3 or 4 , whereas functional requirements
to announce upcoming stations do not and have a
SIL of 0.

• Safety system requirements, which are
requirements for safety systems or subsystems
such as the emergency core-coolant systems of
nuclear power plants or the fire detection and
suppression systems of airplanes.

• Safety constraints, which are safety-related
architecture, design, coding, or testing constraints
that are imposed as if they were normal
requirements. An example safety architecture
constraint is “The APM system architecture shall
not include a component the failure of which can
cause a SIL 4 requirement to be violated.” An
example safety implementation constraint is “The
APM system software shall be programmed using
a safe subset of C++.”

3. Corresponding Security Taxonomy

This section of the paper presents a taxonomy of
security requirements that is analogous to a previously
published taxonomy of safety requirements. It is based
largely on the similarity of security and safety as sister
subfactors to the quality factor defensibility.

3.1. Security Requirements

If you consider security to be a quality attribute of
the system, the pure security requirements are no
different than any other quality requirement. All
quality requirements have the same structure; they
specify a minimum amount of the quality factor in
terms of a quality criterion and one or more required
thresholds on associated measures [6]. A quality
criterion is a system-specific statement about the
existence of a subfactor of the quality factor.
Therefore, a security requirement should consist of a
security criterion together with associated minimum
required threshold(s) on appropriate measure(s). As a
kind of dependency, security like safety has two sets of
security subfactors:

• Defensibility Problem Type:
• Malicious Harm to Valuable Asset
• Security Incidents (e.g., attacks and probes)
• Security Threats (security subtype of

danger)
• Security Risks, which are a combination of

the frequency of attack or threat occurrence
and the resulting harm

• Defensibility Solution Type:
• Prevention of malicious harm, security

incidents, security threats, and security risks
• Detection of malicious harm, security

incidents, security threats, and security risks
(e.g., detection of an attack or the existence of
a security hazard such as the existence of new
viruses)

• Reaction to detected malicious harm, security
incidents, security threats, and existence of
security risks (e.g., recording information
about the incident, notifying security
personnel, limitation and repair of damage,
and returning the system to a secure state)

• Adaptation of system to avoid or minimize
the negative consequences of malicious harm,
security incidents, security threats, and
security risks

As illustrated in figure 9, the classification of
malicious harm to valuable assets into denial of service
(DoS), unauthorized disclosure, corruption,
repudiation leads to the corresponding traditional
primary types of security policy violations:
availability, confidentiality (including privacy and
anonymity), integrity, and nonrepudiation. Thus,
security requirements related to preventing, detecting,
reacting, and adapting to malicious harm can be further
classified as availability, confidentiality, integrity, and
nonrepudiation requirements. Security requirements
associated with identification, authentication, and
authorization can now be viewed as derived
requirements because only identified and authenticated
people, applications, and systems are authorized to:
• Use services (availability).
• See private or classified data or be anonymous

(confidentiality).
• Create, modify, and delete assets (integrity).

The following are examples of pure security
requirements:
• Prevention of Harm: “The system shall prevent

the corruption of confidential data by at least 99%
of the attacks that last no longer than 1 hour and
are made by attackers with profile X.”

• Detection of Attack: “The system shall detect the
presence of at least 99.9% of denial of service
attacks.”

• Reaction to Harm: “Upon detection of corrupted
data, the system shall notify the security engineer
within 5 seconds at least 99.99% of the time.”

• Adaptation to Attacks: “The system shall use
virus definitions and a virus scan engine that have
been updated within the previous 24 hours, if such
an update exists.”

Valuable Asset

Denial of Service
(lost “availability”)

Attacker-Caused (Malicious)
Harm

Unauthorized
Disclosure

(lost confidentiality)

Corruption
(lost integrity)

Successful
Repudiation of

Transaction
(lost nonrepudiation)

Data
Corrupted

Hardware
Corrupted

Software
Corrupted

People
Corrupted

Data Hardware Software PeopleService Money

may occur to may occur to

may
occur

to

may occur tomay occur to

may occur to

Figure 9: Harm to Valuable Assets (Security)

Pure security requirements are not traditionally
specified for several reasons. First of all, requirements
and security engineers have typically not been trained
in how to identify, analyze, and specify such
requirements. Good security requirements are difficult
to specify because it is difficult to determine
quantitative thresholds that are acceptable to both
customer and developer representatives. Such
unambiguous requirements must be verifiable in
practice as well as theory. Thus, appropriate types and
levels of verification techniques need to be determined
to be sufficient to meet the thresholds of the
corresponding security requirements. These
verification techniques can include inspection,
demonstration, and security testing such as penetration
testing.

3.2. Security-Significant Requirements

Some functional, data, interface, and quality (e.g.,
interoperability, performance) requirements clearly
have significant security ramifications, whereas others
do not. For example, some requirements may address
the storing and manipulation of sensitive information,
whereas other requirements may address the display of

publicly accessible information of relatively little
importance. Clearly from a security standpoint, it is
more important to properly implement those
requirements with major security ramifications than it
is to implement those requirements with little or no
security significance. The safety community has
developed a standard approach to solving this problem
of requirements relevance, and the similarity between
safety and security implies that it is definitely worth
considering if something similar can be done for
security [7].

As illustrated in Figure 10, the security team can
generate a security importance level (SIL) matrix
based on a security analysis of credible harm to
valuable assets, potential security incidents, associated
threats, and security risks. They can then use the SILs
to categorize non-security requirements in a manner
similarly to the using of safety integrity levels to
categorize non-safety requirements. The resulting
categories are useful for assigning security evidence
assurance levels (SEALs) for certification and
accreditation purposes. Note that ALARP in the
following matrix means “As Low as is Reasonably
Practical” and is used to signify that the corresponding
SEAL for the implementing components should
mandate the use of sufficient tools and techniques to
make their contribution to security risk as low as is
reasonably practical.

Security Risks / Security Importance Levels (SILs)

 Frequency of Attack / Threat Occurrence
Harm

Severity

Frequent

Probable

Occasional

Remote

Implausible
Catastrophic Intolerable Intolerable Intolerable Undesirable ALARP

Critical Intolerable Intolerable Undesirable ALARP ALARP
Marginal Undesirable Undesirable ALARP ALARP Acceptable
Negligible ALARP ALARP ALARP Acceptable Acceptable

Figure 10: Security Importance Levels (SILs)

The equivalence of safety SEALs and security
SEALS is not without precedence in industry. It has
for example been informally addressed on one large
aerospace program that I have been associated with in
a security policy that requires that all software with
major security ramifications (i.e., the equivalent of
“security-critical” software) be given a high safety
SEAL level and developed to the same strict standards.
The identification of security-significant requirements
with analogous SIL and SEAL levels merely
formalizes this relationship and enables security to
have its own appropriate levels and more importantly
its own appropriate mandated techniques (e.g.,
required amounts of threat analysis and penetration
testing) for security certification.

3.3. Security-System Requirements

Many safety-critical systems have associated
subsystems that exist purely for safety’s-sake. The
emergency core-coolant system of a nuclear power-
plan is the canonical example, but an airplane’s fire
detection and suppression system is another common
example.

Similarly, systems with significant security needs
also often have subsystems or other major architectural
components that exist only to ensure adequate security.
Examples include:
• Access control subsystems, which are

responsible for providing identification,
authentication, and authorization.

• Encryption/decryption subsystems, which are
responsible for ensuring required levels of
confidentiality, non-repudiation, and the integrity
of messages.

• Antivirus packages, which are responsible for
ensuring required levels of the integrity of
software.

Assuming that they are derived subsystem-level
requirements, any requirements associated with such
security subsystems are clearly security-related and are
security-system requirements.

3.4. Security Constraints

A constraint is typically an engineering decision
that is treated during requirements engineering as if it
were a requirement even though it would ordinarily be
made during architecture development, design,
implementation, integration, or testing. Thus, a
security constraint is typically a mandated security
policy or countermeasure such as mandating specific
approaches for ensuring a security requirement or
requiring specific configuration levels when using a
countermeasure. Whereas security constraints are in
many ways no different than other types of constraints,
because they are specified for security reasons, they
are subject to security certification and accreditation
like other security-related requirements. Some security
constraints are required by a relevant security
regulation, standard, or law. In fact, some security
constraints merely mandate compliance with such a
regulation, standard, or law, and therefore act as a way
to group the numerous constraints included in the
regulation, standard, or law.

The following are typical examples of security
constraints:
• Identification and Authentication. “The

application shall require users to use a password
that is at least 6 characters long and modify their

passwords at least once a month.” It is well
known that user identifiers (IDs) and passwords
are typically the least secure methods for
identification and authentication. Requirements
should not unnecessarily constrain the architects
from using more secure countermeasures such as
biometrics and smart cards. Yet when teaching
use case modeling, any mention of identification
and authentication almost always includes
requiring the user to enter his or her password,
thereby preventing the architect from considering
the incorporation of a potentially more effective
thumbprint reader [8][9][10].

• Encryption. “The application shall use a COTS
public-key encryption and decryption package to
ensure that confidential data remains secure.”
Although using such commercially-available
encryption product is typically the best choice for
ensuring the confidentiality of confidential data,
other security policies and countermeasures exist
and should be considered. For example:
• Too often, applications unnecessarily collect

and store confidential data.
• Too often, applications do not delete

confidential data when it is no longer needed.
• Steganography can be used to hide messages

within pictures.
• Integrity and Nonrepudiation. “The application

shall use the MD5 128-bit hash code to ensure the
detection of corrupted messages.” Although hash
codes are commonly used to create digital
signatures that enable the message sender to be
identified as well as any corruption of the
message, there are multiple types of hash codes,
128-bits may or may not provide an appropriate
amount of security given the value of the data to
be protected as well as any performance
requirements, and the constraint seems to imply
that the developers must develop their own
security software rather than using a
commercially-available package.

3.5. Security-Requirements Taxonomy
Figure 11 illustrates the taxonomy of security-

related requirements resulting from the combination of
the different kinds of security-related requirements in
the previous 4 sections. The two sets of 4 subtypes of
security requirements in the upper right part of the
figure combine to produce the 16 different kinds of
pure security requirements. The 5 different kinds of
non-security requirements along the upper left side of
the figure with a security importance level (SIL) from
1 through 5 form the security-significant requirements.
The security system requirements in the lower right

part of the figure are those system requirements
allocated to security subsystems. Finally, the security
constraints are shown on the right side of the figure as
a subtype of ordinary constraints.

Note that this taxonomy is quite different than the
Volere Requirements Taxonomy [11], which follows a
more traditional and simpler view of security
requirements.

System
Requirements

Main Mission
Requirements

Security System
Requirements

Functional
Requirements

Data
Requirements

Interface
Requirements

Quality
Requirements Constraints

Security
Requiresments

Non-Security
Quality

Requirements

Security-Independent
Requirements

SIL = 0

Security-Intolerable
Requirements

SIL = 5

Security-Critical
Requirements

SIL = 4

Security-Major
Requirements

SIL = 3

Security-Moderate
Requirements

SIL=2

Security-Minor
Requirements

SIL = 1

Security
Constraints

Security-Significant
Requirements

SIL ≥ 1

Asset Harm
Requirements

Security Incident
Requirements

Threat
Requirements

Security Risk
Requirements

Protection of
Valuable Assets
Requirements

Detection of
Security Incidents

Requirements

Reaction to
Security Incidents

Requirements

Adaptation to
Security Incidents

Requirements

S
ec

ur
ity

 In
te

gr
ity

 L
ev

el
 (S

IL
)

Figure 11: Taxonomy of Security-Related
Requirements

4. Uses of the Taxonomy

Using a taxonomy of security-related requirements to
elicit, organize, and manage requirements provides the
following benefits to requirements engineers and
security engineers:
• Training. Engineers can use the taxonomy to

learn about the different kinds of security-related
requirements including their names, definitions,
similarities, and differences. Taxonomies may
also have associated ancillary information such as
good and even bad examples with associated
rationales for the problems with the bad examples.

• Improved Communications. Requirements and
security engineers can use the common terms and
concepts of the taxonomy to improve their

communication, and thereby improving their
collaboration.

• Requirements Completeness. Engineers can
check the requirements specifications against the
taxonomy to ensure that each kind of security-
related requirement is present. Engineers can also
check the security policies to see if they contain
security requirements and constraints in addition
to policies.

• Adequate Emphasis. In current practice, security
constraints and security system requirements have
been emphasized over security requirements and
the analysis of security-significant requirements
(i.e., those with a security importance level greater
than 0). The use of a taxonomy identifying these
four types of security-related requirements helps
to ensure that each type is adequately emphasized.

• Table of Contents. The taxonomy can be used to
structure the part of the requirements specification
table of contents covering the security-related
requirements.

• Checklist. The taxonomy can be used as a
starting point to create a checklist for evaluating
the security-related requirements in the
requirements repository, requirements
specification, or security policies.

• SILs and Cost. The use of security SILs will help
the security and safety engineers to estimate the
costs of specifying the associated requirements
because a requirement with a high security SIL
requires a corresponding high security SEAL for
its implementing components, which very greatly
increases their development, testing, and
certification costs.

• Architecture and SEALs. Knowledge of
security SEALs will help the architect develop the
security architecture, especially with regard to
software decomposition and allocation to
hardware. The high costs of implementing
architectural components with high SEAL levels
will lead to architectures exhibiting high
modularity with regard to SEALs. However,
architects should be aware that the high costs of
high SEAL components may cause strong
management pressures to lower SEAL levels
below that which the associated SILs imply.

• Requirements Tracing. The use of security SILs
and SEALs provides a way of tracing security-
related requirements via SILs through the
architecture via SEALs to the development
process and security testing, which supports the
analysis needed during change management.

5. Opposition to Security Taxonomy

Not everyone will agree with the security taxonomy
presented in this paper. Some members of the security
community feel that their discipline is so different from
safety that relatively little can be learned from safety
engineering. They are very uncomfortable with
security requirements such those described and listed
in section 3.1 because they believe that either
development organizations will not sign up to
implement such requirements or else such
requirements are inherently not verifiable. They argue
that it is impossible to prove that a system is absolutely
secure so mandating best industry practices is the best
that can be done, whereby best practices include use of
policies, firewalls, coding standards, and penetration
testing. Finally, they are concerned because security
involves a constant arms race with attackers as
technology and techniques improve. Thus, even if a
system meets its security requirements during
acceptance testing, it may not meet those same
requirements upon delivery if an effective new exploit
is published the following day. These concerns can
and should be addressed:
• Similarities. Although legitimate differences

exist between safety and security engineering, the
many well documented similarities [1][2] justify at
least considering whether the lessons learned from
the safety discipline are worth exploring.
Unfortunately, security engineering is such a large
and complex discipline that requires so much
concentration and study to master that little time is
typically left for learning other disciplines. Their
inherent similarity, ignorance of related
disciplines, and occasional instances of the not-
invented-here (NIH) syndrome may partially
explain why safety and security have each tended
to grow into the other. Thus, security books
sometimes include accidental harm as well as
malicious harm within the security domain. These
factors may have also partially prevented or
delayed reuse, resulting in unnecessary differences
between the original approach in one domain and
its associated reinvented wheels in the other.

• Acceptability. It is certainly easier for
development organizations to use industry best
practices instead of (as opposed to in addition to)
security-related requirements. But the acquisition
organizations really do have goals (i.e., minimum
levels of security) and best industry practices are
only an indirect way of trying to achieve them.
Converting ambiguous goals into unambiguous
requirements has been shown to be an effective
approach in all other disciplines, so why not

security engineering? Development organizations
will learn to accept security requirements when
they understand them and customers demand such
requirements from the suppliers of their systems.

• Verifiability. Well written security requirements
are verifiable because they are both unambiguous
and feasible. Such requirements do not specify
that the system be absolutely secure, but instead
specify that it be secure in a specific way to a
certain degree. Detractors should note that the
testing processes for all kinds of requirements of
non-trivial applications are always incomplete
because it is impractical or impossible to perform
exhaustive testing. This is why testers develop an
incomplete set of test cases that nevertheless meets
test coverage and completeness criteria. The
system is said to fulfill its requirements if it passes
its acceptance tests. Consider the requirement:
“The system shall prevent the corruption of
confidential data by at least 99% of the attacks
that last no longer than 1 hour and are made by
attackers with profile X.” This requirement has an
associate operational testing approach. If for
example testing is to provide 95% confidence that
requirements have been fulfilled, then one or more
security testers should perform sufficient
penetration tests trying to corrupt representative
confidential data using the techniques and tools of
attackers with the specified profile to provide the
required confidence that 99% of such attacks will
fail. After this testing, the system will have been
determined to have either passed or failed to fulfill
this requirement. In this sense, a security
requirement is no different than any other type of
requirement. No requirement is ever proved to be
100% fulfilled; just fulfilled to the extent shown
by appropriate testing.

• Security Arms Race. This is the most interesting
argument against specifying security requirements
because it addresses a fundamentally real problem.
After acceptance testing, external conditions may
(and probably will) change, causing the system to
no longer meet its specified requirements. The
proper response to this problem is to then update
the system so that it once again meets its
requirements. This is no different from a weapons
system that is required to carry out its mission in
spite of the existence of specific types of military
(as opposed to security) threats. A military arms
race may require the weapons system to be
upgraded because it can no longer fulfill its
required mission because it no longer meets its
military survivability requirements. Once again, if
the system passes mutually agreed upon

acceptance testing, the system can be delivered
and must be accepted. If new or changed security
threats or military threats subsequently change the
environment, the system needs to be upgraded so
that it once again fulfills its unchanged
requirements even if a new development contract
or contract modification or a maintenance contract
is needed for the upgrade.

The bottom line is that the stakeholders have
security goals and requirements that they need the
system to meet. Using security best industry practices
is appropriate, but insufficient to ensure that these
needs are met. One task of security requirements is to
provide that assurance.

6. Conclusions

Based on the similarity between safety and security
as subfactors of the quality factor defensibility, this
paper presents a taxonomy of security requirements
that corresponds to an analogous taxonomy published
for safety requirements. Thus, security requirements
can be decomposed into pure security requirements,
security-significant requirements, security system
requirements, and security constraints. Pure security
requirements specify minimum thresholds of various
subfactors of security; they can be decomposed into
sixteen subtypes (4 defensibility problem types
multiplied by 4 defensibility solution types) of pure
security requirements that specify minimum acceptable
levels of the prevention of, detection of, reaction to,
and adaptation to malicious harm, security incidents,
threats, and security risks. Security-significant
requirements are derived by using harm, incident,
threat, and risk analysis to categorize non-security
requirements in terms of their relative security risks.
Security system requirements are those requirements
associated with security subsystems. And security
constraints are engineering decisions that are treated
during requirements engineering as if they were
security requirements even though they would
ordinarily be made during architecture development,
design, implementation, integration, or testing.

Thus, there exist multiple types of security-related
requirements, and the requirements team should
consider all of them. It is inappropriate for the
requirements to consist only of security constraints
mandating traditional and common security
countermeasures because:
• Different systems must protect different valuable

assets within different environments against
potentially different types of attackers with
different profiles.

• Security technologies and the corresponding
security products that implement them are rapidly
evolving.

• Requirements engineers should not unnecessarily
constrain the choices of security engineers who
have the experience and expertise to make better
architectural choices when selecting appropriate
countermeasures.

On the other hand, requirements engineers should
collaborate with security engineers to ensure that the
resulting requirements adequately cover all types
within the taxonomy of security-related requirements
and have the proper characteristics of good
requirements. By using such a taxonomy to produce a
complete set of security-related requirements, it is
hoped that the architecture team will incorporate the
correct amount of the right types of security
countermeasures, without having their decisions
limited by unnecessary constraints.

While this paper has provided strong reasons to
consider using the taxonomy it provides, several major
questions remain:
• Because the key difference between safety and

security is whether harm is accidental or
malicious, is the active nature of attacks
sufficiently different from the passive nature of
accidents to override the similarities upon which
the taxonomy is based? While the author does not
think so and has addressed how this affects the
fact that systems that pass security requirements
one day may not pass the same requirements the
next day as attacks improve. However, others
disagree and the issue requires significantly more
research and experience before being decided.

• To what extent will using this taxonomy help
requirements and security engineers communicate
and produce unambiguous verifiable security-
related requirements?

• Is the taxonomy really complete? To what extent
will using this taxonomy help ensure that
important types of security-related requirements
are no longer overlooked during requirements
engineering?

• How will the practical limit on the possible
amount of security testing limit the corresponding
probabilities of attacks defeated that can be
specified in security requirements? A statistical
analysis should be performed to determine the
minimum number of security test cases required to
achieve a specific level of confidence that a
specific percentage of attacks will be thwarted
assuming that the tests are representative of the
actual attacks of a given attacker profile.

• Unlike with hardware, it is very difficult to
estimate the probability of a safety hazard or
associated accident when software is involved. It
will be at least as difficult to estimate the
probability of a security risk or associated
successful attack. Safety hazards and accidents
should be rare, but security threats and attacks (if
hopefully not successful) will probably be all too
common. How will this affect the development of
a security risk/SIL matrix? Will it be adequate to
merely have fewer, broader columns and fewer
associated security SILs?

• What are the optimum number of security SIL and
SEAL levels? How should they be defined?
What are the appropriate techniques to use at each
SEAL level to ensure adequate security is
achieved? To what extent will this evidence be
appropriate, acceptable, and useful during
certification?

• Will the use of the same acronyms (SIL and
SEAL) for both safety and security improve the
acceptability of security SILs and SEALs, or will
it instead merely lead to confusion, especially if a
single requirement has different safety and
security SILs (almost certainly) and a single
component has different safety and security
SEALs (quite possible)? Is it adequate to merely
prefix the acronym with the appropriate term if the
scope is not obvious from context?

• Safety SILs and SEALs have historically been
assigned only to safety-significant requirements
and their associated implementing components,
and not to safety requirements, safety system
requirements, and safety constraints. For the sake
of consistency and ensuring adequate use of scarce
development resources, would it not be better to
assign security SILs and SEALs to all security-
related requirements and their components?

• Will this taxonomy help requirements and security
engineers recognize security constraints as such
and enable them to minimize the number of
unnecessary constraints?

• Finally, what about survivability, which protects
valuable military assets from harm resulting from
attack by enemy military forces? As illustrated in
Figure 3, safety, security, and survivability are all
subtypes of the quality factor defensibility and
therefore share similar properties. Should an
analogous taxonomy for survivability-related
requirements exist?

5. References

 [1] D.G. Firesmith, Common Concepts Underlying Safety,
Security, and Survivability, Technical Note CMU/SEI-2003-

TN-033, Software Engineering Institute, Pittsburgh,
Pennsylvania, December 2003.

[2] A. Avižienis, J.C. Laprie, and B. Randell, “Dependability
and its Threats: A Taxonomy,” Proceedings of the Building
of Information Society: Proceedings of IFIP 18th World
Computer Congress: Topical Sessions. 22-27 August 2004,
Toulouse, France, R. Jacquart (ed), pp. 91-120, Boston,
London: Kluwer, 2004.

[3] D. Cooper and D. Jackson, SafSec: Integration of Safety
and Security Certification, SafSec Methodology: Standard,
Issue 2.6, S.P1199.50.2, Praxis Critical Systems 13th May
2004
<http://www.safsec.com/safsec_files/resources/50_2_SafSec
_Method_Standard_2.6.pdf.>

[4] D. Cooper and D. Jackson, SafSec: Integration of Safety
and Security Certification, SafSec Methodology: Guidance
Material, Issue 2.6, S.P1199.50.3, Praxis Critical Systems
13th May 2004
<http://www.safsec.com/safsec_ files/resources/50_2_SafSec
_Method_Standard_2.6.pdf.>

[5] D.G. Firesmith, “A Taxonomy of Safety-Related
Requirements,” Requirements Engineering’2004 (RE’04)
Requirements for High Assurance Systems (RHAS)

Workshop, IEEE Computer Society, Washington, D.C., 6
September 2004.

 [6] D.G. Firesmith, “Engineering Safety Requirements,
Safety Constraints, and Safety-Critical Requirements,”
Journal of Object Technology (JOT), 3(3), Swiss Federal
Institute of Technology (ETH), Zurich, Switzerland, pp. 27-
42, March/April 2004.

[7] D.G. Firesmith, “Analyzing the Security
Significance of System Requirements,” Requirements
Engineering’2005 (RE’05) Symposium on
Requirements Engineering for Information Security (SREIS),
IEEE Computer Society, Washington, D.C., September
2005.

[8] A. Cockburn, Mastering Writing Effective Use Cases,
Addison-Wesley, 2001.

[9] D. Kulak and E. Guiney, Use Cases: Requirements in
Context, Addison-Wesley, 2000.

[10] G. Schneider and J. Winters, Applying Use Cases: A
Practical Guide, Addison-Wesley, 1998.

[11] Suzanne and James Robertson, Mastering the
Requirements Process, Addison-Wesley, 1999.

	A Taxonomy of Security-Related Requirements
	Abstract
	1. The Problem
	2. Similarities to Safety
	3. Corresponding Security Taxonomy
	4. Uses of the Taxonomy
	5. Opposition to Security Taxonomy
	6. Conclusions
	5. References

