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Abstract 
 

Safety and security are closely related subtypes of 
defensibility, another quality factor in a quality model.  
The close similarity between these two quality factors 
implies that a taxonomy of safety-related requirements 
is a good place to begin when developing an 
analogous taxonomy of security-related requirements.  
The resulting taxonomy consists of pure security 
requirements specifying minimum acceptable amounts 
of security, security-significant requirements which are 
non-security requirements with important security 
ramifications, security system requirements specifying 
requirements for security architectural components, 
and security constraints. 
 

1. The Problem 
 

Security engineering has historically emphasized 
the use of industry best practices (e.g., firewalls, 
encryption) as well as performing vulnerability 
analysis and security (e.g., penetration) testing of 
existing systems to ensure adequate security.  Most 
books and articles on security do not provide much 
content with regard to security requirements, and what 
little that is published tends to emphasize the 
specification of ambiguous security goals or else 
focuses on architectural constraints.   Rarely is either 
the required amount of a specific type of security 
specified or the security ramifications of non-security 
requirements addressed in security processes.  
Although security requirements may be mentioned, 
they are rarely defined and a clear taxonomy of the 
different kinds of security requirements is rarely if ever 
used.  

This paper addresses the problems associated with a 
lack of a clear security taxonomy by identifying four 
different types of security-related requirements, 
providing them with clear definitions, and placing 
them within an organizing hierarchical taxonomy.  
This paper does this by recognizing the significant 
similarity between safety and security as sister 
subtypes of defensibility within a quality model and 
reusing the similar identifications, definitions, and 
taxonomy of safety requirements [1]. 

 

2. Similarities to Safety 
 

2.1. Quality Model and Quality Requirements 
 

A quality model is a concept from the quality and 
measurement communities, in which it is used to make 
the general term “quality” specific and useful.  As 
illustrated in Figure 1, a quality model consists of a 
taxonomy of constituent quality factors, their 
component quality subfactors, and the associated 
measures that provide a means to quantify and thereby 
measure them.  Thus, quality is primarily defined in 
terms of quality factors, which are attributes, 
properties, or characteristics of a work product that 
characterize important aspects of its overall quality. 
When a quality model is applied to define the quality 
of a specific system, system-specific quality criteria are 
developed which describe the system in terms of the 
quality factors and subfactors and thereby provide 
evidence for the existence of those quality factors and 
subfactors.  For example, performance is a quality 
factor and throughput is one of its quality subfactors.  
Throughput can be measured in terms of operations 
completed per unit time.  Thus, “the system updates 
the radar display every 50 milliseconds” is an example 
quality criterion using the measure “number of updates 
per millisecond.”  As illustrated in Figure 2, it is only a 
small step to add a minimum acceptable threshold to 
turn the performance criterion into the unambiguous 
and testable performance requirement: “The system 
shall update the radar display at least once every 50 
milliseconds.” 

As illustrated in Figure 3, safety, security, and 
[military] survivability are all subtypes of defensibility, 
which is a subtype of dependability, which in turn is a 
type of quality factor [1][2].  As illustrated in Figure 4, 
safety and security share a great many quality 
subfactors because they are both subtypes of the same 
quality factor.  These subfactors can be classified using 
multiple inheritance into the two inheritance trees for 
defensibility problem types and defensibility solution 
types. 

Safety and security are closely related quality 
factors in a system’s quality model because they both 



describe important related attributes or characteristics 
of the system’s overall quality [3][4].  Safety and 
security are subtypes of defensibility quality factor 
because they are both primarily concerned with the 
protection of valuable assets from harm, which is a 
significant negative consequence to the asset.  These 
assets are people, property, services, and the 
environment that are significantly valuable to 
legitimate stakeholders and for which the system is 
responsible for protecting from harm. 

As illustrated in Figure 5, the essential difference 
between safety and security is that safety deals with 
accidental harm, whereas security deals with 
malicious harm, which is harm resulting from attacks 
or probes by someone or something (e.g., viruses) 
playing the role of attacker. 
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Figure 1: Quality Model 
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Figure 2: Quality Requirements 
 

As illustrated in Figure 6, unauthorized harm to 
valuable assets occurs during incidents, which are any 

unplanned, unintended, unauthorized, (but not 
necessarily unexpected) events or series of related 
events that could cause unintended harm to one or 
more valuable assets.  Safety incidents are either 
accidents (harm occurs) or near misses, whereas 
security incidents are successful attacks (harm occurs), 
unsuccessful attacks (harm does not occur), and probes 
or scans (i.e., preparations for attacks).  Note that 
attacks can be classified multiple ways and that there 
are many different kinds of attacks.  This leads to the 
existence of multiple security requirements mandating 
that the system properly handle such attacks. 

 

 
 

Figure 3: Safety and Security as Kinds of 
Defensibility 
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Figure 4: Defensibility Subfactors 
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Figure 5: Accidental vs. Malicious Harm 
 

 
 

Figure 6: Safety and Security Incidents 
 

In order to prevent these undesired incidents, one 
typically begins by identifying the dangers that can 
cause them.  Specifically, a danger is one or more 
conditions, situations, or states of a system that in 
conjunction with conditions in the environment of the 
system can cause or contribute to the occurrence of 
one or more related incidents.  As illustrated in Figure 

7, dangers are classified into hazards and threats, 
whereby hazards can cause safety incidents and threats 
can cause security incidents.  For example, a safety 
hazard for an automated people mover would be a 
moving train (condition 1) with open doors (condition 
2). 
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Figure 7: Safety Hazards vs. Security Threats 
 

One reason that hazard or threat analysis is used to 
analyze dangers is to determine the associated risks so 
that risk mitigation can occur.  Risk is usually defined 
as the probable magnitude of the potential harm to one 
or more assets that can occur due to a danger and is 
conservatively estimated as the maximum credible 
harm multiplied by the estimated probability that the 
associated accident or successful attack occurs.  And 
as before, risks can be classified as either safety risks 
due to hazards or security risks due to threats. 
 

2.2. Safety-Related Requirements Taxonomy 
 

The great similarity between safety and security 
implies that it would be beneficial to first look at a 
previously published taxonomy of the different kinds 
of safety-related requirements [5] [6] before attempting 
to produce an analogous taxonomy of security-related 
requirements.  

As illustrated in Figure 8, the taxonomy of safety-
related requirements includes: 
• Safety requirements, which specify a minimum 

acceptable amount of safety in terms of a pair of 
orthogonal defensibility subfactors. Such ‘pure’ 
safety requirements are specified in terms of a 
quality criterion involving these safety subfactors 



and minimum acceptable thresholds on associated 
quality measures.   

 

 
 

Figure 8: Taxonomy of Safety-Related 
Requirements 
 

Because as illustrated in Figure 4, there are four 
defensibility problem types (i.e., harm, incident, 
danger, and risk) and four defensibility solution 
types (i.e., prevention, detection, reaction, and 
adaptation) that can be independently selected, 
there are 16 different kinds of associated safety 
requirements.   An example of a harm prevention 
safety requirement is “The automated people 
mover (APM) system shall not cause a passenger 
injury requiring hospitalization more than an 
average of once every 10,000 passenger trips.”  
An example of an incident detection safety 
requirement is “The APM system shall detect the 
collision of two vehicles with a relative velocity of 
more than 2 miles per hour at least 99.9% of the 
time.”  An example of a hazard reaction safety 
requirement is: “If the APM system detects the 
‘train movement with open doors’ hazard, then the 
APM system shall within 1 second (1) notify the 
passengers that the train will stop, (2) notify the 

passengers in the affected cars to stay away from 
the open doors, (3) begin stopping at the 
maximum safe speed, and (4) notify the operator.” 

• Safety-significant requirements, which are non-
safety requirements that have significant safety 
ramifications (e.g., safety-critical requirements).  
These are the requirements along the upper left 
side of Figure 8 that have a safety importance 
level (SIL) from 1 (Minor) through 5 (Intolerable).  
For example, the functional requirements to open 
doors, close doors, starting trains, and stopping 
trains all have significant safety ramifications and 
a SIL of 3 or 4 , whereas functional requirements 
to announce upcoming stations do not and have a 
SIL of 0. 

• Safety system requirements, which are 
requirements for safety systems or subsystems 
such as the emergency core-coolant systems of 
nuclear power plants or the fire detection and 
suppression systems of airplanes. 

• Safety constraints, which are safety-related 
architecture, design, coding, or testing constraints 
that are imposed as if they were normal 
requirements.  An example safety architecture 
constraint is “The APM system architecture shall 
not include a component the failure of which can 
cause a SIL 4 requirement to be violated.”  An 
example safety implementation constraint is “The 
APM system software shall be programmed using 
a safe subset of C++.” 

 

3. Corresponding Security Taxonomy 
 

This section of the paper presents a taxonomy of 
security requirements that is analogous to a previously 
published taxonomy of safety requirements.  It is based 
largely on the similarity of security and safety as sister 
subfactors to the quality factor defensibility. 
 

3.1. Security Requirements 
 

If you consider security to be a quality attribute of 
the system, the pure security requirements are no 
different than any other quality requirement.  All 
quality requirements have the same structure; they 
specify a minimum amount of the quality factor in 
terms of a quality criterion and one or more required 
thresholds on associated measures [6].  A quality 
criterion is a system-specific statement about the 
existence of a subfactor of the quality factor.  
Therefore, a security requirement should consist of a 
security criterion together with associated minimum 
required threshold(s) on appropriate measure(s).   As a 
kind of dependency, security like safety has two sets of 
security subfactors: 



• Defensibility Problem Type: 
• Malicious Harm to Valuable Asset 
• Security Incidents (e.g., attacks and probes) 
• Security Threats (security subtype of 

danger) 
• Security Risks, which are a combination of 

the frequency of attack or threat occurrence 
and the resulting harm 

• Defensibility Solution Type: 
• Prevention of malicious harm, security 

incidents, security threats, and security risks 
• Detection of malicious harm, security 

incidents, security threats, and security risks 
(e.g., detection of an attack or the existence of 
a security hazard such as the existence of new 
viruses) 

• Reaction to detected malicious harm, security 
incidents, security threats, and existence of 
security risks (e.g., recording information 
about the incident, notifying security 
personnel, limitation and repair of damage, 
and returning the system to a secure state) 

• Adaptation of system to avoid or minimize 
the negative consequences of malicious harm, 
security incidents, security threats, and 
security risks 

As illustrated in figure 9, the classification of 
malicious harm to valuable assets into denial of service 
(DoS), unauthorized disclosure, corruption, 
repudiation leads to the corresponding traditional 
primary types of security policy violations: 
availability, confidentiality (including privacy and 
anonymity), integrity, and nonrepudiation.  Thus, 
security requirements related to preventing, detecting, 
reacting, and adapting to malicious harm can be further 
classified as availability, confidentiality, integrity, and 
nonrepudiation requirements.  Security requirements 
associated with identification, authentication, and 
authorization can now be viewed as derived 
requirements because only identified and authenticated 
people, applications, and systems are authorized to: 
• Use services (availability). 
• See private or classified data or be anonymous 

(confidentiality). 
• Create, modify, and delete assets (integrity). 

The following are examples of pure security 
requirements: 
• Prevention of Harm: “The system shall prevent 

the corruption of confidential data by at least 99% 
of the attacks that last no longer than 1 hour and 
are made by attackers with profile X.” 

• Detection of Attack: “The system shall detect the 
presence of at least 99.9% of denial of service 
attacks.” 

• Reaction to Harm: “Upon detection of corrupted 
data, the system shall notify the security engineer 
within 5 seconds at least 99.99% of the time.” 

• Adaptation to Attacks: “The system shall use 
virus definitions and a virus scan engine that have 
been updated within the previous 24 hours, if such 
an update exists.” 
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Figure 9: Harm to Valuable Assets (Security) 
 

Pure security requirements are not traditionally 
specified for several reasons.  First of all, requirements 
and security engineers have typically not been trained 
in how to identify, analyze, and specify such 
requirements. Good security requirements are difficult 
to specify because it is difficult to determine 
quantitative thresholds that are acceptable to both 
customer and developer representatives.  Such 
unambiguous requirements must be verifiable in 
practice as well as theory.  Thus, appropriate types and 
levels of verification techniques need to be determined 
to be sufficient to meet the thresholds of the 
corresponding security requirements.  These 
verification techniques can include inspection, 
demonstration, and security testing such as penetration 
testing. 

 

3.2. Security-Significant Requirements 
 

Some functional, data, interface, and quality (e.g., 
interoperability, performance) requirements clearly 
have significant security ramifications, whereas others 
do not.  For example, some requirements may address 
the storing and manipulation of sensitive information, 
whereas other requirements may address the display of 



publicly accessible information of relatively little 
importance.  Clearly from a security standpoint, it is 
more important to properly implement those 
requirements with major security ramifications than it 
is to implement those requirements with little or no 
security significance.  The safety community has 
developed a standard approach to solving this problem 
of requirements relevance, and the similarity between 
safety and security implies that it is definitely worth 
considering if something similar can be done for 
security [7]. 

As illustrated in Figure 10, the security team can 
generate a security importance level (SIL) matrix 
based on a security analysis of credible harm to 
valuable assets, potential security incidents, associated 
threats, and security risks.  They can then use the SILs 
to categorize non-security requirements in a manner 
similarly to the using of safety integrity levels to 
categorize non-safety requirements.  The resulting 
categories are useful for assigning security evidence 
assurance levels (SEALs) for certification and 
accreditation purposes.  Note that ALARP in the 
following matrix means “As Low as is Reasonably 
Practical” and is used to signify that the corresponding 
SEAL for the implementing components should 
mandate the use of sufficient tools and techniques to 
make their contribution to security risk as low as is 
reasonably practical. 
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Figure 10: Security Importance Levels (SILs) 
 

The equivalence of safety SEALs and security 
SEALS is not without precedence in industry.  It has 
for example been informally addressed on one large 
aerospace program that I have been associated with in 
a security policy that requires that all software with 
major security ramifications (i.e., the equivalent of 
“security-critical” software) be given a high safety 
SEAL level and developed to the same strict standards.  
The identification of security-significant requirements 
with analogous SIL and SEAL levels merely 
formalizes this relationship and enables security to 
have its own appropriate levels and more importantly 
its own appropriate mandated techniques (e.g., 
required amounts of threat analysis and penetration 
testing) for security certification.  
 

3.3. Security-System Requirements 
 

Many safety-critical systems have associated 
subsystems that exist purely for safety’s-sake.  The 
emergency core-coolant system of a nuclear power-
plan is the canonical example, but an airplane’s fire 
detection and suppression system is another common 
example. 

Similarly, systems with significant security needs 
also often have subsystems or other major architectural 
components that exist only to ensure adequate security.   
Examples include: 
• Access control subsystems, which are 

responsible for providing identification, 
authentication, and authorization. 

• Encryption/decryption subsystems, which are 
responsible for ensuring required levels of 
confidentiality, non-repudiation, and the integrity 
of messages. 

• Antivirus packages, which are responsible for 
ensuring required levels of the integrity of 
software. 

Assuming that they are derived subsystem-level 
requirements, any requirements associated with such 
security subsystems are clearly security-related and are 
security-system requirements. 
 

3.4. Security Constraints 
 

A constraint is typically an engineering decision 
that is treated during requirements engineering as if it 
were a requirement even though it would ordinarily be 
made during architecture development, design, 
implementation, integration, or testing.  Thus, a 
security constraint is typically a mandated security 
policy or countermeasure such as mandating specific 
approaches for ensuring a security requirement or 
requiring specific configuration levels when using a 
countermeasure.  Whereas security constraints are in 
many ways no different than other types of constraints, 
because they are specified for security reasons, they 
are subject to security certification and accreditation 
like other security-related requirements.  Some security 
constraints are required by a relevant security 
regulation, standard, or law.  In fact, some security 
constraints merely mandate compliance with such a 
regulation, standard, or law, and therefore act as a way 
to group the numerous constraints included in the 
regulation, standard, or law. 

The following are typical examples of security 
constraints: 
• Identification and Authentication.  “The 

application shall require users to use a password 
that is at least 6 characters long and modify their 



passwords at least once a month.”  It is well 
known that user identifiers (IDs) and passwords 
are typically the least secure methods for 
identification and authentication.  Requirements 
should not unnecessarily constrain the architects 
from using more secure countermeasures such as 
biometrics and smart cards.  Yet when teaching 
use case modeling, any mention of identification 
and authentication almost always includes 
requiring the user to enter his or her password, 
thereby preventing the architect from considering 
the incorporation of a potentially more effective 
thumbprint reader [8][9][10]. 

• Encryption.  “The application shall use a COTS 
public-key encryption and decryption package to 
ensure that confidential data remains secure.”  
Although using such commercially-available 
encryption product is typically the best choice for 
ensuring the confidentiality of confidential data, 
other security policies and countermeasures exist 
and should be considered. For example: 
• Too often, applications unnecessarily collect 

and store confidential data. 
• Too often, applications do not delete 

confidential data when it is no longer needed. 
• Steganography can be used to hide messages 

within pictures. 
• Integrity and Nonrepudiation.  “The application 

shall use the MD5 128-bit hash code to ensure the 
detection of corrupted messages.”  Although hash 
codes are commonly used to create digital 
signatures that enable the message sender to be 
identified as well as any corruption of the 
message, there are multiple types of hash codes, 
128-bits may or may not provide an appropriate 
amount of security given the value of the data to 
be protected as well as any performance 
requirements, and the constraint seems to imply 
that the developers must develop their own 
security software rather than using a 
commercially-available package.  

 

3.5. Security-Requirements Taxonomy 
Figure 11 illustrates the taxonomy of security-

related requirements resulting from the combination of 
the different kinds of security-related requirements in 
the previous 4 sections.  The two sets of 4 subtypes of 
security requirements in the upper right part of the 
figure combine to produce the 16 different kinds of 
pure security requirements.  The 5 different kinds of 
non-security requirements along the upper left side of 
the figure with a security importance level (SIL) from 
1 through 5 form the security-significant requirements.  
The security system requirements in the lower right 

part of the figure are those system requirements 
allocated to security subsystems.  Finally, the security 
constraints are shown on the right side of the figure as 
a subtype of ordinary constraints. 

Note that this taxonomy is quite different than the 
Volere Requirements Taxonomy [11], which follows a 
more traditional and simpler view of security 
requirements. 
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Figure 11: Taxonomy of Security-Related 
Requirements 
 

4. Uses of the Taxonomy 
 

Using a taxonomy of security-related requirements to 
elicit, organize, and manage requirements provides the 
following benefits to requirements engineers and 
security engineers: 
• Training.  Engineers can use the taxonomy to 

learn about the different kinds of security-related 
requirements including their names, definitions, 
similarities, and differences.  Taxonomies may 
also have associated ancillary information such as 
good and even bad examples with associated 
rationales for the problems with the bad examples.  

• Improved Communications.  Requirements and 
security engineers can use the common terms and 
concepts of the taxonomy to improve their 



communication, and thereby improving their 
collaboration. 

• Requirements Completeness.  Engineers can 
check the requirements specifications against the 
taxonomy to ensure that each kind of security-
related requirement is present.  Engineers can also 
check the security policies to see if they contain 
security requirements and constraints in addition 
to policies. 

• Adequate Emphasis.  In current practice, security 
constraints and security system requirements have 
been emphasized over security requirements and 
the analysis of security-significant requirements 
(i.e., those with a security importance level greater 
than 0).  The use of a taxonomy identifying these 
four types of security-related requirements helps 
to ensure that each type is adequately emphasized. 

• Table of Contents.  The taxonomy can be used to 
structure the part of the requirements specification 
table of contents covering the security-related 
requirements. 

• Checklist.  The taxonomy can be used as a 
starting point to create a checklist for evaluating 
the security-related requirements in the 
requirements repository, requirements 
specification, or security policies. 

• SILs and Cost.  The use of security SILs will help 
the security and safety engineers to estimate the 
costs of specifying the associated requirements 
because a requirement with a high security SIL 
requires a corresponding high security SEAL for 
its implementing components, which very greatly 
increases their development, testing, and 
certification costs. 

• Architecture and SEALs.  Knowledge of 
security SEALs will help the architect develop the 
security architecture, especially with regard to 
software decomposition and allocation to 
hardware.  The high costs of implementing 
architectural components with high SEAL levels 
will lead to architectures exhibiting high 
modularity with regard to SEALs.  However, 
architects should be aware that the high costs of 
high SEAL components may cause strong 
management pressures to lower SEAL levels 
below that which the associated SILs imply. 

• Requirements Tracing.  The use of security SILs 
and SEALs provides a way of tracing security-
related requirements via SILs through the 
architecture via SEALs to the development 
process and security testing, which supports the 
analysis needed during change management. 

 

5. Opposition to Security Taxonomy 
 

Not everyone will agree with the security taxonomy 
presented in this paper.  Some members of the security 
community feel that their discipline is so different from 
safety that relatively little can be learned from safety 
engineering.  They are very uncomfortable with 
security requirements such those described and listed 
in section 3.1 because they believe that either 
development organizations will not sign up to 
implement such requirements or else such 
requirements are inherently not verifiable.  They argue 
that it is impossible to prove that a system is absolutely 
secure so mandating best industry practices is the best 
that can be done, whereby best practices include use of 
policies, firewalls, coding standards, and penetration 
testing.  Finally, they are concerned because security 
involves a constant arms race with attackers as 
technology and techniques improve.  Thus, even if a 
system meets its security requirements during 
acceptance testing, it may not meet those same 
requirements upon delivery if an effective new exploit 
is published the following day.  These concerns can 
and should be addressed:  
• Similarities.  Although legitimate differences 

exist between safety and security engineering, the 
many well documented similarities [1][2] justify at 
least considering whether the lessons learned from 
the safety discipline are worth exploring. 
Unfortunately, security engineering is such a large 
and complex discipline that requires so much 
concentration and study to master that little time is 
typically left for learning other disciplines. Their 
inherent similarity, ignorance of related 
disciplines, and occasional instances of the not-
invented-here (NIH) syndrome may partially 
explain why safety and security have each tended 
to grow into the other.  Thus, security books 
sometimes include accidental harm as well as 
malicious harm within the security domain.  These 
factors may have also partially prevented or 
delayed reuse, resulting in unnecessary differences 
between the original approach in one domain and 
its associated reinvented wheels in the other. 

• Acceptability.  It is certainly easier for 
development organizations to use industry best 
practices instead of (as opposed to in addition to) 
security-related requirements.  But the acquisition 
organizations really do have goals (i.e., minimum 
levels of security) and best industry practices are 
only an indirect way of trying to achieve them.  
Converting ambiguous goals into unambiguous 
requirements has been shown to be an effective 
approach in all other disciplines, so why not 



security engineering?  Development organizations 
will learn to accept security requirements when 
they understand them and customers demand such 
requirements from the suppliers of their systems. 

• Verifiability.  Well written security requirements 
are verifiable because they are both unambiguous 
and feasible.  Such requirements do not specify 
that the system be absolutely secure, but instead 
specify that it be secure in a specific way to a 
certain degree.  Detractors should note that the 
testing processes for all kinds of requirements of 
non-trivial applications are always incomplete 
because it is impractical or impossible to perform 
exhaustive testing.  This is why testers develop an 
incomplete set of test cases that nevertheless meets 
test coverage and completeness criteria.  The 
system is said to fulfill its requirements if it passes 
its acceptance tests.  Consider the requirement: 
“The system shall prevent the corruption of 
confidential data by at least 99% of the attacks 
that last no longer than 1 hour and are made by 
attackers with profile X.”  This requirement has an 
associate operational testing approach. If for 
example testing is to provide 95% confidence that 
requirements have been fulfilled, then one or more 
security testers should perform sufficient 
penetration tests trying to corrupt representative 
confidential data using the techniques and tools of 
attackers with the specified profile to provide the 
required confidence that 99% of such attacks will 
fail.  After this testing, the system will have been 
determined to have either passed or failed to fulfill 
this requirement.   In this sense, a security 
requirement is no different than any other type of 
requirement.  No requirement is ever proved to be 
100% fulfilled; just fulfilled to the extent shown 
by appropriate testing. 

• Security Arms Race.  This is the most interesting 
argument against specifying security requirements 
because it addresses a fundamentally real problem.  
After acceptance testing, external conditions may 
(and probably will) change, causing the system to 
no longer meet its specified requirements.  The 
proper response to this problem is to then update 
the system so that it once again meets its 
requirements.  This is no different from a weapons 
system that is required to carry out its mission in 
spite of the existence of specific types of military 
(as opposed to security) threats.  A military arms 
race may require the weapons system to be 
upgraded because it can no longer fulfill its 
required mission because it no longer meets its 
military survivability requirements.  Once again, if 
the system passes mutually agreed upon 

acceptance testing, the system can be delivered 
and must be accepted.  If new or changed security 
threats or military threats subsequently change the 
environment, the system needs to be upgraded so 
that it once again fulfills its unchanged 
requirements even if a new development contract 
or contract modification or a maintenance contract 
is needed for the upgrade. 

The bottom line is that the stakeholders have 
security goals and requirements that they need the 
system to meet.  Using security best industry practices 
is appropriate, but insufficient to ensure that these 
needs are met.  One task of security requirements is to 
provide that assurance.  
 

6. Conclusions 
 

Based on the similarity between safety and security 
as subfactors of the quality factor defensibility, this 
paper presents a taxonomy of security requirements 
that corresponds to an analogous taxonomy published 
for safety requirements.   Thus, security requirements 
can be decomposed into pure security requirements, 
security-significant requirements, security system 
requirements, and security constraints.   Pure security 
requirements specify minimum thresholds of various 
subfactors of security; they can be decomposed into 
sixteen subtypes (4 defensibility problem types 
multiplied by 4 defensibility solution types) of pure 
security requirements that specify minimum acceptable 
levels of the prevention of, detection of, reaction to, 
and adaptation to malicious harm, security incidents, 
threats, and security risks.  Security-significant 
requirements are derived by using harm, incident, 
threat, and risk analysis to categorize non-security 
requirements in terms of their relative security risks.  
Security system requirements are those requirements 
associated with security subsystems.  And security 
constraints are engineering decisions that are treated 
during requirements engineering as if they were 
security requirements even though they would 
ordinarily be made during architecture development, 
design, implementation, integration, or testing. 

Thus, there exist multiple types of security-related 
requirements, and the requirements team should 
consider all of them.  It is inappropriate for the 
requirements to consist only of security constraints 
mandating traditional and common security 
countermeasures because: 
• Different systems must protect different valuable 

assets within different environments against 
potentially different types of attackers with 
different profiles. 



• Security technologies and the corresponding 
security products that implement them are rapidly 
evolving. 

• Requirements engineers should not unnecessarily 
constrain the choices of security engineers who 
have the experience and expertise to make better 
architectural choices when selecting appropriate 
countermeasures. 

On the other hand, requirements engineers should 
collaborate with security engineers to ensure that the 
resulting requirements adequately cover all types 
within the taxonomy of security-related requirements 
and have the proper characteristics of good 
requirements.  By using such a taxonomy to produce a 
complete set of security-related requirements, it is 
hoped that the architecture team will incorporate the 
correct amount of the right types of security 
countermeasures, without having their decisions 
limited by unnecessary constraints. 

While this paper has provided strong reasons to 
consider using the taxonomy it provides, several major 
questions remain: 
• Because the key difference between safety and 

security is whether harm is accidental or 
malicious, is the active nature of attacks 
sufficiently different from the passive nature of 
accidents to override the similarities upon which 
the taxonomy is based?  While the author does not 
think so and has addressed how this affects the 
fact that systems that pass security requirements 
one day may not pass the same requirements the 
next day as attacks improve.  However, others 
disagree and the issue requires significantly more 
research and experience before being decided.    

• To what extent will using this taxonomy help 
requirements and security engineers communicate 
and produce unambiguous verifiable security-
related requirements?  

• Is the taxonomy really complete?  To what extent 
will using this taxonomy help ensure that 
important types of security-related requirements 
are no longer overlooked during requirements 
engineering? 

• How will the practical limit on the possible 
amount of security testing limit the corresponding 
probabilities of attacks defeated that can be 
specified in security requirements?  A statistical 
analysis should be performed to determine the 
minimum number of security test cases required to 
achieve a specific level of confidence that a 
specific percentage of attacks will be thwarted 
assuming that the tests are representative of the 
actual attacks of a given attacker profile. 

• Unlike with hardware, it is very difficult to 
estimate the probability of a safety hazard or 
associated accident when software is involved.  It 
will be at least as difficult to estimate the 
probability of a security risk or associated 
successful attack.  Safety hazards and accidents 
should be rare, but security threats and attacks (if 
hopefully not successful) will probably be all too 
common.  How will this affect the development of 
a security risk/SIL matrix?  Will it be adequate to 
merely have fewer, broader columns and fewer 
associated security SILs?     

• What are the optimum number of security SIL and 
SEAL levels?  How should they be defined?  
What are the appropriate techniques to use at each 
SEAL level to ensure adequate security is 
achieved?  To what extent will this evidence be 
appropriate, acceptable, and useful during 
certification? 

• Will the use of the same acronyms (SIL and 
SEAL) for both safety and security improve the 
acceptability of security SILs and SEALs, or will 
it instead merely lead to confusion, especially if a 
single requirement has different safety and 
security SILs (almost certainly) and a single 
component has different safety and security 
SEALs (quite possible)?  Is it adequate to merely 
prefix the acronym with the appropriate term if the 
scope is not obvious from context? 

• Safety SILs and SEALs have historically been 
assigned only to safety-significant requirements 
and their associated implementing components, 
and not to safety requirements, safety system 
requirements, and safety constraints.   For the sake 
of consistency and ensuring adequate use of scarce 
development resources, would it not be better to 
assign security SILs and SEALs to all security-
related requirements and their components? 

• Will this taxonomy help requirements and security 
engineers recognize security constraints as such 
and enable them to minimize the number of 
unnecessary constraints? 

• Finally, what about survivability, which protects 
valuable military assets from harm resulting from 
attack by enemy military forces?  As illustrated in 
Figure 3, safety, security, and survivability are all 
subtypes of the quality factor defensibility and 
therefore share similar properties.  Should an 
analogous taxonomy for survivability-related 
requirements exist? 
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