
October 25–26, 2016

Project Summaries and Posters

SEI Research Review 2016

This booklet contains descriptions of SEI research projects and images of posters related
to the research. In each of the sections, you will find a project description on a left-hand
(even-numbered) page and a poster image facing it on a (odd-numbered) right-hand page.

4 SEI RESEARCH REVIEW 2016 | info@sei.cmu.edu | Distribution Statement A: Approved for Public Release: Distribution is Unlimited | SOFTWARE ENGINEERING INSTITUTE 5SOFTWARE ENGINEERING INSTITUTE | Distribution Statement A: Approved for Public Release: Distribution is Unlimited | info@sei.cmu.edu | SEI RESEARCH REVIEW 2016

SEI Research Review 2016

Principal Investigator
Dr. Peter Feiler
SEI Fellow
Senior Member of the
Technical Staff
Architecture Practices Initiative

For more information:

http://www.sei.cmu.edu/
about/people/profile.
cfm?id=feiler_13051

Incremental Lifecycle Assurance of Critical Systems
The current lifecycle practice of build-then-test for software-reliant (safety and mission)
critical systems results in rapidly increasing verification-related rework costs, because 70%
of defects are related to poor quality requirements and 80% of defects detected only after
the unit test phase.

In this research, we produced a workbench of tools that demonstrate a measurable
reduction in the cost of verifying system implementations against requirements, including

• an Excel-based prototype implementation of Spotlight, which integrates requirement
coverage, verification plan coverage, and multi-valued verification result metrics

• an adaptation to Architecture-Led Incremental System Assurance (ALISA) of a multi-tier
aircraft model expressed in the Architecture Analysis and Design Language (AADL)

• an Open Source AADL Tool Environment (OSATE) release that includes support for
architecture-led requirement specification in ReqSpec
(a textual requirement specification language)

Research Review 2016Incremental Lifecycle Assurance of Critical Systems

Contact: Peter Feiler phf@sei.cmu.edu
P2

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Critical System Assurance Challenge
The traditional development lifecycle using existing methods of
system engineering result in

• Assurance-related post-unit test software rework at 50% of
total system cost and growing

• Labor-intensive system safety analysis without addressing
software as major hazard source

• High percentage of operator work arounds for software �xes
due to high recerti�cation cost

NIST Study
Current requirement
engineering practice relies on
stakeholders traceability and
document reviews resulting in
high rate of requirement
change

Incremental Lifecycle Assurance Goals
• Improve requirement quality through coverage and managed

uncertainty

• Improve evidence quality through compositional analytical
veri�cation

• Measurably reduce certi�cation related rework cost through
virtual integration and veri�cation automation

Impact and Alignment
• AMRDEC Joint Multi-Role (JMR) Tech Demo: maturation of ACVIP

for Future Vertical Lift (FVL)

• Aerospace industry System Architecture Virtual Integration (SAVI)
multi-year initiative

• Standards: SAE AS-2C (AADL Requirements, Constraints), SAE S18
(ARP4761 System Safety)

• Regulatory agencies: NRC, FDA, AAMI/UL

Rolls Royce Study
Managed awareness of
requirement uncertainty can
lead to 50% reduction in
requirement changes

U Minnesota Study
Requirements often span multiple architecture layers

Build the
System

Build the
Assurance
Case

Requirements
Engineering

System
Design

Software
Architectural
Design

System
Architecture
Validation

Software
Architecture
Validation

Component
Software
Design

Code
Development

Integration
Build

Target
Build

Deployment
Build

Requirements
Validation

Design
Validation

Acceptance
Test

System
Test

Integration
Test

Architecture
Modeling
Analysis &
Generation

Three Dimensions of Requirement Coverage

Fault Propagation Ontology

*System Architecture Virtual Integration (SAVI) Aerospace industry initiative

System interactions, state, behavior Design & operational quality attributes

Utility

(L,M)

(M,M)

(H,H)

(H, L)

(H,H)

(H,H)

(H,M)

(H,L)

Fault impact & contributors

Unit Test

Requirements error %

Incomplete 21%

Missing 33%

Incorrect 24%

Ambiguous 6%

Inconsistent 5%

Selection

Low
Precedence

Medium
Precedence

High
Precedence

Weight

9

3

1

Precedence

No experience of concept, or
environment. Historically volatile.

Some experience in related
environments. Some historic volatility.

Concept already in service.
Low historic volatility.

Incremental assurance through virtual system
integration for early discovery

Return on Investment study by SAVI*

Priority focused architecture design exploration for high
payoff

Measurable improvement (Rolls Royce)

Compositional veri�cation and partitions to limit
assurance impact

Model
Repository

Architecture
Model

Component
Models

System
Implementation

System
con�guration

FY15
Focus

FY16
Focus

Architecture-Led Incremental System Assurance (ALISA) Approach

Semantically Consistent Uni�cation of Modeling Concepts from Different Perspectives
 And their Use in Existing Practice Standards

Architecture-centric Virtual System Integration (ACVIP)
Incremental Lifecycle Assurance (ALISA)

ALISA Workflow & Eclipse-based Workbench

AMRDEC JMR Situational Awareness Requirements Case Study (Early Life Cycle)
SAVI Multi-layered multi-dimensional aircraft verification (Multi-phase)

Rolls Royce Engine Control Certification Study (Late Life Cycle)

Measurement-driven Assurance Cost and Confidence Improvement
through Incremental Lifecycle Assurance

Goal, Intent, Requirement,
Assumption, Claim

Architecture-focused
Requirements & Hazard Analysis

Textual Requirements for a Patient Therapy System

Importance of understanding system boundary We have effectively speci�ed a system partial
architecture

Same Requirements Mapped to an Architecture Model

Technical and Operational
Validation in Actual Projects

Access to Actual Project Information

Anticipated Improvement Thresholds
25% Higher Requirement/Hazard Coverage

35% Higher Evidence Con�dence 25%
Reduced Uncertainty Impact

1. The patient shall never be infused with a single
air bubble more than 5ml volume.

2. When a single air bubble more than 5ml
volume is detected, the system shall stop
infusion within 0.2 seconds.

3. When piston stop is received, the system shall
stop piston movement within 0.01 seconds.

4. The system shall always stop the piston at the
bottom or top of the chamber.

Assessment of Potential for
Proportional Recertification Cost

Bene�t and Risk of Partial Veri�cation

Measurably Increased
Assurance Con�dence

Credit for Analytical Evidence

Measurably Reduced Defect
Leakage & Assurance Cost

Apply COQualMO and SAVI ROI

Architecture-led Contract- based
Compositional Analysis & Veri�cation

Assurance Plan with Multi-
valued Argumentation Logic

Obstacle, Fault, Defect, Hazard,
Vulnerability, Challenge

Verification Method, Activity, Result,
Evidence, Counter evidence

Assurance & Quali�cation Improvement Strategy
Assurance: Suf�cient evidence that a system implementation meets system requirements

Three Dimensions of Incremental Assurance

Early Discovery leads to Rework Reduction

Increased Con�dence through Veri�cation And Testing

Project Approach

Patient Therapy System

Infusion System

Drug Delivery
Hardware

Pump System

Pump
Hardware

Air Bubble
Sensor

Pump
Controller

1 2

34

Reduce storage latency on customer
DB to < 200ms.

Deliver video in real time.

Add CORBA middleware in < 20
person-months.

Change Web user interface in < 4
person-weeks.

Power outage at site 1 requires traf�c
redirected to site 2 in < 3 seconds.

Network failure detected and
recovered in < 1.5 minutes

Credit Card transactions are secure
99.999% of time.

Customer DB authorization works
99.999% of the time.

Data Latency

Transaction
Throughput

New Products

Change COTS

H/W Failure

COTS S/W
Failures

Data
Con�dentiality

Data Integrity

Performance

Modi�ability

Availability

Security

Guarantees
Assumptions

Environment

Constraints/
Controls

Resources

Behavior

State
Input Output

Implementation

 constraints

Invariants

Exceptional

conditions

Omission errors Commission errors

Sequence errors

Replication errors

Concurrency errors

Authorization errors

Value errors

Timing errors

Rate errors

Authentication errors
System Under Control

Behavior

Actuator Sensor

State

Control System

Behavior

Output Input

State

Timing (H)
Performance (M)
Safety (H)
Security (L)
Reliability (L)
Modi�ability (L)
Portability (M)
Con�gurability (M)

Design & Req
Re�nement

Design & Req
Re�nement

Compositional
Veri�cation

Requirement Coverage

Compositional
Veri�cation

VA VA VA

RS RS RS VA VA VA

RS

RS RS RS

C

C

C

Mission
Requirements

Function Behavior
Performance

Survivability
Requirements

Reliability Safety
Security

Operational &
failure modes

Resource, Timing
& Performance

Analysis

Reliability,
Safety, Security

Analysis

Architecture-led
Requirement
Speci�cation

Architecture-centric
Virtual System

Integration

Static Analysis &
Compositional

Veri�cation

Incremental Assurance
Plans & Cases

throughout Life Cycle

SEI Research Review 2016

1SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

SEI Research Review 2016

Dr. Jeffrey Boleng
Acting CTO (Pittsburgh)

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=boleng_16295

Dr. Rand Waltzman
Acting CTO (Washington, DC)

Delivering Capabilities that Assure System
Security and Performance
Gaining assurance (confidence and trust) in the behavior of large
software-based systems requires understanding and overcoming the
effects of software complexity and risk.

The Carnegie Mellon University (CMU) Software Engineering Institute
(SEI) delivers capabilities to its sponsor, the U.S. Department of Defense
(DoD), and other government agencies, which assure the security and
performance of large-scale, complex, software-based systems.

SEI research and development (R&D) produces analysis, tools,
techniques, prototypes, and practices that deliver confidence throughout
a system’s life—from specifying cybersecurity and other requirements,
to estimating cost and schedule in acquisition, to developing software
functionality, and to evaluating and ensuring the performance of desirable
behaviors during system operations (i.e., non-functional requirements
such as reliability, sustainability, and availability).

In addition, as a federally funded research and development center
(FFRDC), the SEI serves as a trusted and value-added broker of R&D
by working with members of the software community in government,
academia (in particular, CMU), and industry to customize, develop, and
adapt software and cybersecurity technologies and related methods for
the measurable benefit of the U.S. government.

With the access afforded by its DoD affiliation and a conflict-free status
as an FFRDC, SEI has a unique ability to undertake technical work—
line-funded research and sponsored engagements—ranging from
fundamental research with widespread publication to support of sensitive
government programs. We invite you to explore the details in this report
of the 2016 SEI line-funded, fundamental research portfolio.

2 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Delivering Capabilities that Assure System Security and Performance	 1

Assuring Critical Systems
Incremental Lifecycle Assurance of Critical Systems 	 4
Automated Assurance of Security Policy Enforcement	 6
Verifying Distributed Adaptive Real-Time (DART) Systems	 8
Auto-Active Verification of Software with Timers and Clocks (STAC)	 10
Property-Directed Test Generation	 12
Using Technical Debt to Improve Software Sustainability and Find Software Vulnerabilities	 14
Evaluation of Threat Modeling Methodologies	 16

Assuring Missions
Tactical Analytics	 20
Semiconductor Foundry Verification	 22
Tactical Computing and Communications	 24
Enabling Evidence-Based Modernization	 26

Assuring Software
Vulnerability Discovery	 30
Prioritizing Alerts from Static Analysis with Classification Models	 32
Establishing Coding Requirements for Non-Safety-Critical C++	 34
Automated Code Repair	 36

Assuring Autonomy and Human-Machine Interactions
Why did the robot do that? Explaining Robot Behavior to Improve Trust in Autonomy	 40
Human-Computer Decision Systems for Cybersecurity	 42
Multi-Agent Decentralized Planning for Adversarial Robotic TeamS (MADPARTS)	 44
Statistical Model Checking of Swarm Algorithms	 46
Experiences Developing an IBM Watson Cognitive Processing Application to Support Q&A of
	 Application Security (Software Assurance) Diagnostics	 48
GraphBLAS: A Programming Specification for Graph Analysis	 50
The Critical Role of Positive, Intrinsic Incentives in Reducing Insider Threat	 52
Workplace Violence/IT Sabotage: Two Sides of the Same Coin?	 54
Data Validation for Large-Scale Analytics	 56
Supporting Software Engineering Best Practices in Additive Manufacturing 	 58

Assuring Cyber Workforce Readiness
Utilizing Serious Games to Assist Motivation and Education	 62
Generalized Automated Cyber-Readiness Evaluation (ACE)	 64

Contents

Assuring Critical Systems

4 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

SEI Research Review 2016

Dr. Peter Feiler
SEI Fellow
Senior Member of the
Technical Staff
Architecture Practices Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=feiler_13051

Incremental Lifecycle Assurance of
Critical Systems
The current lifecycle practice of build-then-test for software-
reliant (safety and mission) critical systems results in
rapidly increasing verification-related rework costs, because
70% of defects are related to poor quality requirements
and 80% of defects detected only after the unit test phase.

In this research, we produced a workbench of tools
that demonstrate a measurable reduction in the cost of
verifying system implementations against requirements,
including

•	an Excel-based prototype implementation of Spotlight,
which integrates requirement coverage, verification plan
coverage, and multi-valued verification result metrics

•	an adaptation to Architecture-Led Incremental System
Assurance (ALISA) of a multi-tier aircraft model expressed
in the Architecture Analysis and Design Language (AADL)

•	an Open Source AADL Tool Environment (OSATE) release
that includes support for architecture-led requirement
specification in ReqSpec (a textual requirement
specification language)

Principal Investigator

5SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Incremental Lifecycle Assurance of Critical Systems

Contact: Peter Feiler | phf@sei.cmu.edu
P2

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Critical System Assurance Challenge
The traditional development lifecycle using existing methods of
system engineering result in

• Assurance-related post-unit test software rework at 50% of
total system cost and growing

• Labor-intensive system safety analysis without addressing
software as major hazard source

• High percentage of operator work arounds for software �xes
due to high recerti�cation cost

NIST Study
Current requirement
engineering practice relies on
stakeholders traceability and
document reviews resulting in
high rate of requirement
change

Incremental Lifecycle Assurance Goals
• Improve requirement quality through coverage and managed

uncertainty

• Improve evidence quality through compositional analytical
veri�cation

• Measurably reduce certi�cation related rework cost through
virtual integration and veri�cation automation

Impact and Alignment
• AMRDEC Joint Multi-Role (JMR) Tech Demo: maturation of ACVIP

for Future Vertical Lift (FVL)

• Aerospace industry System Architecture Virtual Integration (SAVI)
multi-year initiative

• Standards: SAE AS-2C (AADL Requirements, Constraints), SAE S18
(ARP4761 System Safety)

• Regulatory agencies: NRC, FDA, AAMI/UL

Rolls Royce Study
Managed awareness of
requirement uncertainty can
lead to 50% reduction in
requirement changes

U Minnesota Study
Requirements often span multiple architecture layers

Build the
System

Build the
Assurance
Case

Requirements
Engineering

System
Design

Software
Architectural
Design

System
Architecture
Validation

Software
Architecture
Validation

Component
Software
Design

Code
Development

Integration
Build

Target
Build

Deployment
Build

Requirements
Validation

Design
Validation

Acceptance
Test

System
Test

Integration
Test

Architecture
Modeling
Analysis &
Generation

Three Dimensions of Requirement Coverage

Fault Propagation Ontology

*System Architecture Virtual Integration (SAVI) Aerospace industry initiative

System interactions, state, behavior Design & operational quality attributes

Utility

(L,M)

(M,M)

(H,H)

(H, L)

(H,H)

(H,H)

(H,M)

(H,L)

Fault impact & contributors

Unit Test

Requirements error %

Incomplete 21%

Missing 33%

Incorrect 24%

Ambiguous 6%

Inconsistent 5%

Selection

Low
Precedence

Medium
Precedence

High
Precedence

Weight

9

3

1

Precedence

No experience of concept, or
environment. Historically volatile.

Some experience in related
environments. Some historic volatility.

Concept already in service.
Low historic volatility.

Incremental assurance through virtual system
integration for early discovery

Return on Investment study by SAVI*

Priority focused architecture design exploration for high
payoff

Measurable improvement (Rolls Royce)

Compositional veri�cation and partitions to limit
assurance impact

Model
Repository

Architecture
Model

Component
Models

System
Implementation

System
con�guration

FY15
Focus

FY16
Focus

Semantically Consistent Uni�cation of Modeling Concepts from Different Perspectives
 And their Use in Existing Practice Standards

Architecture-centric Virtual System Integration (ACVIP)
Incremental Lifecycle Assurance (ALISA)

ALISA Workflow & Eclipse-based Workbench

AMRDEC JMR Situational Awareness Requirements Case Study (Early Life Cycle)
SAVI Multi-layered multi-dimensional aircraft verification (Multi-phase)

Rolls Royce Engine Control Certification Study (Late Life Cycle)

Measurement-driven Assurance Cost and Confidence Improvement
through Incremental Lifecycle Assurance

Goal, Intent, Requirement,
Assumption, Claim

Architecture-focused
Requirements & Hazard Analysis

Textual Requirements for a Patient Therapy System

Importance of understanding system boundary We have effectively speci�ed a system partial
architecture

Same Requirements Mapped to an Architecture Model

Technical and Operational
Validation in Actual Projects

Access to Actual Project Information

Anticipated Improvement Thresholds
25% Higher Requirement/Hazard Coverage

35% Higher Evidence Con�dence 25%
Reduced Uncertainty Impact

1. The patient shall never be infused with a single
air bubble more than 5ml volume.

2. When a single air bubble more than 5ml
volume is detected, the system shall stop
infusion within 0.2 seconds.

3. When piston stop is received, the system shall
stop piston movement within 0.01 seconds.

4. The system shall always stop the piston at the
bottom or top of the chamber.

Assessment of Potential for
Proportional Recertification Cost

Bene�t and Risk of Partial Veri�cation

Measurably Increased
Assurance Con�dence

Credit for Analytical Evidence

Measurably Reduced Defect
Leakage & Assurance Cost

Apply COQualMO and SAVI ROI

Architecture-led Contract- based
Compositional Analysis & Veri�cation

Assurance Plan with Multi-
valued Argumentation Logic

Obstacle, Fault, Defect, Hazard,
Vulnerability, Challenge

Verification Method, Activity, Result,
Evidence, Counter evidence

Assurance & Quali�cation Improvement Strategy
Assurance: Suf�cient evidence that a system implementation meets system requirements

Three Dimensions of Incremental Assurance

Early Discovery leads to Rework Reduction

Increased Con�dence through Veri�cation And Testing

Project Approach

Patient Therapy System

Infusion System

Drug Delivery
Hardware

Pump System

Pump
Hardware

Air Bubble
Sensor

Pump
Controller

1 2

34

Reduce storage latency on customer
DB to < 200ms.

Deliver video in real time.

Add CORBA middleware in < 20
person-months.

Change Web user interface in < 4
person-weeks.

Power outage at site 1 requires traf�c
redirected to site 2 in < 3 seconds.

Network failure detected and
recovered in < 1.5 minutes

Credit Card transactions are secure
99.999% of time.

Customer DB authorization works
99.999% of the time.

Data Latency

Transaction
Throughput

New Products

Change COTS

H/W Failure

COTS S/W
Failures

Data
Con�dentiality

Data Integrity

Performance

Modi�ability

Availability

Security

Guarantees
Assumptions

Environment

Constraints/
Controls

Resources

Behavior

State
Input Output

Implementation

 constraints

Invariants

Exceptional

conditions

Omission errors Commission errors

Sequence errors

Replication errors

Concurrency errors

Authorization errors

Value errors

Timing errors

Rate errors

Authentication errors
System Under Control

Behavior

Actuator Sensor

State

Control System

Behavior

Output Input

State

Timing (H)
Performance (M)
Safety (H)
Security (L)
Reliability (L)
Modi�ability (L)
Portability (M)
Con�gurability (M)

Design & Req
Re�nement

Design & Req
Re�nement

Compositional
Veri�cation

Requirement Coverage

Compositional
Veri�cation

VA VA VA

RS RS RS VA VA VA

RS

RS RS RS

C

C

C

Mission
Requirements

Function Behavior
Performance

Survivability
Requirements

Reliability Safety
Security

Operational &
failure modes

Resource, Timing
& Performance

Analysis

Reliability,
Safety, Security

Analysis

Architecture-led
Requirement
Speci�cation

Architecture-centric
Virtual System

Integration

Static Analysis &
Compositional

Veri�cation

Incremental Assurance
Plans & Cases

throughout Life Cycle

Architecture-Led Incremental System Assurance (ALISA) Approach

6 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Dr. Julien Delange
Senior Member of the
Technical Staff
Architecture Practices Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=delange_16391

Automated Assurance of Security Policy
Enforcement
Work on this project will span FY2016 and FY2017

As mission and safety-critical systems become increasingly connected,
exposure due to security infractions is likewise increasing. This project
aims at developing techniques to detect vulnerabilities early in the
lifecycle in architecture models.

The SEI focuses on producing tools to reduce the cost of and improve the
quality of system security assurance by

•	detecting security policy violations early by verifying the enforcement
of mission system security policies against a MILS-based (multiple
independent levels of security) runtime architecture using a formalized
set of consistency rules

•	assuring that the system implementation enforces the policies by
complementing model-based verification with system-level security tests
that are generated from the architectural security policy specification

•	assuring that no security risks are introduced by the runtime architecture
decisions by reducing the attack surface in the runtime architecture

•	improving the efficiency of the security assurance process by
automating the execution of security assurance plans throughout the
development lifecycle

The SEI has worked on techniques to auto-detect vulnerabilities in
architectural models (developed using the Architecture Analysis and
Design Language) and generate security reports such as Attack Impact
or Attack Tree. Tools produced in this project have been released under
an open-source license and are available on the SEI Github code
repository (github.com/cmu-sei/AASPE).

SEI Research Review 2016

Principal Investigator

7SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Automated Assurance of Security Policy Enforcement
Detecting and �xing architecture-related vulnerabilities early in the lifecycle

Contact: Julien Delange | jdelange@sei.cmu.edu
P3

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Safety-critical systems are now extremely
software-reliant, which increases their
attack surface. In recent years, security
vulnerabilities of critical systems have
enabled threats on our lives. Our
project uses architecture models to �nd
security vulnerabilities early in the
development lifecycle.

After the Jeep hack in 2015, Fiat-Chrysler issued
a massive recall of 1.4 million cars. In the
medical domain, the FDA advised hospitals to
stop operating the Symbiq Infusion System due
to potential tampering. With estimates targeting
more than 20 billion connected devices by the
end of 2020, the number of vulnerabilities, and
their impact, will continue to grow. Vulnerabilities
are no longer only a matter of code but strongly
related to the system architecture.

The SEI team is working on solutions using the
semantics of the Architecture Analysis & Design
Language (AADL) and its extensions to detect
vulnerabilities in software architectures. We are
developing an AADL extension to capture security
concerns in software architecture as well as new
analysis tools that produce security reports from
an AADL architecture.

What vulnerabilities can we detect?

The latest reports show that vulnerabilities are
no longer related only to code (e.g., buffer
over�ow, semantic code) but are tightly coupled
to the architecture: in component connections
(e.g., use of encryption), shared resources
(e.g., processing or memory), or con�guration
directives (e.g., use of encryption). We extended
the AADL core language to provide the capability
to detect common architecture-related
vulnerabilities. With security expertise from the
SEI CERT Division, we identi�ed AADL modeling
patterns for architecture-related vulnerabilities.
We also identi�ed patterns to capture and
recognize Common Vulnerabilities and
Exposures (CVE) in AADL architecture models.

A collaborative effort for safer systems

We initiated collaboration with the following
projects or standardization bodies:

SAE AS-2C: As the technical lead of the AADL
standard, the SEI team collaborates with the
standardization committee and will propose a
new security annex for the standard.

The Open Group: The SEI is working with the
Open Group and its Real-Time Embedded
Systems Forum on a MILS standard for
developing secure systems.

The MITRE CVE: With security knowledge from
the CERT Division, the SEI team mapped
architecture-related CVEs into AADL to detect
security vulnerabilities in architecture models.

Making an impact

We have demonstrated our approach through
case studies from the automotive and avionics
domains. We retro-engineered automotive
architectures to show how our approach and
tools can detect security issues such as the
one reported in the Jeep hack. For the avionics
domain, we demonstrated our approach in the
System Architecture Virtual Integration (SAVI)
consortium and showed how attacks against the
Automatic Dependent Surveillance-Broadcast
(ADS-B) protocol could impact airplanes and
ground station security.

How are vulnerabilities reported?

The SEI research team developed AADL
architecture analysis tools to detect
vulnerabilities and show their impact. The tools
currently generate two analysis reports from
AADL models:

Attack Impact: This comprehensive
report provides the architecture
vulnerabilities for each component and
shows how they are propagated using
connections and shared resources. This
analysis method is similar to Failure
Modes and Effects Analysis.

Attack Tree: A hierarchical tree
represents the relationships between
contributors (architecture elements and
vulnerabilities) of a compromised
component. This analysis method is
similar to Fault-Tree Analysis.

These tools are integrated with the AADL
modeling tool OSATE and are available under
the open source Eclipse Public License for
download.

eicas

frequencies

processing

station_operator

station attackerPhysical
Exposure

usbsocketPhysical
Exposure

playback

ned

afdx1sensor

�ow

�ow

�ow �ow

�ow�ow

�ow

fms

gps

eicas

afdx0

frequencies

station

Physical
Exposure

processing

attacker displaystation_operator

bus

bus

bus

bus

bus

bus

busbusbus

�ow
�ow

Attack Impact
Exhibits all components’ vulnerabilities
and their impact within the architecture

OSATE
Modeling Platform

AADL Models
extended with security
characteristics

Attack Tree
Hierarchical decomposition of
vulnerabilities that lead to successful
attacks against the system

8 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Verifying Distributed Adaptive
Real-Time (DART) Systems
Work on this project spanned FY2015 and FY2016

DART systems (such as autonomous multi-unmanned-air-
system missions) are key to Department of Defense (DoD)
capability. However, verifying DART systems has proven to
be intractable.

In response, we have developed and validated assurance
techniques for DART systems. We created these
techniques through

•	a new domain-specific language, called DMPL, to program
DART systems. DMPL has been integrated with the
Architecture Analysis and Design Language standard as
an annex.

•	new temporal isolation mechanisms to protect high-
critical threads from low-critical ones across multiple
processors

•	new compositional model checking algorithms to verify
high-critical properties of distributed software

•	new proactive self-adaptation approaches to achieve low-
critical properties under uncertainty—assuring them via
statistical model checking

Dr. Sagar Chaki
Principal Researcher
Lead, Cyber-Physical and ULS
Systems Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=chaki_13495

Dr. Dionisio de Niz
Principal Researcher
Deputy Lead, Cyber-Physical
and ULS Systems Initiative

SEI Research Review 2016

Principal Investigators

9SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Verifying Distributed Adaptive Real (DART) Systems

Contact: Sagar Chaki | chaki@sei.cmu.edu
P4

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

DMPL supports the right level of
abstraction. github.com/cps-sei/dart

Statistical Model Checking of Distributed Adaptive
Real-Time Software. David Kyle, Jeffery Hansen,
Sagar Chaki.In Proc. of Runtime Verifcation 2015

Challenge: compute the probability of
mission success & compare between
different adaptation strategies.
Solution: Statistical Model Checking

Low
Hazard
Area

High
Hazard
Area

Tight
FormationLoose

Formation

Demo

Adaptation: Formation change
(loose<-->tight)
Loose: fast but high leader
exposure
Tight: slow but low leader
exposure

Resultn

Batch Log and Analyze

SMC Client

SMC Aggregator

RE
acceptable?

Result

NO

YES

Future Work: Importance Sampling to reduce number of
simulations needed for “rare” events.

Each run of log-generator and log-analyzer occurs on a
VM. Multiple VMs run in parallel on HPC platform. Clients
added and removed on-the-�y.

Update
Result and

RE

Example: Self-Adaptive and Coordinated UAS Protection

DART Architecture

DART Process

Node k

DART Vision
A sound engineering approach based on
the judicious use of precise semantics,
formal analysis and design constraints
leads to assured behavior of (DART)
systems while accounting for
• critical requirements

• probabilistic requirements

• uncertain environments

• necessary coordination

• assurance at source code level

OS/Hardware

MADARA Middleware

1. ZSRM Schedulability(Timing)
2. Software Model Checking (Functional)
3. Statistical Model Checking (Probabilistic)

1. Enables compositional and requirement
speci�c veri�cation

2. Use proactive self-adaptation and mixed
criticality to cope with uncertainty and
changing context

Brings Assurance to Code
1. Middleware for communication
2. Scheduler for ZSRM
3. Monitor for runtime assurance

System + Properties
(AADL + DMPL) Veri�cation Code

Generation

Demonstrate on DoD-relevant model
problem (DART prototype)
•Engaged stakeholders
•Technical and operational validity

Software for probabilistic requirements,
e.g., adaptive path-planner to maximize
area coverage within deadline

Environment – network,
sensors, atmosphere,
ground etc.

Distributed
Shared
Memory

Sensors &
Actuators

Software for guaranteed requirements,
e.g., collision avoidance protocol must
ensure absence of collisions

Node 1

High-Critical
Threads
(HCTs)

H
C
T

H
C
T

Low-Critical
Threads
(LCTs)

Pipelined ZSRM Scheduling
• Reduces pipeline to

single-resource scheduling

• Avoids assuming worst
alignment in all stages

But need to deal with
transitive interferences due to
zero-slack

Ongoing work: theory worked
out, implementing scheduler
in Linux

Functional Veri�cation
Prove application-controller
contract for unbounded time
• Previously limited to

bounded veri�cation only

Prove controller-platform
contract via hybrid reachability
analysis
• Done by AFRL

Working on automation and
asynchronous model of
computation

2 4 6 8 100

t=0

t=1

p3p2

T1

p1

T2 T1 T2 T1 T2

p3p2

T1

p1

T2 T1 T2 T1 T2

T1 T2

p3p2

T1

p1

T1 T2

T2

t=1

t=0

Application

Controller

Platform

Assume-
Guarantee
Contract

Proof of
collision
avoidance

DART Node

End-to-End
Functional
Veri�cation of CPS

Resolves nondeterministic
choices to maximize expected
value of objective function

PRISM strategy
synthesis

Ongoing work: replace
probabilistic model
checking with dynamic
programming for speed.First choice independent

of subsequent
environment transitions

non-deterministic

probabilistic

deterministic

Assume-
Guarantee
Contract

Proactive Self-Adaptation Using Probabilistic Model Checking

system

environment

DMPL: DART Modeling and Programming Language

• C-like language that can express distributed, real-time systems

• Semantics are precise

• Supports formal assertions usable for model checking and
probabilistic model checking

• Physical and logical concurrency can be expressed in suf�cient
detail to perform timing analysis

• Can call external libraries

• Generates compilable C++

• Developed syntax, semantics, and compiler (dmplc)

log-
analyzelog-gen

Distributed Statistical Model Checking

overload

P1

P2

P3

P4

P5

ZSRM Mixed-Criticality Scheduler

OS/HW

MADARA

Scheduler

10 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Auto-Active Verification of Software
with Timers and Clocks (STAC)

The inability to assure STACs at the source code level cost-
effectively impedes their certification and adoption.

The project produced

•	formal clocked semantics of STACs

•	verification condition (VC) generation algorithm for
sequential and distributed STACs

•	prototype auto-active verifier for STACs

•	evaluation of the tool on an implementation of the zero-
slack rate monotonic (ZSRM) scheduler as a Linux kernel
module that uses timers and clocks to enforce thread
CPU budgets and mixed-criticality scheduling guarantees

SEI Research Review 2016

Principal Investigators

Dr. Sagar Chaki
Principal Researcher
Lead, Cyber-Physical and ULS
Systems Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=chaki_13495

Dr. Dionisio de Niz
Principal Researcher
Deputy Lead, Cyber-Physical
and ULS Systems Initiative

11SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Auto-Active Veri�cation of Software with Timers and Clocks

Contact: Sagar Chaki | chaki@sei.cmu.edu
P5

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Contract C Veri�cation
Condition

No+CEX Yes+Proof

Auto-Active FV

SMT Solver

Program Property

Timestamps

Complete source code with ACSL annotations publicly available

• https://github.com/cps-sei/stac

• Compiles on recent Linux distributions

- Tested to demonstrate good performance

 • Veri�es with Frama-C Aluminium

Results extended to periodic
threads as well

Motivation

STAC = software that accesses the system clock, exchanges
clock values, and uses these values to set timers and perform
computation

• Key to real-time and cyber-physical systems

• Essential to keep software in sync with the
 physical world

• Examples = thread schedulers and time budget
 enforcers, distributed protocols (e.g., plug-and-play
 medical devices)

Goal: Formally verify STACs at the source code level using
deductive (aka auto-active) veri�cation

• Target: ZSRM mixed-criticality scheduler

 - Performs thread CPU allocation and time budget
 enforcement

- Available as Linux kernel module implemented in C

- Currently we focus on ZSRM budget enforcement only

Execution & Thread CPU Usage

Why use Auto-Active
Veri�cation?

Soundness

Language expressivity

• Pointers, recursion, loops

Rich speci�cation

• Quanti�ers

• Predicates

• Separation

Tool maturity

• Frama-C

 - Multiple backend SMT
 solvers
 Good balance between
 human intuition and brute
 force search

Why Verify Source Code?

Push assurance closer to executable level

• Use veri�ed compilers (e.g., CompCERT) to close the �nal gap

Don’t need to sacri�ce performance

• This is a problem when we verify models

• And is a no-go for low-level system software

Easier to integrate with existing systems

• Linux kernel module means anyone using Linux can use it

• Can be modi�ed to work with other OSes, such as SEL4

• What You Verify Is What You Execute!

Technical results

To our knowledge, the �rst
formally veri�ed and
performant timing enforcer

Measuring current time

12 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Property-Directed Test Generation
We are developing an automated, property-directed,
executable, test-case-generation technique that combines
the strengths of software model checking and symbolic
execution. Our tool takes a declarative description of a
behavior (e.g., an execution with a buffer overflow, an
execution reaching a dangerous function call, or leaking
sensitive information through a low-security interface) and
automatically generates an executable test harness that
executes it.

Dr. Edward Schwartz
Research Scientist
Vulnerability Analysis Team,
Threat and Vulnerability
Analysis Initiative

Principal Investigator

SEI Research Review 2016

13SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Property Directed Test-case Generation

Contact: jeff Gennari | jsg@cert.org
P6

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Manually �nding inputs to trigger a
behavior of interest in a program is
complex and time consuming. In
this project, we repurpose existing
formal methods techniques to help
automate this problem. We use
counter examples produced by SEI’s
Seahorn model checker to create
executable harnesses that
demonstrate how the behavior of
interest can be reached.

Verifying Linux Device Drivers
A common problem when model checking
software is understanding the results that the
model checker yields. For example, a small
discrepancy in modeling can result in a
complicated counter-example that is dif�cult to
understand. We applied PDTG to model checking
instances of Linux Device Drivers where the
model check failed, and automatically produced
an executable harness that showed the
problematic execution. The �nal harness can be
executed in a debugger and reviewed step by
step, which makes correcting the problem
much easier.

Reverse-engineering Malware
We also used PDTG to assist in
reverse-engineering malware. We start with a
sequence of API calls that may indicate malicious
or interesting behavior. For example,
enumerating processes on Windows requires
calls to CreateToolhelp32-Snapshot,
Process32First, and Process32-Next in
sequence. PDTG can construct a harness that
forces the program to execute these calls, and
thus display the malicious behavior for an
analyst. We tested this technique on the Gh0st
RAT variant.

Model checker (Seahorn) produces
counter example (trace) showing
how to reach property or behavior
of interest

Executable harness implements ex-
ternal methods needed to execute
path in trace

KLEE is a symbolic executor that
fuses together trace with values
from executable harness to produce
valid executable

ExecutableExecutable

Software Model
Checker

Program Model

PDTG

Executable Harness

Directed Symbolic
Execution

Property

14 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Dr. Ipek Ozkaya
Senior Member of the
Technical Staff
Deputy, Architecture Practices
Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=ozkaya_13614

Dr. Robert Nord
Senior Member of the
Technical Staff
Architecture Practices Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=nord_13615

Principal Investigators

Using Technical Debt to Improve
Software Sustainability and
Find Software Vulnerabilities
Technical debt is a metaphor that conceptualizes
the tradeoff between short-term and long-term value.
Managing technical debt is an increasingly critical
aspect of producing cost-effective, timely, and high-
quality software products.

Improving Software Sustainability through Data-Driven
Technical Debt Management
Work on this project spanned FY2015 and FY2016

Budget constraints and the need to accelerate capability
delivery have resulted in the DoD’s adoption of incremental
system development approaches and a shift from new
system acquisition to more cost-effective system evolution
and sustainment of existing systems. We developed a
suite of tools and techniques that detect technical debt
and analyze its causes and effects.

Finding Software Vulnerabilities Early by Correlating
with Technical Debt
Our technical results for this project include a dataset
correlating relationships between vulnerabilities and
known sources of security-related technical debt such
as design flaws.

SEI Research Review 2016

15SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

1 2 3 4

Source
code

Issue
trackers

Commit
history

Plug-in Analyzers
(e.g., Findbugs,

Classi�ers,
Project Trends)

Clustering the
�les with
evidence

Ranking
Visualization

TD Dashboard

Datasets

Contact: Ipek Ozkaya | ozkaya@sei.cmu.edu
P7

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Technical debt is a term that
conceptualizes the tradeoff
between the short-term bene�ts of
rapid delivery and the long-term
value of developing a software
system that is easy to evolve,
modify, repair, and sustain. In
an effort to manage budget
constraints the DoD is increasingly
searching for tool-supported
approaches to manage technical
debt. The goal of this project is to
develop a suite of tools and
techniques for detecting and
visualizing technical debt and
provide exemplar data sets.

Our approach included:

1. Codify known architectural sources of
 technical debt that are not addressed
 adequately by today’s code-oriented tools
 (e.g., safety-critical testing partitioning,
 unbalanced modules, dependency violations)

2. Identify architecture indicators through
 abstractions (e.g., interfaces, restrict
 compositional dependencies) and
 anti-patterns that are correlated with
 technical debt, and that can be automatically
 identi�ed by analyzing source code and other
 project artifacts.

3. Integrate these architectural indicators
 with code indicators in an experimental
 workbench.

4. Conduct empirical studies over multiple
 releases of at least two systems to correlate
 the identi�ed indicators with observable
 project measures such as cost to �x, cost
 to implement new features, and defects.

Technical debt:

• Exists in an executable system artifact, such
 as code, build scripts, data model,
 automated test suites;

• Is traced to several locations in the system,
 implying issues are not isolated but
 propagate throughout the system;

• Has a quanti�able effect on system attributes
 of interest to developers.

The technical debt metaphor is widely used
to encapsulate numerous software quality
problems. In a survey of 1831 participants,
primarily software engineers and architects
working in long-lived, software-intensive projects
from three large organizations, we found that
architectural decisions are the most important
source of technical debt. Our research has
shown that technical debt detection improves
when source code analysis is complimented
with an architecture focus.

The SEI Architecture Practices team
has been a pioneer in advancing the
research agenda in analyzing
technical debt. Our ongoing work is
focused on combining multiple
artifacts, such as source code, issue
trackers, commit histories and
augmenting analysis with machine
learning driven approaches to locate
and manage technical debt.
You can engage with us by
• collaborating on an in-depth
 analysis of your project and sharing
 your data
• contributing your technical debt
 examples

Finding: Tagging technical debt explicitly in issue trackers
improves its management.

"We could just fend off negative numbers near the crash
site or we can dig deeper and �nd out how this -10000 is
happening."
"Time permitting, I'm inclined to want to know the root
cause. My sense is that if we patch it here, it will pop-up
somewhere else later."
“There have been 28 reports from 7 clients… 18 reports
from 6 clients”
“hmm ... reopening. the test case crashes a debug build,
but not the production build. I have con�rmed that the
original source code does crash the production build, so
there must be multiple things going on here.”

Crash - WebCore::TransparencyWin::initializeNewContext()

Finding: Correlations between vulnerabilities and technical
debt demonstrate areas of key improvement.

Finding: Architecture design choices are key sources of
technical debt, such as these examples from 2 open
source, and 2 government projects.

Technical debt analytics vision and the timeline:
1: time technical debt is incurred; 2: time technical debt is recognized;
3: time to plan and re-architect; 4: time until debt is actually paid-off

Project Member Reported by ...@chromium.org, Apr 24, 2009 Deployment & Build Out-of-sync build dependencies

 Version con�ict

 Dead code in build scripts

Code Structure Event handling

 API/Interfaces

 Unreliable output or behavior

 Type conformance issue

 UI design

 Throttling

 Dead code

 Large �le processing or rendering

 Memory limitation

 Poor error handling

 Performance appending nodes

 Encapsulation

 Caching issues

Data Model Data integrity

 Data persistence

 Duplicate data

Regression Tests Test execution

 Overly complex tests

Types of Non-vuln �les Vuln �les % have vulns.
Design Flaws

 0 8544 47 0.5%

 1 7357 141 2%

 2 2345 91 4%

 3 194 10 5%

 4 1 0 0%

Research Review 2016Using Technical Debt to Improve Software Sustainability
and Find Software Vulnerabilities

16 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Evaluation of Threat Modeling
Methodologies
Failure to sufficiently identify computer security threats
leads to missing security requirements and poor
architectural decisions, resulting in vulnerabilities in cyber
and cyber-physical systems. This research compares
practical threat modeling methods (TMMs) that proactively
identify cyber-threats, leading to software requirements
and architectural decisions that address the needs of
the DoD. The primary result of this project is a set of
tested principles that can help programs select the most
appropriate TMMs. Using the most appropriate TMMs
will result in confidence in the cyber-threats identified,
accompanied by evidence of the conditions under which
the TMMs are most effective.

Dr. Forrest Shull
Assistant Director, Empirical
Research Office

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=shull_17917

SEI Research Review 2016

Principal Investigator

17SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Evaluation of Threat Modeling Methodologies

Contact: Forrest J. Shull | fjshull@sei.cmu.edu
P8

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

The Study

Evaluate three exemplar Threat Modeling Methods, designed on different
principles, to understand strengths and weaknesses of each.

Results

We identified characteristic differences among the TMMs that affect the confidence to be had
in their application on programs. Our data show substantial tradeoffs among threat types
detected, number of threats missed, and number of potential false positives reported–and
that no one TMM optimizes on all dimensions.

Future Work: Creating a training course of tested threat modeling principles & practices. Looking
for transition partners for case studies on DoD programs.

Long term: Our vision is to support dynamic threat models that can trace changes in the threat
environment to needed impacts on system requirements, design, and code.

“…engineers have not had sufficient training
nor been encouraged to have a mind-set that
considers how an adversary might thwart
their system… the R&D community has not
given engineers the tools they need.”
 —Greg Shannon, SEI/CERT
 Chief Scientist
 IEEE Institute, March 2015

RESOURCES: OSD(AT&L) Working Group on Cyber
Threat Modeling brings together practitioners and
researchers for quarterly meetings. Ask for details.

Motivation
Failure to sufficiently identify
computer security threats leads to
missing security requirements and
poor architectural decisions,
resulting in vulnerabilities in cyber
and cyber-physical systems.

This research compares 3 practical
threat modeling methods (TMMs)
that pro-actively identify
cyber-threats, leading to software
requirements and architectural
decisions that address the needs
of the DoD. Its primary result is a
set of tested principles which can
help programs select the most
appropriate TMMs, accompanied by
evidence of the conditions under
which each technique is most
effective. These principles can be
applied to better assess the
confidence that can be had in
cyber threat analysis.

Key results:

• STRIDE: Greatest variability in terms of how
 frequently it leads to types of threats.

• Security Cards: Able to find the most threat
 types but also substantial variability
 across teams.

• PnG: Was the most focused TMM (teams
 found only a subset of threat types), but
 showed the most consistent behavior
 across teams.

Apply to two different DoD-relevant Scenarios:

• Represents State of the
 practice

• Developed at Microsoft;
 “lightweight STRIDE”
 variant adopted from Ford
 Motor Company

• Successive
 decomposition w/r/t
 system components,
 threats

• Design principle:
 Inject more creativity /
 brainstorming into
 process, move away from
 checklist-based
 approaches

• Developed at University of
 Washington

• Physical resources (cards)
 facilitate brainstorming
 across several
 dimensions of thereats

• Includes reasoning about
 attacker motivations,
 abilities

“True” threats determined by professional
threat modelers.

“Generic” TMM STRIDE Security Cards Persona non Grata

• Design principle:
 Make problem more
 tractable by giving
 modelers a specific focus
 (here: attackers,
 motivations, abilities)

• Developed at DePaul
 University based on
 proven principles in CHI.

• Once attackers are
 modeled, process moves
 on to targets and likely
 attack mechanisms

Diagram
Create abstraction of
the system

Drones

Aircraft maintenance application

1

ID Threats
Apply checklists/
taxonomies of
threat types

2

Address
Generate change
requests; update reqts,
design, code

3

Validate
How complete are
results? What was
missed?

4

Union of Threat Types
Average frequency of detecting threat typesSTRIDE

Types detected

(13 teams)
Sec.Cards
(23 teams)

PnG
(17 teams)

-10

-5

0

5

10

15

0.
0

0.
2

20

25

30

Types undetected Not in reference list

STRIDE
(13 teams)

Sec.Cards
(23 teams)

PnG
(17 teams)

0.
4

0.
6

0.
8

Photo by U.S. Army Staff Sgt. Gene Arnold

Architecture Modeling
Helps Joint Multi-Role
(JMR) Effort

The SEI with collaborator
Adventium Labs used
Architecture-Centric Virtual
Integration Practice (ACVIP) to
discover potential software and
system integration issues early
in the development process.
The JMR program manager
recommended that contractors
use this technology in next-
phase demonstrations.

Assuring Missions

20 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Tactical Analytics
Work on these projects spanned FY2015 and FY2016

This work encompasses two projects: Tactical Analytics
and Structural Multi-Task Transfer Learning for Improved
Situational Awareness. In general, this work supports
analysis of data in timeframes sufficient for tactical
planning (i.e., typically, less than 72 hours prior to the
mission) and during tactical operations (i.e., analysis of
data gathered from data streams during the execution of
the mission).

In these projects, we developed

•	prototypes to demonstrate new capabilities for script
learning (i.e., patterns of life) and credibility scoring for
social media

•	generalized machine-learning techniques for data
classification and exploration that enable analysts to
understand emerging situations quickly

Edwin Morris
Senior Member of the
Technical Staff
Lead, Advanced Mobile
Systems Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=morris_13107

SEI Research Review 2016

Principal Investigator

21SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Structural Multi-Task Transfer
Learning
To support analysis of real-time
streaming data for situational
awareness, we created methods
for recognition patterns in textual
data and determining credibility
of textual data.

Patterns of Life: To recognize patterns of life
in textual data we use the concept of “scripts”.
A script is a series of ordered, related events
that describe a stereotypical pattern that
adversaries follow during military and other
activities. Scripts allow analysts to recognize
these patterns and make predictions about
emerging events. This year’s work was focused
on automatically identifying scripts from
streaming data, accounting for multiple
pathways through the script.

Comparing Sequence Z against Script X:

Research Review 2016Tactical Analytics
Recognizing Patterns of Life and Determining Credibility of Textual Data

Contact: Ed Morris | ejm@sei.cmu.edu
P14

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Lessons Learned:
1. Scripts can be learned from streaming data

2. Constraints are necessary to avoid obviously
invalid pathways

3. Even a simple test case is very complicated

Measures of Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

fid
en

ce

Time

True Rumor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
on

fid
en

ce

Time

0.5

0.6

0.7

0.8

0.9

1

C
on

fid
en

ce

Time
0.5

0.6

0.7

0.8

0.9

1

C
on

fid
en

ce

Time

Twitter Events
True: Castaic Earthquake Rumor: Obama Bans Sprinkles

Celebrity Death Events
Whitney Houston Died Paul McCartney Died

A

B1

C

E

D2

F

A

B1

C

E

B2

D1 D2

F

X Zp*

Match

Deletion

Match

A

D2

F

C

B1

A

D2

F

C

B1

Z

Block
Transposition
(2 trans-
positions)

Challenges:
1. State-of-the-art event recognition algorithms

proved insufficient for our task. Solution: We
used data from baseball box scores that al-
lowed easy event extraction. FY17 work will
extend DARPA algorithms for single & multi-
ple sentence event recognition. Script recog-
nition will ultimately require recognizing
events across multiple dissimilar documents.

2. Establishing event relationships must be im-
proved. Solution: FY16 work involved creating
constraints for order and uniqueness. FY17
work will extend this work.

Generated Script for Baseball ½ Innings

Determining Credibility Scores of
Streaming Social Media Data

Credibility Analytics Pipeline:

This work depends on accurate event detection.
As a proxy, we used 3 celebrity death events
and 80 diverse events from Twitter*

Future Work: We need to remove more
noise from the social media data in step #1 of
the analytics pipeline. Step #2 must be
improved to generalize to more event types.
Step #3 requires external sources to improve
the credibility assessment of the entities
providing information.

*Zou, J., Fekri, F., & McLaughlin, S. W. (2015, August). Mining Streaming
Tweets for Real-Time Event Credibility Prediction in Twitter. In Proceedings
of the 2015 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining 2015(pp. 1586-1589). ACM.

Lessons Learned:
1. Stance determination is essential

2. Noise is difficult to filter; we need accurate
event recognition

if

pxs(X,Z)=1– arg min
p Path(x)

ßxδ(x,Z)∑

px

ßx

ßx = 1 unless specified
 otherwise by the user

∑

0
α1

α1

α1

δ(x,Z)=
a match B.T.
insertion
deletion

Dataset All True False

 Accuracy P R F1 P R F1

Celebrity .85 .82 .90 .85 .88 .80 .84

Twitter Events .61 .58 .77 .67 .66 .45 .54

Removes tweets
unrelated to the
event of interest

Uses SVM classifier
to predict support,

deny, or neutral

Uses a statistical algorithm
based on metadata and

stance to score the event

Data Stream
Credibility

Score + Chain
of Reasoning

Calculate
Aggregate

Score

Tweet +
StanceIdentify

Author’s
Stance

Related
tweets

Filter Stream

22 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Semiconductor Foundry Verification
Unknown and counterfeit electronic components pose
risk to secure operations in critical infrastructure
systems. The project produced methodology to verify
the history of chip design and manufacturing. The
results of this research can substantially cut the effort
required to validate a supply chain.

Dr. Alexander Volynkin
Research Scientist
Forensic Operations and
Investigations Team, Monitoring
and Response Initiative

SEI Research Review 2016

Principal Investigator

23SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Semiconductor Foundry Verification
Detecting Counterfeit Electronics

Contact: Alexander Volynkin, Ph.D. | avolynkin@sei.cmu.edu
P13

Motivation
• Project aims at verifying history of chip

design and manufacturing used in critical
infrastructure.

• Unknown electronic components possess
risk to secure operations.

• Analysis is done at the integrated circuit
(IC) level. Veri�ed information includes
foundry info, design specifics, sources of
3rd party circuitry.

• Algorithms detect attribution with minimal
human intervention.

Research Goals
• Well-established algorithmic approach to

circuit component recognition based on be-
havioral matching of an unknown sub-circuit
against a library of abstract components

• Leverage available component/foundry in-
formation to study the attribution impact
and extract samples of sub-circuits.

• Measure logic gate density, metal layer
routing, collections of logic gates.

• Analyze numerous different ICs for differen-
tiating factors.

• Verify results on another relatively large
set of various ICs.

Main Idea
• Semi-automated image processing to

detect chip features

• Each layer is photographed and processed

• Relevant features extracted and checked
against rules

• Fabrication facilities have design and fabri-
cation requirements and tolerances

Some potential examples fabrication require-
ments:
• No acute angles or angles of non-45

degree integer multiples

• All metal feature sizes must be multiples
of X nm

• Metal layers will be copper

Failure to meet these rules �ags chips as
potential counterfeits

Experimental Results
Counterfeit Examples. These two chips appear
to be identical. The one on the left is
counterfeit, the one on the right is authentic.

Integrated Circuit Fabrication
• Doping agents, glasses, or metals on sili-

con

• Individual components nowadays are on the
order of 100nm~10nm

• Chips are multi-layered•Bottom layer is
transistors, other silicon features

• Layers above alternate:

- Metal interconnects (copper/aluminum)

- Vias (same material as metal)

- Glass (Silicon Dioxide) between all of
this, isolating the layers

• Topmost layer contains pads for connecting
to packaging and an encapsulation layer

Authentic Chip Delayered. The process
exposes additional features in layers below.
Pads, metals and via sizes, distances between
features and the edge of the die indicate
manufacturing process and requirements of a
speci�c foundry.

Counterfeit Chip Delayered. Similar process for
counterfeit chip reveals features that are very
different from the manufacturing process used
in authentic IC.

Project Outcomes
Automated Analysis Framework.Square Area
Density Based Spacial Cluster Analysis with
Noise (SADBSCAN)

Important Manufacturing Differences

• Method of cluster analysis speci�cally
designed for segmentation and area differ-
entiation in images

• Weights the geographical difference as
more important and mark these objects as
different clusters

• Queries different regions separately and
ef�ciently

• Calculates simple Euclidian distance of
color values

• Combines clusters of pixels based not
only on color similarities but also the
“geographic” location

• Accurate feature detection with high speed
parallel processing (10-15 minutes on
1GB image)

• Various additional analytical image process-
ing and feature extraction methods imple-
mented in plugins

Different Foundries

Same Foundry

Circular features, non
45-degree angles

Aluminum, instead of copper

Via Sizes

Distances between different
features

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

24 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Tactical Computing and
Communications
Work on this project spanned FY2015 and FY2016

This project worked toward a goal of developing
architectures and technologies to provide efficient
and secure computing and communications for teams
operating in tactical environments, in particular

•	Trusted Identities in Disconnected Environments for
securing communication between mobile devices and
cloudlets operating in tactical environments

•	Secure VM Migration for enabling secure migration
of capabilities between cloudlets in tactical
environments

•	Delay-Tolerant Data Sharing for efficient information
sharing between nodes in tactical (DIL) environments

Results of this work include reference architectures,
demos, prototypes, and source code that validate and
incorporate research results. Code for tactical cloudlets
is available as open source at https://github.com/SEI-
AMS/pycloud.

Dr. Grace Lewis
Principal Researcher
Deputy, Advanced Mobile
Systems Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=lewis_15752

SEI Research Review 2016

Principal Investigator

25SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Contact: Grace Lewis | glewis@sei.cmu.edu
P9

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Research Review 2016Tactical Computing and Communications (TCC)
Secure and Ef�cient Computing and Communications at the Edge

Connected

G
O

A
LS

D
TN

 N
O

D
E

TA
S

K
S

Disonnected Reconnecting

Maintain shared
group context

Make best use
of available
bandwidth

Applications
continue to
function

Predict state
where possible

Re-establish
shared group
context as quickly
and accurately as
possible

Pre-cache data
likely to be
relevant later in
the mission

Delay
transmission of
non-critical data

Predict location of
teams based on
mission plan

Provide
connectivity map
to help the user
reconnect

Prioritize
synchronization of
critical messages

Eliminate
redundant
messages

Tactical Cloudlet

Tactical Cloudlet

Central Core
(Enterprise Cloud)

Packaged Capabilities
(Service VM)

High-bandwidth,
stable connection

for pre-provisioning

Deployment
in the �eld

Data Sources

Low-bandwidth,
intermittent connection
for oportunistic data
synchronization

Single hop network,
multiple devices

1 2

Wi-Fi
Access

Point

3

4

Cloudlet A

Cloudlet B

Service
VM

Cloudlet A
Cloudlet B

Service
VM

Admin logs into the Cloudlet Manager
to start the Bootstrapping process

Mobile Device connects to router,
validates server credentials, and
authenticates with RADIUS server

Communication between the
mobile device and the cloudlet
is encrypted at the transport
and message level

User connects mobile device to the cloudlet,
and upon visual con�rmation the admin starts
the pairing process

Cloudlet Admins exchange temporary
keys using their radios

Service VM is migrated from
Cloudlet A to Cloudlet B

User B subscribes to the CDN
for �les tagged “map” or “IED”

Node B downloads File X from
CDN and pushes it to User B

User A publishes a �le
tagged with “map” to the CDN

Device connects to the migrated
Service VM on Cloudlet B

Cloudlet B generates and sends device
credentials to Cloudlet A

Device
Credentials

Cloudlet A
Cloudlet B

Service
VM

Device
Credentials

Cloudlet A
Cloudlet B

Service
VM

CDN
Node 1

CDN
Node 2

User B

CDN
Node 3

CDN
Node 4

Subscribe to
“map” or “IED”

Content Delivery
Network (CDN)

Broadcasting with
BitTorrent

CDN

CDN
Node 1

CDN
Node 2

CDN
Node 3

CDN
Node 4

User B

User A

File X tagged
with “map”

CDN

File X

CDN
Node 1

CDN
Node 2

CDN
Node 3

CDN
Node 4

User B

User A

Download File X
using BitTorrent

2

1

Node B is noti�ed of new �le
and downloads .torrent
for File X

CDN

CDN
Node 1

CDN
Node 2

CDN
Node 3

CDN
Node 4

User B

User A

.torrent for
File X

Subscribe to
“map” or “IED”

2

File X tagged
 with “map”
is available

1

1 2

3 4

1 2

3 4

Forward-deployed,
discoverable, virtual
machine (VM) based
cloudlets that can be
hosted on vehicles or other
platforms
• computation of�oad
• forward data-staging
• �ltering of data intended
 for mobile devices
• collection points for data
 heading for enterprise
 repositories

Extensions to the existing
DTN standard for priorities,
staleness, replacement,
and redundancy monitoring
to increase bandwidth
ef�ciency in DIL
environments

Step 1: Bootstrapping
• Generation of Server
 Credentials using IBE
 (Identity-Based Encryption)
• Setup of RADIUS Server
 with Server Credentials

Device Credential Revocation
• Automatic due to timeout: Bootstrapping requires setting up mission length
• Manual due to known loss or compromise: Cloudlet Manager component has revocation option

Step 3: Wi-Fi Authentication
RADIUS Server implements
Wi-Fi WPA2-Enterprise
802.1X EAP-TTLS with PAP
• Device receives server
 credentials and validates
• Devices sends its
 credentials for validation

Step 2: Pairing
• Generation of Device
 Credentials using IBE
• Transfer to device using
 Bluetooth or USB, plus
 visual con�rmation
• Transfer to RADIUS Server

Subscription
• User B subscribes to
 the Content Delivery
 Network (CDN) for
 �les tagged “map”
 or “IED”
• CDN uses RSS to
 discover �les

Noti�cation and
.torrent Download
• CDN Node 2 is
 noti�ed via RSS that
 CDN Node 1 has
 published a �le
 tagged with “map"
• CDN Node 2
 downloads .torrent
 �le for File X from
 Node 1

File Download using
BitTorrent
• CDN Node 2
 downloads File X
 using BitTorrent
• CDN Node 2 pushes
 File X to User B’s
 device

Step 4: API Requests
• Device exchanges
 encrypted messages with
 the server
• Each exchange is validated
 against authorized device
 list

Cloudlet Pairing
• Cloudlet Admins
 exchange temporary keys
 over voice
• Keys are used to setup a
 temporary channel
• Cloudlet credentials are
 exchanged over the
 temporary channel

Service VM Migration
• Cloudlet A migrates
 Service VM to Cloudlet B

Device Credential
Generation
• Cloudlet A discovers and
 connects to Cloudlet B
 using exchanged
 credentials
• Cloudlet B generates new
 credentials for Device
• Cloudlet B sends
 credentials to Device via
 Cloudlet A

Device Connection
• Device connects to
 Cloudlet B using new
 credentials
• Client App on Device
 connects to Service VM
 running on Cloudlet B

Metadata
• Time and location
 Priority
• Type of payload (image,
 voice, video, text, …)
• Set of tags describing
 payload content (building,
 crowd, �re, injured
 person, …)

Features:
• Pre-Provisioned
 Cloudlets w/ App Store
• Standard Packaging of
 Service VMs
• Optimal Cloudlet
 Selection
• Cloudlet Management
 Console
• Cloudlet Handoff/
 Migration
• Secure Key Generation
 and Exchange

Previous Work
Tactical Cloudlets

Secure Service VM Migration
Delay-Tolerant Networking (DTN)

Publication
• User A sends File X
 tagged with “map” to
 the CDN
• CDN uses RSS to
 publish �les

Trusted Identities in Disconnected Environments Delay-Tolerant Data Sharing

26 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Enabling Evidence-Based
Modernization
Business system modernization continues to be
problematic for the DoD. It appears on the General
Accounting Office High Risk List again in 2015.
The project is producing a prototype of a decision
support tool that incorporates stakeholder solution
preferences and analyzes the alternative decisions
to find solutions that best meet the preferences.

John Klein
Senior Member of the
Technical Staff
Architecture Practices Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=klein_14435

SEI Research Review 2016

Principal Investigator

27SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Data Model

Alternatives

Comprehensive Extensible Speci�c

Schedule Life-Cycle
Costs

Business SecurityDependencies and
Interoperability with
Other Investments

Overall Risk of
Investment

Failure

Research Review 2016Enabling Evidence-Based Modernization (EEBM)

Contact: John Klein | jklein@sei.cmu.edu
P15

The GAO reports that most DoD
business system modernization
projects fail to establish a baseline
within 2 years. These are not
unprecedented systems – viable
solutions exist, but choosing a
solution involves stakeholders
agreeing about the architecture
approach and delivery sequence.
We’ve found that in many cases, only
a few decisions affect the solution
cost and bene�t, and we have
developed a method and tool to help
�nd those decisions that matter.

Softgoal Modeling is a lightweight approach to
capture the structure of the decisions to be
made as a network. Softgoals allow
representation of subjective, qualitative desires
about the system.

Analytic Hierarchy Process (AHP) collects
stakeholder preferences about the
softgoaldecisions. AHP is time-ef�cient for
stakeholders, using pairwise comparisons to
rank alternatives.

LOOPHOLE is a search-based tool that uses
differential evolution to ef�ciently �nd optimal
solutions–the combinations of decisions that
best satisfy preferences and other constraints.
LOOPHOLE then uses Bayesian inference to
identify the decisions that contribute to the best
solutions-the Key Decisions that have the most
in�uence over the quality of the solution.

This approach scales to large decision models,
and is fast enough to provide real time
collaboration support. By focusing on the
decisions that matter, programs can focus
attention, establish baselines, and make faster
progress.

Analytic Hierarchy Process (AHP)
Ranking by pairwise comparisons

LOOPHOLE Performance and Scalability

LOOPHOLE ResultsSoftgoal Model

LOOPHOLE
Decision Structure
(Softgoal Model)

Decision Cost/Benefit
(Existing Technology)

Stakeholder Preferences
(Analytical Heirarchy
Process)

Key Decisions (the ones that matter)

Differential
Evolution
(Search)

What are the best
combinations of
decisions?

Bayesian
Support
(Rank)

Which decisions
appear in the
best solutions?

Model

CSServices

CSDFand Marketing

CSCounseling

CounselingMgmt

CSITDepartment

CSSAProgram

KidsAndYouth

AOWS

Nodes

351

326

350

206

126

114

81

53

Edges

510

422

470

239

162

168

81

57

Runtime(s)

320

252

240

62

28

27

11

10

Able to support real-time
collaborative decision-making

Other larger
models

Softgoal model
example

Decision Name: Data Model?
Description: What type of data model should we develop?
Alternatives: Comprehensive
 Extensible
 Speci�c

Criterion: Schedule

Comprehensive is signi�cantly worse than (-7) Extensible
Comprehensive is signi�cantly worse than (-7) Speci�c
Extensible is a little worse than (-3) Speci�c

Criterion: Life-Cycle Costs

Comprehensive is signi�cantly worse than (-7) Extensible
Comprehensive is signi�cantly worse than (-7) Speci�c
Extensible is somewhat worse than (-5) Speci�c

Criterion: Dependencies and Interoperability with Other Investments

Comprehensive is signi�cantly worse than (-7) Extensible
Comprehensive is signi�cantly worse than (-7) Speci�c
Extensible is the same as (1) Speci�c

Criterion: Overall Risk of Investment Failure

Comprehensive is somewhat worse than (-5) Extensible
Comprehensive is somewhat worse than (-5) Speci�c
Extensible is the same as (1) Speci�c

Rank

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Node

J2EE Speci�cation

Pnp Framework

New Database

Documentation Tool

Access Control Assessed

Monitoring Pilot

General Test Env

Bakeoff Result

Access Control Pilot

DB Vendor Test Env

Data Service Spec

External clients get their request

XXX coordinates & internal client

XXX coordinates & external client

Data Model Pilot

Data Service Pilot

2 Tier

3 Tier

De�ne data model for shared data

Svc layer w/ extracted biz logic

De�ne ext mandatory data std

Svc layer w/ extracted biz logic in DB

External data model can be extended

Provide logical data scheme internally

Support

0.129

0.124

0.115

0.114

0.113

0.112

0.110

0.110

0.108

0.105

0.099

0.098

0.098

0.097

0.095

0.095

0.094

0.090

0.085

0.080

0.079

0.066

0.062

0.052

Status

ON

OFF

OFF

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

ON

OFF

ON

ON

ON

ON

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Photo: Spc. Phillip McTaggart

Providing Computation
and Data at the
Tactical Edge

The SEI developed KD-Cloudlet,
a software solution that enables
the quick deployment of tactical
cloudlets—forward-deployed,
discoverable, virtual-machine-
based cloudlets that can be
hosted on vehicles or other
platforms and provide secure
computation offload and data
staging capabilities for soldiers
in the field. KD-Cloudlet is
available on GitHub.

Assuring Software

30 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Vulnerability Discovery
Work on this project spanned FY2015 and FY2016

Vulnerabilities are pervasive in software-based systems,
both in traditional IT networks and networks that support
critical U.S. infrastructure.

In this project, we focused on automated and sound
vulnerability discovery and prioritization in both traditional
and non-traditional (i.e., mobile) computing platforms
and on vulnerability discovery and correlation in emerging
networked technologies. Our results include prototype
tools for

•	uniqueness determination, to show which vulnerabilities
are triggered by a crashing test case

•	the automatic discovery of vulnerabilities in binary
programs by combining mutational fuzzing and concolic
execution

SEI Research Review 2016

Dr. Edward Schwartz
Research Scientist
Vulnerability Analysis Team,
Threat and Vulnerability
Analysis Initiative

Principal Investigator

31SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Contact: David Warrren | dwarren@sei.cmu.edu
P17

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Research Review 2016Vulnerability Discovery

Current vulnerability discovery
techniques such as black-box
fuzz testing and concolic testing
are so effective that they routinely
�nd hundreds of thousands of
crashers, which crash the target
program. We created a new
methodology for precisely and
naturally de�ning vulnerabilities
through the creation of patches.
We use our methodology to debunk
three commonly held beliefs in
fuzzing practice.

Experiment setup.
We fuzzed Flasm, ImageMagick, Jasper,
and OpenJpeg for a week under various
con�gurations, which yielded hundreds of
thousands of crashes. We patched each crash
using our methodology, which yielded
vulnerabilities for each program. We used
this data to debunk the following beliefs
shown on the right:

Misbelief 2: Sanitization never harms fuzzing performance

Misbelief 3: The AFL fuzzer always finds more vulnerabilities than non-guided fuzzers

Program # Vuls UC % Error OC % Error

Flasm

ImageMagic

Jasper

OpenJpeg

6

31

12

36

1.8

1.9

0.0

0.1

29%

6%

0%

0%

410.9

67.9

226.4

267.5

6,848%

219%

1,887%

743%

0

5

10

15

20

25

30

35

40

Vu
ln

er
ab

ili
tie

s
Vu

ln
er

ab
ili

tie
s

Flasm ImageMagick Jasper OpenJpeg

0

5

10

15

20

25

30

35

40

Flasm ImageMagick Jasper OpenJpeg

AFL Fuzzer

BFF Fuzzer

Misbelief 1: Stack backtrace hashing always accurately
counts vulnerabilities
• # Vuls: Number of vulnerabilities as counted by
 our methodology

• UC (Undercount): Average number of vuls missed due
 to stack backtrace hashing

• OC (Overcount): Average number of vuls counted more than once
 by stack backtrace hashings

clang-asanopt

clang-noopt

clang-opt

gcc-noopt

gcc-opt

softbound-noopt

sanitized runs

32 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Prioritizing Alerts from Static
Analysis with Classification Models
Triaging the number of alerts about possible security-
related code flaws detected by static analysis currently
requires an unacceptable level of manual effort.

The project created alert classification models using
features derived from multiple static analysis tools,
code base metrics, and archived audit determinations.
The results are accurate predictors of alert validity,
intended for use in automatic prioritization of alerts
from static analysis tools that minimizes the number
of alerts needing human assessment.

Dr. Lori Flynn
Software Security Engineer
Secure Coding Team,
Cybersecurity Foundations
Initiative

SEI Research Review 2016

Principal Investigator

33SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Problem
The number of security-related code
�aws detected by static analysis
requires too much effort to triage.

Significance
• Code �aws and vulnerabilities remain

• Scarce resources are used inef�ciently

Project goals
Classi�cation algorithm development using CERT-
and collaborator-audited data, to accurately
estimate the probability of true & false positives,
intended to reduce analyst effort.

Research Review 2016

Contact: Lori Flynn, PhD | l�ynn@sei.cmu.edu
P18

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Prioritized, small number of
alerts for manual audit
(green box)
Most alerts automatically
“audited” by classi�er as
expected True (e-TP) or
False (e-FP)

Many alerts left unaudited!
(red box)

Scientific Approach
Novel combined use of:

1) multiple analyzers, 2) variety of features,

3) competing classi�cation techniques!

Results with DoD Transition Value
Software and paper: Classi�er-development

• Code for developing classi�ers in R

• Paper on classi�er project [1]

Software: Enhanced-SCALe Tool (multi-tool alert
auditing framework)

• Added data collection

• Archive sanitizer

• Alert fusion

• Of�ine SCALe installs and �rst VM

Training to ensure high-quality data

• SEI CERT coding rules

• Auditing rules [2]

• Enhanced-SCALe use

Auditor quality test

• Test audit skill: mentor-expert designation

Conference/workshop papers from project:
[1] Flynn, Snavely, Svoboda, Qin, Burns,
VanHoudnos, Zubrow, Stoddard, and
Marce-Santurio. “Prioritizing Alerts from Multiple
Static Analysis Tools, using Classi�cation
Models”, work in progress.

[2] Svoboda, Flynn, and Snavely. “Static
Analysis Alert Audits: Lexicon & Rules”, IEEE
Cybersecurity Development (SecDev), November
2016.

Future work
Goal: improve accuracy

• Try different classi�cation techniques

• Add features:

– Semantic features (ICSE 2016)

– Dynamic analysis tool results

• More audit archive data needed

– Additional data welcome! Potential
collaborators, please contact me

– FY17 project focuses on rapid expansion
of per-rule classi�ers

Analyzer Analyzer Analyzer

Codebases

Alerts

Today Project Goal

Competing Classifiers to Test

Lasso Logistic Regression

CART (Classi�cation and Regression Trees)

Random Forest

Extreme Gradient Boosting (XGBoost)

Develop
Model

Validate
Model

Rule 01 Data

Training Set Test Set

Per-rule alert classifiers Classifiers for all alerts

All Data, and RuleIDs
as a feature

Develop
Model

Validate
Model

Rule n Data

Training Set Test Set

Develop
Model

Validate
Model

Training Set Test Set

Some of the features used (many more)

Analysis tools used

Signi�cant LOC

Complexity

Coupling

Cohesion

SEI coding rule

1 1

N
um

be
r

of
 R

ul
es

30

25

20

15

10

5

0

| (False - True) / (False + True) |
Close to even mix
True and False

Total

0.1

4
3

1
3 2

4

12

25

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Most/all one type

Classi�cation algorithm development using CERT-and

collaborator-audited data, that accurately classi-
fies most of the diagnostics as: Expected True
Positive (e-TP) or Expected False Positive (e-FP), and
the rest as Indeterminate (I)

Prioritizing Alerts from Static Analysis with
Classification Models

56 CERT coding rules with 20 or more
audits. Alerts for most rules tend to be
determined one way (True or False).

Archived Audit Data

Classifier Test Highlights
Classi�ers made from all data, pooled:

All-rules (158 rules) classi�er accuracy:

• Lasso Logistic Regression: 88%

• Random Forest: 91%

• CART: 89%

• XGBoost: 91%

Single-rule classi�er accuracy:

Data Used for Classifiers
Data used to create and validate classi�ers:

• CERT-audited alerts:

– ~7,500 audited alerts

• 3 DoD collaborators audit their own codebas-
es with enhanced-SCALe

We pooled data (CERT + collaborators) and
segmented it:

• Segment 1 (70% of data): train model

• Segment 2 (30% of data): testing

Added classi�er variations on dataset:

• Per-rule

• Per-language

• With/without tools

• Others

CERT-audited data

*Single-rule IDs with asterisk: small quantity of data, results suspect

3,147

11,772

0

10,000

20,000

30,000

40,000

50,000

TP FP Susp

12,076

45,172

6,361

0

10,000

20,000

30,000

40,000

50,000

e-TP e-FP I

48,690

General results (not true for every test)
• Classi�er accuracy rankings for all-pooled

test data: XGBoost ≈ RF > CART ≈ LR

• Classi�er accuracy rankings for collaborator
test data: LR ≈ RF > XGBoost > CART

• Per-rule classi�ers generally not useful (lack
data), but 3 rules are exceptions.

• With-tools-as-feature classi�ers better than
without.

• Accuracy of single language vs. all-languages
data: C > all-combined > Java

288 Classifiers Developed
• 15 featureless classi�ers (20 or more

audits, 100% True or False)

• 201 classi�ers for 11 with mixed determina-
tions

– True/False ratio & count combination
insuf�cient for classi�ers, for some rules

• 72 all-rules classi�ers name used as feature

– 44 per-language classi�ers

Rule ID
INT31-C
EXP01-J
OBJ03-J
FIO04-J
EXP33-C*
EXP34-C*
EXP36-C*
ERR08-J*
IDS00-J*
ERR01-J*
ERR09-J*

Lasso LR
98%
74%
73%
80%
83%
67%
100%
99%
96%
100%
100%

CART
98%
81%
86%
90%
83%
79%
100%
100%
96%
100%
88%

Forest
97%
74%
86%
80%
87%
72%
100%
100%
96%
100%
88%

XGBoost
97%
74%
83%
80%
83%
72%
100%
100%
96%
100%
88%

Random

34 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Establishing Coding Requirements
for Non-Safety-Critical C++
C++ is used extensively throughout the DoD, including
major weapons systems such as the Joint Strike
Fighter. Existing C++ coding standards fail to address
security, subset the language (e.g., MISRA C++:2008),
or are outdated and unprofessional (e.g., C++ Coding
Standard referenced in DISA’s Application Security and
Development STIG).

This project has resulted in

•	acceptance by the Clang (a compiler front-end for C++
and other programming languages) community of a
flag for enabling all Clang-tidy checkers that map to
CERT secure coding guidelines

•	16 new C++ rules

•	15 new checkers to the Clang trunk

•	two new C++ defect reports

Aaron Ballman
Software Security Engineer
Secure Coding Team,
Cybersecurity Foundations
Initiative

SEI Research Review 2016

Principal Investigator

35SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Contact: Aaron Ballman | aaron@aaronballman.com
P19

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Finish with a compelling rule that is applicable
to realworld code and can be automatically
enforced

Create a basic checker for the rule text

Create the stub rule text

E:llvm\2015>clang-tidy -checks=-*,cert-*
E:|Desktop\test1.cpp -- - std=c++14
2 warnings generated.
E:\Desktop\test1.cpp:7:7: warning: do not call ‘setjmp’;
consider using exception handling instead
[cert-err52-cpp] if (setjmp(env) == 0) {

ERR52-CPP. Do not use setjmp() or longjmp()
Created by Fred Long, last modified by Sandy Shrum about 2 hours ago
The C standard library facilities setjmp() and longjmp() can be used
to simulate throwing and catching exceptions. However, these facilities
bypass automatic resource management and can result in undefined
behavior, commonly including resource leaks, and denial-of-service
attacks.

Research Review 2016Establishing Coding Requirements for
Non-Safety-Critical C++ Systems

Writing secure C++ code is hard
and existing coding standards are
insuf�cient. Our research focuses
on educating developers about
C++ security issues through quality
secure coding rules and alerting
developers of security-related
de�ciencies in their source code
through automated checkers.

The CERT C++ Coding Standard comprises 83
C++-speci�c rules spread over 11 broad
categories of language constructs. Additionally,
the Standard references 79 (out of the 102)
rules from the CERT C Coding Standard that
also apply to C++. Each rule has a title,
introduction & normative text, followed by a
series of noncompliant code examples and
their accompanying compliant solutions. Each
rule also guides the user to the risks of failing
to comply with the rule, what kind of automated
detection mechanisms exist, what real-world
vulnerabilities have resulted from failing to
comply with the rule, and citations & related
material.

Modi�ed 137 C++-related rules and created an
additional 16 rules on our public Wiki, engaging
an average of 2000 unique visits per month.
Contributed 15 checkers to the Clang open
source C/C++ compiler, available by default for
10s of millions of programmers.

CERT C++ Coding Standard Rules

Example Rule

C Rules C++ Rules

Old New (FY16) Inapplicable to C++

Our Results: Sections
1. Declarations and Initialization (DCL)

2. Expressions (EXP)

3. Integers (INT)

4. Containers (CTR)

5. Characters and Strings (STR)

6. Memory Management (MEM)

7. Input Output (FIO)

8. Exceptions and Error Handling (ERR)

9. Object Oriented Programming (OOP)

10. Concurrency (CON)

11. Miscellaneous (MSC)

Research the kernel of a security-focused rule
Rule creation follows an iterative process
involving multiple parties:

Hackers, authors, the C++ committee, and the
C++ Standard itself help form the kernel of a
rule. External collaborators such as compiler
writers and users help iterate the rule concept
and checker behavior until it is solid and
applicable to real-world code.

The results are a more compelling rule and
automatic detection capabilities.

Our Results: Rules

JTC1/SC22/WG21 -- The C++ Standards
Committee
• Effective C++ Third Edition

• ISO

• IEC

• Common Vulnerabilities and Exposures

• Clang is the primary compiler for XCode and
is thus used to build all iOS and MacOS ap-
plications, as well as FreeBSD. And is sup-
ported by Microsoft Visual Studio and Linux.

120

100

80

60

40

20

0

As described in MSC55-CPP. Do not return from a function declared
[[noreturn]], functions declared with the [[noreturn]] attribute must not
return on any code path. If a function declared with the [[noreturn]]
attribute has a non-void return value, it implies that the function returns a
value to the caller even though it would result in undefined behavior.
Therefore, functions declared with [[noreturn]] must also be declared
as returning void.

Noncompliant Code Example
In this noncompliant code example, the function declared
with [[noreturn]] claims to return an int:
#include <cstdlib>

[[noreturn]] int f() {
 std::exit(0);
 return 0;
}

This example does not violate MSC55-CPP. Do not return from a function
declared [[noreturn]] because std::exit() is declared [[noreturn]],
so the return 0; statement can never be executed.

Compliant Solution
Because the function is declared [[noreturn]], and no code paths in
the function allow for a return in order to comply with MSC55-CPP. Do not
return from a function declared [[noreturn]], the compliant solution declares
the function as returning void and elides the explicit return statement:

#include <cstdlib>

[[noreturn]] void f() {
 std::exit(0);
}

Risk Assessment
A function declared with a non-void return type and declared with
the [[noreturn]] attribute is confusing to consumers of the function
because the two declarations are conflicting. In turn, it can result in misuse
of the API by the consumer or can indicate an implementation bug by the
producer.

Rule Severity Likelihood Remediation
Cost

Priority Level

DCL22-
CPP

Low Unlikely Low P3 L3

Automated Detection
Tool Version Checker Description

Clang 3.9 -Winvalid-noreturn

Related Vulnerabilities
Search for vulnerabilities resulting from the violation of this rule on
the CERT website.

Related Guidelines
SEI CERT C++
Coding Standard

MSC54-CPP. Value-returning functions must
return a value from all exit paths
MSC55-CPP. Do not return from a function
declared [[noreturn]]

Bibliography
[ISO/IEC 14882-2014] Subclause 7.6.3, "Noreturn Attribute"

DCL22-CPP. Functions declared with [[noreturn]]
must return void
Created by Aaron Ballman, last modified on Aug 24, 2016

36 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Automated Code Repair
Experience from CERT and DoD source code analysis
labs shows that most software contains numerous
vulnerabilities, largely arising from common coding errors.
Automated code repair reduces a system’s attack surface
and improves its ability to withstand cyber-attacks.

This project focused on integer overflow in calculations of
how much memory to allocate and calculations related to
array bounds. Through this work, we will reduce a typical
number of unhandled violations to a number small enough
for a development team to mitigate all of them. Dr. Will Klieber

Software Security Engineer
Secure Coding Team,
Cybersecurity Foundations
Initiative

SEI Research Review 2016

Principal Investigator

37SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

 OpenSSL Jasper

Over�ows* 969 481

Over�ows that are sensitive 233 101

Over�ows fully repaired 180 53

Semi-repair 28 32

Unrepaired 25 16

*(as reported by Kint)

Automated Code Repair

Contact: Will Klieber | weklieber@sei.cmu.edu
P20

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Integer over�ow in calculations
related to array bounds or indices
is almost always a bug. We have
developed and implemented an
automated technique for repairing
such bugs so that the program
behaves as likely desired.

Experience from source code analysis labs at
CERT and DoD shows that most software
contains numerous vulnerabilities. A majority
arise from common coding errors.

Static analysis tools help, but typically they
produce an enormous number of warnings. The
volume of just the true positives can overwhelm
the ability of the development team to �x the
code. Consequently, the team eliminates only a
small percentage of the vulnerabilities.

Our work on automated repair is based on
three premises
1. Many security bugs follow common pat-

terns. E.g., one common bug pattern is
“p = malloc(n * sizeof(T))” where n is
attacker-controlled. If n is very large, integer
over�ow occurs, and too little memory is al-
located. This sets the stage for a buffer
over�ow later on.

2. By recognizing such a pattern, it is possible
to make a reasonable guess of the develop-
er's intention (inferred specification). E.g.,
“Try to allocate enough memory for n objects
of type T.”

3. It is possible to repair the code to satisfy
this inferred specification. Example of
repair: Insert code to check if over�ow
occurs and, if it does, to simulate malloc
failing with ENOMEM.

Integer Overflow
Integers in C are stored in a �xed number of
bits N (e.g., 32 or 64). Over�ow occurs when
the result cannot �t in N bits.

In modular arithmetic, only the least signi�cant
N bits are kept.

This past year (FY16), we focused on integer
over�ow that leads to memory corruption. E.g.:

• Memory allocation: malloc(n), where the cal-
culation of n can over�ow.

• Integer over�ow in array bounds check.

Example: Android Stagefright vul (July 2015)
had both of the above types of over�ows.

Repair: Emulate normal arithmetic
For non-negative integers with only addition or
multiplication (no subtraction or division), the
value is monotonically non-decreasing
(except for multiplication by zero).

In this case, unlimited-bitwidth arithmetic can
be emulated by using saturation arithmetic:
Replace an over�owed value with the greatest
representable value.

1. unsigned cur_len = 0;
2. while(1) {
3. key = grub_getkey();
4. if (key == ‘\b’) {
5. if (cur_len == 0) {
6. /* Add error-handling
 code here. */
7. }
8. cur_len--;
9. grub_printf(“\b”);
10. continue;
11. }
12. if (cur_len + 2 < buf_size) {
13. buf[cur_len++] = key;
14. grub_printf(“%c”, key);
15. }
16. }

If a potentially over�owed value is used to index
into an array, do a semi-repair (add a check to
detect over�ow, ask user to write
error-handling code).

Example semi-repair from CVE-2015-8370

An over�ow is sensitive if it involves variables
that are associated with array indices or
bounds.

Conclusion
Automated code repair (ACR) reduces a
system’s attack surface and improves its ability
to withstand cyber-attacks.

ACR is suitable for problems where many
security bugs follow a common pattern and
have a corresponding pattern for repair.

In FY16, we focused on integer over�ows
involving memory bounds/indices.

A difficulty we encountered was the
Source<->IR mapping problem
• Code is most readily analyzed and repaired

on an intermediate representation (IR). But
actual repair must be on the source.

• Transformations on the IR aren’t unambigu-
ously mappable to the source.

• Macros and #ifdefs are a further dif�culty.

• We are continuing to investigate these
issues in FY17.

wrapper.h

inline static size_t UADD(size_t lop, size_t rop) {
size_t result;
bool flag = __builtin_add_overflow(lop, rop, &result);
if (flag) {result = SIZE_MAX;}
return result;

}

Experimental ResultsExample:
copy n bytes
from src to dest ,
starting at index start
of dest, and ending at
index start+n−1.

if (start + n <= dest_size) {
 memcpy(&dest[start], src, n);
} else {
 return -EINVAL;
}

Repair: UADD(start, n)

dest

src

Research Review 2016

Photo: James F. Antonucci–US Navy

Saving Malware
Analysts Time

The SEI is developing an
automated tool to dramatically
reduce the time human analysts
need to gather data for malware
comparisons. The researchers
are extending existing SEI
automated analysis capability
built in the ROSE open source
compiler infrastructure to provide
the required data. The ROSE
infrastructure was developed
at Lawrence Livermore National
Laboratory.

Assuring Autonomy and
Human-Machine Interactions

40 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Why did the robot do that?
Explaining Robot Behavior to
Improve Trust in Autonomy
Work on this project will span FY2016 and FY2017

Government and industry are increasingly using
robots in important tasks such as search and rescue
operations. However, because robot behaviors can be
hard to distinguish and understand, users mistrust and
often abandon these very useful tools.

In this work, we hypothesize that having robots
automatically explain their behavior using natural
language will improve users’ trust and acceptance of
them. To that end, we are developing algorithms to
explain robot actions automatically.

Dr. Stephanie Rosenthal
Research Scientist
Applied Research Initiative

SEI Research Review 2016

Principal Investigator

41SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Is there something
in the road that
it is avoiding?

Why did the
robot do that?

[street light]

Is the robot trying
to pass that car?

[fire hydrant]

[person]

[sign]

[car]
[lane]

[lane boundary]

[lane]

[car]

[car]

[car]

[car]

[sewer]
The car is merging
into the right lane.

[on ramp]

Sensing: 3 cars in my lane, 1 car to my left,
1 car to my right, 3 people to my left, 1 fire
hydrant, 1 street light, 2 lanes of traffic.

Plan of Action: Merge left to anticipate
upcoming left turn

Explanation for the driver: I am merging left
in anticipation of a left turn.

Explanation for the police man: I see 5 cars
around me and 3 people. I am uncertain if 1
car will merge into the right lane. I am
merging left in anticipation of a left turn
in 500 feet and to avoid the merging car.

Why did the robot do that?
If I can't trust it, it shouldn't
be on the road

[person][person]

Research Review 2016Why did the robot do that?

Contact: Stephanie Rosenthal, PhD | srosenthal@sei.cmu.edu
P11

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Our Methodology

We �rst poll many people to capture many
different ways to explain example robot
behaviors.

Then, we poll a new set of people to measure
which words and explanations are best.

By analyzing the ranked explanations we can
capture patterns of language that the robots
should use in their explanations.

Order of importance:

1. Describing action

2. Describing immediate scene

3. Describing surrounding scene

4. Describing uncertainty in scene

Representing preferences: We have developed
a set of parameters that allow us to capture
preferences such as level of abstraction and
length and automatically generate different
explanations based on those preferences.

How can we generate explanations of a diverse
set of robots, sensors, actions, and tasks?

Robots are increasingly being utilized in important tasks such as
search and rescue operations. However, their behaviors are often hard
to distinguish and understand, leading to users’ mistrust and often
abandonment of very useful tools. We are developing algorithms for
robots to automatically explain their behaviors to users and are
demonstrating that these explanations improve users’ trust and
acceptance of them compared to robots that do not explain themselves.

?

How can we capture diverse sets of user
preferences for what the robot explains?

User Interaction: The user can query the
robot for more or different information if
their preferences change or they
want to dig deeper into the
explanation.

Prior research has found that users often try to
take control of their robots and limit autonomy
when they lose trust in them, taking the user
focus off the task at hand. Especially in
time-sensitive applications like search and

Why is trust
important?

rescue in which robots can be utilized to
perform dangerous tasks or speed up search
tasks, we cannot afford to have �rst-responders
lose trust or even stop using robots.

"I am merging right."
OR
"I'm merging right to
 allow the car to
 merge into traf�c."

"I am turning left
 through the
 intersection."
OR
"I am turning left in
 front of another car."

"I am in the wrong lane."
OR
"I am passing the other
 car."

?

?

42 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Human-Computer Decision Systems
for Cybersecurity
Work on this project spanned FY2015 and FY2016

The DoD faces the challenges of securing deployed
systems against malware and responding quickly enough
when a security intrusion has been detected. Many in
our field continue to ask the whether these processes
can be completely automated, or whether machine
learning has failed and these are tasks that intrinsically
required human analysts. We assert that both human
experts and machine learning (ML) play important roles
in network defense. A system using only human experts
cannot scale; pure ML systems are susceptible to
structured attack by adversaries and have unsatisfactory
performance on their own. In order for ML to become an
effective tool for cyber defense, we must improve the
collaboration between experts and automation.

In this work, we studied multiple facts of human-ML
collaboration, using both real malware classification
problems and a model problem based on malware
classification. We investigated methods using both
supervised (active) and unsupervised learning to
augment the abilities of analysts. We also discovered
a surprising result regarding the potential for non-
experts to perform malware family analysis using low-
dimensional visualizations.

Brian Lindauer
Research Scientist—
Machine Learning
Science of Cybersecurity Team,
Cybersecurity Foundations
Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=lindauer_15601

SEI Research Review 2016

Principal Investigator

43SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

DPAL with Real Users

Future work includes joint optimization of
classifier and analyst objectives, extension of
the experimentation software to support
multi-session and team experimental trials, and
a test of transferability of the model problem
results to the target domain.

To keep pace with adaptive
adversaries, our cybersecurity
defenses must take advantage of
both machine learning and human
analyst strengths. Future solutions
should optimize for success of the
overall system.

Browser (from Mechanical Turk)

Exp API: Web Server
(Python, Django)

AL API: Web Server (Python, Django)

AL Worker

GET: newsession, GET: nextstim …

POST: /answers/

get_next_query(), Train(), test, (), …

DB
Annotator
Query
Answer
…

AL Library
Multi-class PAL
…

GET: /queries/

DPAL provides a framework to combine multiple
factors in choosing points, including factors
related to analyst performance. It shows
promise in simulation and will be put to the test
in a human-subject experiment.

• Entropy (very simple!) wins.

• Runtime features are too discriminative
 for DPAL to gain an advantage.

• The human-computer collaboration model
 will improve upon traditional active learning
 by optimizing not simply for convergence of
 the ML component, but also for future
 performance of the overall system, including
 mutable human analysts.

• We test the performance of new models not
 only through simulation, but also through
 human-subject experiments.

• Because conducting these experiments
 using real security analysts performing their
 normal tasks would be prohibitively
 expensive, we instead developed a proxy
 problem of identifying fictional creatures
 and leveraged non-experts on Amazon’s
 Mechanical Turk platform. The process of
 generating the fictional creatures adheres
 to the statistical distributions of real
 malware classes.

Research Review 2016Human-Computer Decision Systems

Contact: Brian Lindauer | lindauer@sei.cmu.edu
P26

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Security decision systems aim to
distinguish malicious activity
from benign and often use a
combination of human expert and
automated analysis, including
machine learning (ML). Systems
using only human experts scale
badly; pure ML systems are
susceptible to structured attack by
adversaries and, in most cases,
have unsatisfactory performance
on their own.

• Many operational security problems depend
 on a small number of skilled analysts to
 process a large and growing firehose of
 potentially malicious data.

• Traditional active learning tries to address
 this situation by suggesting allocation of
 limited analysis resources that optimize the
 convergence of a machine learning classifier.

Total Artifacts Over Time

Ar
tif

ac
ts

Year

How good is your cheap feature? Cheap can be noisy… a different IAT hash

PCA (for comparison only) t-SNE

• 20k observations of 545 mnemonic counts
reduced to two dimensions.

• Red points are a specific IAT hash
of interest.

• This IAT hash (cheap) is well localized in
t-SNE space (expensive)

• Knowing this IAT hash is likely good enough
to define this family.

• Expert analysis concludes this is a
single family.

Embedding reduces the number cases to reverse
engineer and increases confidence

• Current analyses methods conclude this
IAT hash is one family.

• t-SNE + IAT = family would have cost less.

Result: t-SNE-based visualizations paired with IAT section hashes greatly reduce the
number of manual binary analyses required to understand new groups of binaries

A screenshot of the experimentation system built using
Mechanical Turk and Psiturk.

Dynamic Proactive Learning

Weights for criteria

multiple PAL criteria

Utility of a sample

W:

j:

u i, j R: X

Growth of CERT Artifact Catalog

44 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Multi-Agent Decentralized Planning
for Adversarial Robotic TeamS
(MADPARTS)
Effective wireless control of groups of collaborative robotic
systems remains a problem, and a DoD-centered mission
often involves an adversary or, at the very least, planning
for an adversary potentially being present (e.g., in convoy,
patrol, ISR, or force protection scenarios). There is a need
in DoD for a more scalable, robust artificial intelligence
that can learn and respond with dynamic group planning
and control despite an intelligent, changing adversary,
whether single individual agents or multiple collaborative
enemy agents.

To meet the challenge of distributed autonomy in real-
world robotics, we have created decentralized, multi-agent
planning techniques, middleware, and algorithms that take
into account a potentially changing adversary model in both
simulations and real-world demonstrations with robotic
unmanned surface vehicles.

Dr. James Edmondson
Research Scientist
Cyber-Physical and ULS
Systems Initiative

For more information:

sei.cmu.edu/about/
people/profile.
cfm?id=edmondson_16061

SEI Research Review 2016

Principal Investigator

45SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Defensive Schemes

• We took some inspiration from American
football and robot soccer

• Zone defense: Protector agents move to
assigned zones between a vip and the enemy

 • Useful for holonomic robots
 like quadcopters

• Onion defense: Protector agents layer a
defense between vip and enemy

 • Useful for non-holonomic robots like
 �xed-wing planes and boats that drift

For the past four years, the SSD
CPS-ULS group has been working
on technologies to enable one
human operator to control and
interact with a team of autonomous,
unmanned systems. In FY16
MADPARTS, we focused on
defensive algorithms that protect a
human operator or an important
asset from a mobile adversary. We
demonstrated our line-of-sight
prevention algorithms in simulated
quadcopters and in real-world
demonstrations with unmanned
surface vehicles in lakes near
Pittsburgh. The algorithms resulted
in line-of-sight prevention at over
99% success rates in simulations
against mobile adversaries

Research Review 2016Multi-Agent Decentralized Planning for Adversarial
Robotic Teams

Contact: James R. Edmondson | jredmondson@sei.cmu.edu
P28

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Knowledge Base

Threader Transport

Events

Controller Application

Algorithm

Platform

Thread

OS
Network

GAMS MADARA User OS

Legend

enemy

protector

VIP

Zone Onion

Our Autonomy Process
• Users write an application in C++ or Java

 • Developers read and write to knowledge
 handled by the underlying middleware

 • Platforms have standardized interfaces that
 algorithms interact with

 • No interaction with message queues
 (handled under the hood)

• Users only have to focus on the their
algorithm or platform

• Built-in translations between simulation and
real-world

 • Pose system (Cartesian to GPS and
 vice-versa)

• High consistency, predictability and QoS

 • Important for veri�cation

Transition (ALW)
• PWP in place for AFRL Autonomy of the Loyal

Wingman FY17-FY18

• Core software candidate for autonomous F-16
wingmen for a human pilot

• Algorithm creation for target defense and
prosecution

Transition (NATO)

• Invitation to participate in NATO CMRE
REP17-Atlantic exercise

• REP17 is a joint exercise between Portuguese
Navy, NATO CMRE, and the University of Porto

• Current plan is for our autonomous boats to
participate in the joint exercises

Transition (Multi-Planetary Smart Tile)

• GAMS and MADARA are core software
architecture for the Keck Institute for Space
Studies’ Phase 1 Multi-Planetary Smart Tile

• Hardware prototyped by GE GRC
and Biovericom

• Separate offers to launch into LEO by United
Launch Alliance and NASA

• Phase 1 is expected to perform simple
autonomy experiments in low-earth orbit for
up to 1 year

• Goal of project is to create a distributed,
renewable power infrastructure for solar
system that scales to tens of thousands of
interacting robotic systems

http://www.afcea.org/content/?q
=Article-cyber-earns-its-sea-legs

The result is rapid prototyping and veri�ability of
distributed autonomy in robotics (FY16 DART, SMC
for Swarms)

Initial Disperse Detect Range Failure Trials

LooseScenario 1 Long 0.11% 265,896

LooseScenario 2 Short 0.35% 114,912

TightScenario 3 Short 0.28% 114,504

TightScenario 4 Long 0.00 400,000+

Simulation Results

46 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Statistical Model Checking
of Swarm Algorithms
The DoD is increasingly interested in using swarms (or
ensembles) of autonomous systems against adversaries.
However, the software and systems engineering
communities lack methods to evaluate probability of
mission success involving autonomous system swarms.

The project produced source code, prototype tools,
and experimental results that validate the approach of
applying adaptive sampling and input attribution toward
(1) statistical model checking and (2) attribution of failure
conditions.

Dr. Jeffery Hansen
Senior Researcher
Cyber-Physical and ULS
Systems Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=hansen_17141

SEI Research Review 2016

Principal Investigator

47SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

t = … + 1.01 xp – 2.03xexp + 1.02xe + …22

t = … + 1.01 (xp – 1.01xe) + …2

t = … + 1.01 xp – 2.04xexp + 1.03xe + …22

Look for approximate
factorings

Accepting approximation
if error is small

Research Review 2016Statistical Model Checking for Swarms – Input Attribution

Contact: Jeffery Hansen | jhansen@sei.cmu.edu
P29

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Input Attribution – The “Why” of SMC
Statistical Model Checking (SMC) provides an
estimate on the probability 𝑃𝑃𝑃𝑃𝑃𝑃𝑃 that a
predicate Φ in a model ℳ is satisfied, but does
not address why a particular result was
obtained. The goal of Input Attribution (IA) is to
use machine learning techniques to synthesize
an explanation for an SMC result in terms of the
inputs. IA for SMC can be thought of as
analogous to the counter-example in traditional
model checking.

A good Input Attribution has the
following properties:

1. Describes relationship that actually exists
 in data

2. Is presented in a way that is quantitative
 and understandable

3. Gives investigator new insights

4. Is resilient to randomness in the system

Example Scenario
Let (𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝) and (𝑥𝑥𝑒𝑒,𝑦𝑦𝑒𝑒) be random initial positions
for a pursuer and an evader, respectively. The
goal of the evader is to make it to one of several
designated safe zones before it is caught by the
pursuer. The SMC problem is to calculate the
probability that the evader will escape. Intuitively,
the probability of escape for the evader will
depend on the initial distance between the
pursuer and the evader, but can we synthesize
this relationship purely from the SMC trials?

Approach – Logistic Regression
Logistic Regression (LR) is a regression model
with a Boolean response variable based on the
logistic function. A model 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is generated
from a set if input vectors 𝑥𝑥𝑖𝑖 and corresponding
Boolean responses 𝜙𝜙𝑖𝑖. 𝐿𝐿𝐿𝐿𝐿𝑖𝑖) represents the log
of the “odds” that the response 𝜙𝜙𝑖𝑖 is 1. The
logistic function maps the log odds to a
probability. The LR model is a linear function of
the input variables with the form:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿0+𝛽𝛽1 𝑥𝑥1+𝛽𝛽2 𝑥𝑥2+…+𝛽𝛽𝑁𝑁 𝑥𝑥𝑁𝑁
Each coefficient 𝛽𝛽𝑗𝑗 represents the factor by
which the logit (log odds) of ℳ⊨Φ increases for
each unit increase of 𝑥𝑥𝑗𝑗. However, not all input

variables may be statistically significant. When
calculating each coefficient 𝛽𝛽𝑗𝑗, a standard error
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗) that can be used to calculate a “p-value”
indicating the significance of each coefficient is
also produced. P-values greater than about 0.05
indicate that a particular input variable is not
significant. The generated input attribution is
formed from the 𝛽𝛽𝑗𝑗 terms that are considered
statistically significant.

Non-Linear Input Attribution
By expanding the Logistic model to include
second order polynomial terms as:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗,𝑥𝑥𝑗𝑗^2 }∪{∀𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗 𝑥𝑥𝑘𝑘 }→ℛ
It is possible to discover more complex
relationships among the input variables.
After filtering terms that are not statistically
significant, approximate factoring can be
applied to pairs of terms to present the result
in more human-readable form.

Validation
Even though LR analysis may indicate statistical
significance on one or more variables, the overall
model must have a good fit to the data before an
input attribution can be accepted. We use the
AUC (Area Under Curve) of an ROC (Radar
Operating Characteristic) analysis as a metric.
Five-fold cross validation is performed and the
average AUC is used. AUC represents the
probability 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆)>𝐿𝐿𝐿𝐿𝐿𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)] where 𝑥𝑥𝑆𝑆𝑆𝑆𝑆𝑆
is an arbitrary satisfying input (𝜙𝜙𝜙𝜙𝜙 and
𝑥𝑥𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 is an arbitrary unsatisfying input (𝜙𝜙𝜙𝜙𝜙.
An AUC of 0.5 indicates the model is no
better than guessing, while an AUC of 1.0 is a
perfect model.

Experimental Results
We conducted SMC trials of the pursuer/evader
scenario shown above using the V-REP
simulation environment. Trials where conducted
on a set if six 20-core blade servers. A target
relative error of 0.01 was used which resulted in
39,960 trials. The resulting “mission success”
probability for the evader was 0.214. The LR
analysis and input attribution was conducted
using the R statistical system and resulted in
the expression shown to the right.

Safe
Zone

Safe
Zone

Safe
Zone

Pursuer

Starting Zone

Evader

Safe
Zone

Example Scenario – Pursuer/Evader

Logistic Function

Input Attribution Results

5-Fold Cross Validation

Approximate Factoring

1.0

0.8

0.6

0.4

0.2

-6 -4 -2 0 2 4 6

t

p(t)

p(t) = 1
1 + e–t

Conclusion
We applied SMC with Input Attribution to a
pursuer/evader scenario. Intuitively we
expected an Input Attribution indicating that
increased initial distance between pursuer and
evader should be correlated with improved
chance of escape for the evader.Factored Input Attribution

0.0602(xe – 1.03xp)2

+0.0561(ye – 1.09yp)2xexp

Name ß se(ß) p-Value

yeyp
xe

2

ye
2

xp
2

yp

-0.124

-0.122

0.060

0.056

0.056

0.056

0.0027

0.0027

0.0031

0.0031

0.0031

0.0031

< 10–4

< 10–4

< 10–4

< 10–4

< 10–4

< 10–42

Simulation data with input and
predicate results xi,pi
partitioned into 5 chunks

4 chunks used to
create model L

5th chunk compared
with model to create
ROC curve. (repeated
for each chunk)

Average AUC (Area
Under Curve) for the 5
folds represents
quality of LR model.

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5

False Positives

Tr
ue

 P
os

iti
ve

s

0.6 0.7 0.8 0.9 1.0

Statistical Model Checking (SMC) Basics

Relative Error

Statistical
Model Checker

System ℳ that takes
random inputs

Estimated Probability

Input
Distribution f

System
Property Φ

p = E[Iℳ⊨Φ(x)]

the Φ holds ℳ where:
• x = vector of random
 variable
• Iℳ⊨Φ(x) = indicator
 function that returns
 1 iff ℳ ⊨ Φ

Target Relative
Error RE(p)

Measure of accuracy for
a prediction

Defined as ratio of
standard deviation to
mean. For a probability
estimate, the estimated
relative error is:

Number of samples to
achieve a target relative
error increases
• as target relative error
decreases, or
• as estimated
probability decreases

𝒑𝒑
𝝈𝝈(𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹

𝒑𝒑
1

(𝑹𝑹𝑹𝑹𝑹𝑹2~~N

pd
f

0.0005 0.0075 0.001 0.00125 0.0015
𝒑𝒑

Tight bound
with low
relative error

0.0005

pd
f

0.0075 0.001 0.00125 0.0015
𝒑𝒑

Looser bound
with modest
relative error

48 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Experiences Developing an IBM
Watson Cognitive Processing
Application to Support Q&A of
Application Security (Software
Assurance) Diagnostics
Contracting officers and program managers often cannot
find assurance information in acquisition documents and
artifacts or relate it to changes in risks and software.

This project provides the experiences of a team of
computer scientists in building a cognitive processing
application using IBM Watson, as a way to meet the
needs of contracting officers and program managers.
Both the process for building IBM Watson applications
and the lessons learned are described.

The team represents a typical application team in that
they are familiar with a technical domain—application
security and software assurance—and are not experts
in artificial intelligence, natural language processing,
or cognitive computing.

Dr. Mark Sherman
Technical Director,
Cybersecurity Foundations
Initiative

SEI Research Review 2016

Principal Investigator

49SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

IBM Watson made an impressive
introduction. In 2011, Watson
competed on one of America's
leading question and answer shows
against former winners Brad Rutter
and Ken Jennings. Watson received
the �rst place prize of $1 million.*

Watson is a question answering computer
system capable of answering questions posed
in natural language, developed in IBM's
DeepQA project by a research team led by
principal investigator David Ferrucci. Watson
was named after IBM's �rst CEO and
industrialist Thomas J. Watson. The computer
system was speci�cally developed to answer
questions on one of America's leading question
and answer shows.

Application development timeline

Example original document: CERT INT33-C
Rule - Parts
• IBM Watson works on Solr document

• Each rule or CWE resulted in about 11
Solr documents

• Whole rule or CWE is a Solr document

• Key sections are Solr documents

• Many different formats within document

• Corpus held about 15,000 documents

Application performance
Better Recall and Precision: Example: “What is
the risk of INT33-C”

Watson’s interfaces for cognitive querying
evolved over time
Organization of technology rapidly evolved

• Splitting some components into distinct
services

• Combining some services into usable
chunks

• Ease-of-use interfaces delivered in open
source (out of product cycle)

Project focused on using “Retrieve and Rank”
on BlueMix
• Available support from IBM

• Combined Watson Pathways for Concept
Expansion, Concept Insights and Ques-
tion-and-Answer

Lessons learned from project

Prof. Eric Nyberg, Language Technologies Institute,
School of Computer Science, CMU

And our student interns: Christine Baek, Anire
Bowman, Skye Toor and Myles Blodnick

Team:
• 2 graduate students

• 2 undergraduate students

• 3-5 SwA experts

• No IBM Watson experience

• Used Python and JSON interfaces

• 11 weeks

Theory
Automated natural lan-
guage comprehension

Training uses about 150,000 questions
and answers

Practice
SME-driven Q&A
training

Research Review 2016Developing and IBM Watson Cognitive Processing Application
Supporting Application Security (Software Assurance)

*https://en.wikipedia.org/wiki/Watson_(computer)

INT33-C – Risk Overview

INTC33-C. Ensure that division and remainder operations
do not result …
https://www.securecoding.cert.org/…/c/INT33-C. =En-
sure+that+dividion+and+remaind…

UIMA (Unstructured
Information Management
Architecture) [Watson
Pathways]

QAAPI with BlueMix
infrastructure

Retrieve and Rank
(R&R) with BlueMix
infrastructure

R&R with Natural
Language
Classi�er (Beta)
with BlueMix
infrastructure

Question and
Answer (QAAPI)
with Local
infrastructure

INT33-C. Ensure that division and remainder operations do not result in divide-by-zero errors
The C Standard identifies the following condition under which division and remainder operations result in undefined behavior (UB):

UB Description

45 The value of the second operand of the / or % operator is zero (6.5.5).

Ensure that division and remainder operations do not result in divide-by-zero errors.

Division
The result of the / operator is the quotient from the division of the first arithmetic operand by the second arithmetic operand. Division operations are susceptible to divide-by-zero errors. Overflow can also occur during two's complement signed integer
division when the dividend is equal to the minimum (most negative) value for the signed integer type and the divisor is equal to -1. (See INT32-C. Ensure that operations on signed integers do not result in overflow.)

Noncompliant Code Example
This noncompliant code example prevents signed integer overflow in compliance with INT32-C. Ensure that operations on signed integers do not result in overflow but fails to prevent a divide-by-zero error during the division of the signed operands s_a and s_b:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_a == LONG_MIN) && (s_b == -1)) {
 /* Handle error */
 } else {
 result = s_a / s_b;
 }
 /* ... */
}

Compliant Solution
This compliant solution tests the division operation to guarantee there is no possibility of divide-by-zero errors or signed overflow:

#include <limits.h>

void func(signed long s_a, signed long s_b) {
 signed long result;
 if ((s_b == 0) || ((s_a == LONG_MIN) && (s_b == -1))) {
 /* Handle error */
 } else {
 result = s_a % s_b;
 }
 /* ... */
}

Disposition of materials
Government use rights apply. IBM Watson
software (and any dependencies) must be
licensed from IBM.

SparkCognition is an IBM Watson business
partner (independent software vendor) and has
licensed the project materials from CMU for use
in their products.

We want to thank and acknowledge
collaborators

SparkSecure team at SparkCognition

IBM Watson team at IBM

Contact: Mark Sherman | mssherman@cert.org
P22

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Get R&R

Examples
Working

Tuning
Precision

and Recall

UI Development

Corpus Development

1. Scrape
documents
for corpus

2. Format and
clean inputs to
expand corpus

3. Updated
training

4. Revise schema
and scraper

1 2 3

50 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

GraphBLAS: A Programming
Specification for Graph Analysis
Graph algorithms are in wide use in DoD software
applications, including intelligence analysis, autonomous
systems, cyber intelligence and security, and logistics
optimizations. However, graph algorithms are difficult and
costly to implement efficiently on hardware systems. As
the size of graphs and the pace at which new hardware
is being developed increase, the complexity of developing
high performance graph libraries becomes a prohibitive
barrier to the work of analyzing the deluge of information.

To address this problem, we are working with both leading
graph analytics experts and high-performance computing
experts from government, academia, and industry—
the GraphBLAS forum—to derive an “interface” that
represents a separation of concerns between lower-level
implementations for specific hardware architectures and
higher-level graph analytics concepts. By treating graphs as
matrices and identifying primitives in terms of operations
on these matrices, our approach is similar to what the
scientific computing community accomplished with NIST’s
Basic Linear Algebra Subprograms (BLAS) specification.

Dr. Scott McMillan
Senior Software Developer
Applied Research Initiative

For more information:

sei.cmu.edu/about/
people/profile.
cfm?id=mcmillan_16782

SEI Research Review 2016

Principal Investigator

51SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Contact: Scott McMillan | smcmillan@sei.cmu.edu
P21

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Photos: https://www.�ickr.com/people/gbpublic/

Research Review 2016GraphBLAS
A Programming Speci�cation for Graph Analysis

Graph algorithms are in wide use in DoD software applications,
including intelligence analysis, autonomous systems, cyber intelligence
and security, and logistics optimizations. However, graph algorithms
are dif�cult and costly to implement ef�ciently on hardware systems.
As the size of graphs and the pace at which new hardware is being
developed increase, the complexity of developing high performance
graph libraries becomes a prohibitive barrier to the work of analyzing
the deluge of information.

Separation of Concerns:
GraphBLAS Application Programming
Interface (API)

Graph Expertise

Hardware Expertise

GOAL: write once, run everywhere
(with help from hardware experts).

6

4

3

21

57

A

to
 v

er
te

x

from vertexT v AvT

1

3
2

4
5
6
7

4 5 6 7321

=

The table above lists all of the primitive operations supported by the GraphBLAS API
along with their mathematical description. These mathematical “requirements” are being
captured in a C API Speci�cation as shown for matrix multiplication (mxm) below.

Currently deep expertise is needed in graph
algorithms and hardware tuning to achieve good
performance on targeted hardware. It is rare to
�nd this in individuals or even on teams within
one organization.

The GraphBLAS Forum – a government,
academic and industry consortium – has
de�ned a set of graph primitive objects and
operations and is nearing completion of the
C Application Programming Interface (API)
speci�cation that is able to separate the
concerns between:

• the graph expertise needed to develop
advanced graph analytics (writing code
using the API) and

• the hardware expertise is needed to
achieve high levels of performance
(implementing ef�cient versions of the
API for speci�c hardware).

For more information on the GraphBLAS
Forum: http://graphblas.org

GrB_Info GrB_mxm(GrB_Matrix *C,
const GrB_Matrix Mask,
const GrB_BinaryFunction accum,
const GrB_Semiring op,
const GrB_Matrix A,
const GrB_Matrix B,
[const Descriptor desc]);

Graphs are a fundamental
mathematical structure that
captures the relationships (edges)
between objects (vertices), as shown
above. They can be represented as
sparse matrices and an operation,
such as matrix multiplication, is a
key primitive in graph computations
to �nd neighbors of a node as
shown in both �gures.

Description

Perform matrix multiplication (e.g.,
breadth-�rst traversal, shortest paths)

Element-wise addition and multiplication of
matrices (e.g., graph union, intersection)

Extract a sub-matrix from a larger matrix
(e.g., sub-graph selection)

Assign to a sub-matrix of a larger matrix
(e.g., sub-graph assignment)

Apply unary function to each element of
matrix (e.g., edge weight modi�cation)

Reduce along columns or rows of matrices
(vertex degree)

Swaps the rows and columns of a sparse
matrix (e.g., reverse directed edges)

Build an matrix representation from row,
column, value tuples

Extract the row, column, value tuples
from a matrix representation

Mathematical DescriptionOperation

mxm,
mxv, vxm

eWiseAdd,
eWiseMult

extract

assign

apply

reduce

transpose

buildMatrix

extractTuples

C(¬M) ⊕=AT ⊕.⊗ BT

c(¬m) ⊕=AT ⊕.⊗ b

c(¬m) ⊕=⊕j AT(:,j)

C(¬M) ⊕=AT ⊕ BT

C(¬M) ⊕=AT ⊗ BT

C(¬M) ⊕=AT(i,j)

C(¬M) (i,j) ⊕=AT

C(¬M) ⊕=ƒ(AT)

C(¬M) ⊕=AT

C(¬M) ⊕= mxn(i,j,v,⊕)

(i,j,v,)=A(¬M)

52 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

The Critical Role of Positive, Intrinsic
Incentives in Reducing Insider Threat
Traditional guidance regarding how to defend against
insider threat focuses primarily on practices that constrain
employee behavior or that detect and punish misbehavior.
However, excessive use of such negative incentives can
result in counterproductive constraints on employees’
actions, overreliance on after-the-fact responses that fail
to prevent damage, and alienation of staff that can actually
exacerbate the threat that they are intended to mitigate.
The objective of this project is to assess the potential for
positive incentives to complement traditional cybersecurity
practices in a way that provides a better balance for
organizations’ insider threat programs.

We investigated the following dimensions along which to
align an employee’s intrinsic incentive to act consistently
with his or her employer’s interests: job engagement,
perceived organizational support, and connectedness
at work. Through insider-incident-case analyses and an
organizational survey, we gained insight into the influence
of positive incentives on insider threat risk. We developed
a system dynamics model to capture the discovered
relationships and explore how positive incentives can reduce
operational costs as well as the insider threat. We expect
that the evidence gathered will support a business case
for organizations to complement traditional practices with
positive intrinsic incentives as a win-win strategy to improve
both employee satisfaction and organizational performance.

Andrew Moore
Enterprise Threat &
Vulnerability Management
Team, Risk and Resilience
Initiative

For more information:

sei.cmu.edu/about/people/
profile.cfm?id=moore_15775

SEI Research Review 2016

Principal Investigator

53SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Contact: Andrew P. Moore | apm@cert.org
P23

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Research Review 2016Reducing Insider Threat through Positive Incentives
Extending the Traditional Insider Threat Security Paradigm

Empirical analysis shows insider
alienation and the potential of
positive incentives for reducing
insider threat baseline. A simulation
model illustrates bene�ts in terms
of fewer incidents and lower costs.
Balanced deterrence is key!

An Emerging Physics of Employee
Dissatisfaction and Insider Threat
• System Dynamics model of how �ow of

dissatisfaction translates into incidents

• Empirical analysis providing structural
validation of model

• Annual data on USG employee attitudes
grounds simulation model

• Sensitivity simulation captures uncertainty

Preliminary Analysis Conducted:
• Case analysis shows organization

support foundational

• Insider threat program survey
shows negative correlation
between organization support,
insider threat

Future Research and Transition:
• Theory: Experiment to determine cause-

effect relationship between positive
incentives, threat

• Adoption: Transition model for
organization to go from current state to
state with appropriate mix of positive and
negative incentives

• Technology: Detection of insider
alienation by identifying at-risk behaviors
and indicative changes in networks of
coworker relations

Positive Incentive-Based Workforce
Management Practice Areas

Insider Threat Incidents
6

4.5

3

1.5

0 2
2

2
2

2
2 2

2
2

2
2 2

2
2

2
2

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

0 24 48 72 96 120 144 168 192 216 240
Time (Month)

in
ci

de
nt

s

Insider Threat Incidents: baseline 1 1 1 1 1 1 1 1 1
Insider Threat Incidents: 50% satisfaction improvement 2 2 2 2 2

Attract and
retain staff
to achieve

mission

Positive
Deterrence

Negative
Deterrence

Balanced
Deterence

Balanced Deterence: Extending the Traditional Security Paradigm

• Fewer unintended
 consequences

• Satisfaction,
 performance,
 retention

• Fewer insider
 incidents and
 misbehaviors

• Lower investigative
 costs, productivity
 loss

Security Through Positive Incentives

Engagement Feedback

Engagement

Engaged
Employees

Correctedness

Connected
Employees

Organizational
Supportiveness

Supported
Employees

Traditional Security Approach (Negative Incentives)

Deterrence Feedback

Deterrence

Deterred
Abuse

Restriction

Prevented
Abuse

Sanctions

Punished
Abuse

Monitoring

Detected
Abuse

People

Job

Connected @ Work

Job Engagement

Organization

Perceived Organizational
Support

0.1%

0.3%

0.5%

0

2

4

6

8

10

12

14

16

0 10% 20% 30% 40% 50% 60% 70% 80%

Number of Insider Threats After 20 Years

0–2 2–4 4–6 6–8 8–10 10–12 12–14 14–16

Percentage Satisfaction Improvement

Percent
Disgruntled
Starting to
Attack

Satisfaction levels fairly
constant over time.
(OPM 2014) (Gallup 2013)

Employees
Satisfied with
Organization

Employees Dissatisfied
with Organization

Former
Employees

Disgruntled
Insiders

Former
Disgruntled
Insiders

Insider Threat
Incidents

hiring
employees

becoming
disgruntled

reengaging or
terminating
disgruntled

starting
to attack

employees
becoming

dissatis�ed

employees
becoming satis�ed

terminating
satis�ed employees

terminating
employees

hiring
satis�ed

employees

hiring
dissatis�ed
employees

+

+

+

+
~55% of
USG workforce

~45% of USG workforce
~18% of
USG workforce

+Key: A stock (grouping) A �ow between stocks A direct (positive) in�uence
of one variable on another

Simulation Controls

0 .2 5

0 50 100

percent disgruntled starting to attack

percent satisfaction improvement

In
si

de
r

M
is

be
ha

vi
or

 F
re

qu
en

cy

Perceived Organizational Support

5

4

3

2

1
0 2 4 6

Slope = -1.04
Statistically significant
95% confidence level

Providing intra- and inter-group
information that helps employees
ful�ll their responsibilities

Transparent explanations
for organizational actions

Respectful interpersonal
treatment

Fair performance
appraisals.

Fair con�ict resolution and
grievance procedures

Fair task assignment
and resourcing

Transparent accounting
for organizational actions
adverse to employee

Communicating the
discretionary nature of actions
that bene�t employees

Con�ict resolution, grievance, and
anonymous commenting procedures
available and encouraged

Level of autonomy commensurate
with experience and competence

Expanding jobs according to
employee strengths and interests
with potential for special projects

Helping employees struggling with
work assignments through workload
balancing and project rightsizing

Con�dential employee assistance
programs providing an impartial
third-party to discuss issues both
personal and professional

Flexibility and respectfulness upon
employee special requests and needs

Professional development for
furthering employee careers
and sense of mastery

Constructive guidance on
performance improvement

Insider compromise
prevented through other
positive incentives

Staff feel that
supervisors support
them well

Staff feel that the
working conditions
are good

Staff
Relations

Insider compromise is
detected and mitigated

At-risk insider
behaviors are detected
and mitigated to
prevent compromise

Retain staff positively
motivated to execute
job responsibilities

Staff feel supported
by the org in executing
their job description

Staff connected with
coworkers they need
to work with

Insider compromise
prevented through
positive incentives

Insider compromise
prevented through
perceived org support

Insider compromise
prevented through
negative incentives

Staff engaged in their
jobs as described

Staff feel the org is
fair and equitable

Staff feel the org
rewards well

Staff feel the org
communicates well

Compensation
and bene�ts

Terms of
employment

Structured interviewing to
determine values congruence and
alignment with job description

Establish policies and procedures
for action when employee becomes
misaligned with organization values

Insider compromise
is prevented

Attract new staff to
execute job responsibilities
linked to mission

Needs assessment by hiring
group to develop job description
linked to mission

Establish values congruence criteria
to determine alignment of individuals
with organization values

Staff feel the distribution of resources with
the org is fair (distributive justice).

Staff feel the processes and
procedures in the organization
are fair (procedural justice).

Staff feel the quality of their
treatment is respectful and
informative (interactional justice).

Alignment of promotions,
rewards, and recognition
across the organization

Discretionary and peer-nominated
rewards and recognition based
on performance

Advancement enabled
appropriate for individual’s
skills and abilities

Effective communication
during normal course
of business

Regular employee
orientation, mentoring,
expectation setting

Supportive management
during normal course of
business

Collaborative work projects
or job rotation for those
interested in other areas

Effective communication
during adverse events

Supportive management
during adverse events

Fair total
compensation

Fair awards
and recognition Fair information

distribution

Unless staff actions threaten
achieving org mission

Staff
Development Time Off and Leave

Preconditions involving
recruiting and hiring the
right staff

Organizational Justice
(Fairness)

Performance
-Based Rewards
and Recognition

Mastery

Purpose

Autonomy

Connectedness

Transparent and
Respectful
Communication

Transparent and
Respectful
Communication

Culture and Working
Conditions

Positive incentives
reducing insider threat

Positive incentives
promoting
satisfaction,
performance, and
retention

54 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Workplace Violence/IT Sabotage:
Two Sides of the Same Coin?
It is difficult to have a coherent, integrated means for
mitigating diverse threats from disgruntled insiders. To
address the challenge, this project compared incidents of
Information Technology Sabotage (ITS) to existing cases of
workplace violence (WPV) and workplace aggression (WPA)
in the DoD/Intelligence Community.

We identified the observable predispositions, stressors,
and concerning behaviors that were common to both types
of crimes as well as those that were found in only one
type of crime. From these findings, it should be possible
to develop common indicators that apply to both types of
crime in a more coherent and integrated way.

Michael Theis
Chief Counterintelligence
Expert & Technical Lead for
Insider Threat Research

SEI Research Review 2016

Principal Investigator

55SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Workplace Violence and IT Sabotage:
Two Sides of the Same Coin?

Contact: Michael C. Theis mctheis@sei.cmu.edu
P16

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

We set out to Determine if
coherent, integrated, and validated
indicators for Insider Workplace
Violence (WPV) and Insider Cyber
Sabotage (ICS) can
be identi�ed.
Reason: If there are common indicators
organizations may be able to develop
socio-technical controls that prevent, detect,
and help respond to both threats without
identifying which crime will eventually be
committed.

Approach: Collect, code, and analyze cases of
WPV and compare them to cases of ICS in the
CERT Insider Threat Center’s corpus.

Coding & Analysis: We coded WPV & ICS cases
for personal predispositions, stressors,
concerning behaviors, problematic
organizational responses, and the hostile act to
identify a common incident pathway.

Coding for Stressors.
The clearest commonality between all the
coding factors were the categories of stressors
that the perpetrators experienced. These were
coded into six major categories: personal,
�nancial, mental health, work, relationship, and
work relationship. Two areas that were
signi�cant in both WPV and ICS were work and
work relationship stressors; two areas that
organizations could have the greatest in�uence
over.

Stressor Definitions

WPV and ICS Pathways
The pathways were most common in areas of
predispositions and stressors. Concerning
behaviors was usually the earliest point were
organizations might be able to determine if a
hostile act might manifest as WPV or ICS.

Stressors for Insider
Cyber Violence

Comparing Stressors for ICS & WPV

WPV & ICS Incident Pathway

Stressors for
Workplace Violence

Hostile
Act

Problematic
Organizational

Responses

Concerning Behaviors

Stressors

Personal Predispositions

CERT, 2006

Execution of
malicious code

Demotion without
changing access

Visiting internet
underground

Lack of resources
to do job well

Hacker

Active shooter

Loss/Suspension of rights
and privileges

Verbal threats to
cause physical harm

Perceived harrassment
by coworkers

Resolving con�ict by
physical means

Key: ICS WPV

Incident
TimelineHiring

Prevalence of
Cyber manifestion

Prevalence
of Physical

manifestation

Predispositions Stressors Concering
Behaviors

Attack
Execution

Resolving con�ict
using physical
means

Perceived
harrassment
by coworkers

Verbal threats
of physical
harm

Unauthorized
weapons
at work

Member of
hacking
community

Losing control
of system
evolution

Visiting hacking
websites

Introduction
of malicious
code

Workplace
Violence

Cyber
Sabotage

Average behavior Range of behavior

Personal Self-esteem, con�dence, insecurity,
nervousness, disagreeableness, etc.

Financial Debt, insuf�cient income, loss of
bonus/promotion/raise

Relationship Family, friends, enemies
(not workplace related)

Mental Health Clinically diagnosable issues
(even if not diagnosed at the time
they were observed)

Work Job security, performance, unmet
expectations, disgruntlement
(with co-workers, supervisors, or
the organization)

Work Relationship Aggression, disagreements, bullying,
isolation, inability to form cohesive
work relationships due to personality

Personal

Work

Financial

Relationship

Mental Health

Work Relationship

21%

36%10%

8%

13%

12%12%

51%
5%

1%
0%

31%

56 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Data Validation for Large-Scale
Analytics
Large-scale analytics have wide application across the
DoD and the Intelligence Community, but the process of
constructing data analytics is iterative and incremental
and is rife with challenges. Concerns about data quality,
validating assumptions, and understanding anomalies and
errors permeate the process.

We are building automated data sampling and visualization
tools to help data scientists inspect and understand their
large-scale data. With our collaborators at Carnegie Mellon
University, we are demonstrating through user studies that
these tools increase the quality of data analysis. The tools
are available for download.

SEI Research Review 2016

Dr. Stephanie Rosenthal
Research Scientist
Applied Research Initiative

Principal Investigator

57SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Research Review 2016Data Validation for Large-Scale Analytics
Building Tools to Support Data Sampling and Visualization

Contact: Stephanie Rosenthal, PhD srosenthal@sei.cmu.edu
P24

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Today’s Data Validation Practices
The state of the art solution to data validation
today is human experts who manually sort
through predictions and con�rm assumptions.
However, the process of understanding even a
subset of data points is extremely tedious and
error prone, especially as the number of data
points and features grows.

Data scientists today only have a few data
sampling techniques available to them to give
them insight into the distribution, common
values, and anomalies of their data and they do
not sample large datasets ef�ciently.

Implementing and Visualizing Multiple
Sampling Techniques
We hypothesized that using many data
sampling techniques would allow practitioners
to learn more about their data compared to
their current practice. We implemented four
data sampling techniques not available on
current platforms today to allow data scientists
to process and sample large scale datasets:

• Random

• Uncertainty

• Query By Committee

• Density

Each sampling technique selects different
subsets of the data, allowing data
scientists to capture multiple views of their
data more effectively than they can could
with current tools.

Large-scale analytics hold great
promise for government and
industry, and data validation is
essential to ensure that those
analytics make accurate predictions.
We studied practitioners in the �eld,
built data validation tools to support
data sampling and visualization,
and found that our tools help
practitioners generate a diverse set
of insights about their data.

Why is Data Validation Important?
Data analysts agree that their biggest
challenges are data quality, validating
assumptions, and understanding anomalies
and errors throughout the process. These
challenges are not about the correctness of
their code but rather the validation of data
analysts’ assumptions about their data and
subsequent analytics. Without valid data, data
science practitioners cannot be sure that their
resulting machine learning algorithms are
making accurate predictions using relevant
features and correct labels.

Mean # of Inserted Characters

M
ea

n
#
 o

f
Ed

its

Mean # of Inserted Characters

M
ea

n
#
 o

f
Ed

its

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

0
0 50 100 150 200 250 300 350 400 450

Sampling Algorithm Used
to Generate Point

None

Random

Uncertainty

Density

Query By Committee

Random Sampling
Select records with a
distribution the same as
the original data

Density Sampling
Select records with
probability proportional to
the number of neighbors

Uncertainty Sampling
Select records that are
outside the “normal” range
of features or classi�ers

Query By Committee
Select records for which
multiple classi�ers’
predictions con�ict

Multiple sampling techniques
provides an overview of the common
and anomalous data

Full Dataset

Sampled Data using Multiple Sampling Techniques

58 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Supporting Software Engineering Best
Practices in Additive Manufacturing
Additive manufacturing (or 3D printing) provides new
opportunities for the DoD to lower the cost and reduce the
time needed to create replacement or customized parts
and components. However, 3D printing communities—like
software development communities from decades ago—do
not have tools to modularize their 3D models for reuse in
other applications.

In this project, we have developed a framework to support
scalable production and customization of 3D models by
enabling modelers to decompose objects into functional
parts that they can reason about and interchange
independently.

SEI Research Review 2016

Dr. Stephanie Rosenthal
Research Scientist
Applied Research Initiative

Principal Investigator

59SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

3D MODELER

Clamp

Modeler

3D MODELER 3D MODELER

Print

3D MODELER

3D printing, also called additive
manufacturing, is a powerful
medium to use to prototype and
design objects. However, current
tools for fabrication do not take
advantage of basic concepts such
as modularity and abstraction that
have made it possible to develop
highly complex and re-usable
software systems and tools.
We propose the Parameterizable,
Abstractions of Reusable Things
(PARTs) Framework, a parallel to
object-oriented software classes,
to support the validation
and integration of 3D models
using a combination of
geometry and logic.

In PARTs, 3D models are created the same way.
However, programmers can assign assertions
to the geometry to allow the software to identify
when their assumptions are not met. Similarly,
they can create integrators to ensure that their
object is combined with others in particular
ways that they specify. As a result, 3D models
can be reused and integrated modularly

With today’s 3D modeling software, modelers
can create modular models containing
multiple 3D geometric surfaces and objects,
and it is up to them how the objects integrate
together. Additionally, they must manually
check their assumptions about how those
parts can be combined rather than
depending on the software to validate those
assumptions automatically.

Modelers combine geometry and logic to define
PARTs as a set of assertions and integrators.
Shown are two parts of a smartphone bike
mount. With PARTs, we can develop the phone
holder and clamp individually, then iteratively
combine them until their assertions and
integration rules are met. Finally, we can
integrate the PARTs together into a single
geometry to print.

Research Review 2016Software Engineering for Additive Manufacturing

Contact: Stephanie Rosenthal, PhD | srosenthal@sei.cmu.edu
P25

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

Logic rules are assigned to
each model to encapsulate
design requirements that
must hold true when the
parts are combined.

Each functional
component
is designed
separately: phone
holder and clamp

Modular Design
Elements are designed separately &
recombined at any time

Design Variations

Cell phone
holder

Modelers can then
iteratively position
the PARTs until all
assertions are met

Design Phone Holder
Rule: Phone fits in holder
Rule: Phone screen not obstructed

Design Clamp
Rule: Handlebar fits in clamp
Rule: Screw accessible at bottom of clamp

Combine and Iteratively
Position PARTs

Valid Position:
Phone is uninterfered

Invalid Position:
Clamp hits phone

Photo: Spc. Grant Larson

Driving Control Standards
for Unmanned Systems

The lack of a common
architecture for control among
the Unmanned Aircraft Systems
(UASs) limited their mission
capabilities. SEI experts were key
contributors to the development
of an architecture-focused
standard for the UAS Control
Segment Working Group
(UCS-WG).

Assuring Cyber Workforce
Readiness

62 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Utilizing Serious Games to Assist
Motivation and Education
To make the best use of the DoD’s extremely limited time
for continuation training, we are testing and measuring the
benefit of gamification and serious games on participant
motivation and attainment of educational goals.

To this end, we are integrating a battlefield simulator
with the existing CERT Simulation, Training, and Exercise
Platform (STEP). The resulting system allows for the effects
of operations in the kinetic domain to propagate into the
cyber domain and, similarly, for effects in the cyber domain
to propagate into the kinetic domain.

Rotem Guttman
Cybersecurity Exercise
Developer and Trainer
Workforce Development
Initiative

For more information:

sei.cmu.edu/about/
people/profile.
cfm?id=guttman_18232

SEI Research Review 2016

Principal Investigator

63SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

In an increasingly interconnected
world, DoD is tasked with
completing missions requiring cyber
operator support. DoD has limited
resources for continuing training.
The cyber operator community is
largely driven by outliers, experts
creating new capabilities usable
across the community. Our
program aims to stimulate the
creation of experts by bringing
together the cyber and kinetic
domains to create a highly
motivational training experience.

Approach
Integration of realistic kinetic simulations with
our existing cyber simulation capabilities can be

that simulates the complex realities of a
cyber-physical environment and also captures
the attention of participants to drive emotional
investment in the mission.

Combined Landscape: A fully modeled cyber-physical
environment allows participants to explore and develop
new strategies for completing their missions.

Tactical Resources Defense: Friendly assets are modeled in game and attackable.
Failure to defend cyber terrain may result in loss of communications or the crashing
of intel drones.

Shared World: Special Operators, Drone Operators, and Cyber Operators must work
together cohesively to complete missions within the environment.

User Testing: Events conducted as part of ISC2 High-school Summer Cyber Challenge
to gauge effectiveness.

STEP Technology:
to allow seamless connection to kinetic simulations.

Research Review 2016Utilizing Serious Games to Assist Motivation & Education
Leveraging: Cyber Kinetic Effects Integration (CKEI)

Contact: Rotem D. Guttman | rdguttman@cert.org
P10

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

64 SEI RESEARCH REVIEW 2016	 |	 info@sei.cmu.edu	 |	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 SOFTWARE ENGINEERING INSTITUTE

Generalized Automated
Cyber-Readiness Evaluation (ACE)
Work on this project spanned FY2015 and FY2016

It is important for the DoD gain the capability provided by a
scalable, objective assessment capability that it can use to
validate the hands-on, technical knowledge and skills of its
cyber workforce.

In this project, we have developed the first generation
of the Automated Cyber-Readiness Evaluator—a system
designed to automatically interpret the actions a user
performs on a computer screen and objectively measure
that user’s competence within a defined knowledge and
skill set.

SEI Research Review 2016

Rotem Guttman
Cybersecurity Exercise
Developer and Trainer
Workforce Development
Initiative

For more information:

sei.cmu.edu/about/
people/profile.
cfm?id=guttman_18232

Principal Investigator

65SOFTWARE ENGINEERING INSTITUTE	 | 	 Distribution Statement A: Approved for Public Release: Distribution is Unlimited	 |	 info@sei.cmu.edu	 |	 SEI RESEARCH REVIEW 2016

Assessing the mission readiness
of all DoD cyber operators is a
daunting task that is not achievable
using individual one-on-one
evaluation techniques. Our project
utilizes advanced computer
vision and machine learning
techniques to evaluate the activity
of cyber operators in a realistic
scenario in order to determine
their mission readiness.

Mission Readiness Assessment
The DoD must assess the capability and
capacity of its cyber workforce to support
operations conducted in the cyberspace domain
and this assessment capability is a key
determinant of operational mission readiness.
However, because cyber is a relatively new
domain for the DoD, it does not yet have a
scalable, objective assessment capability that
it can use to validate the hands-on, technical
knowledge and skills of its cyber workforce.

ACE Philosophy
Current evaluation methods involve checklists
of prompted activities or individual
assessments. These methods are not reliable,
not uniform, and not scalable to DoD
requirements. The ACE philosophy is that true
mission readiness assessments can only be
performed in a realistic environment. ACE users
are placed in an environment that mimics their
real work environment. Our automated system
then observes and understands the actions
performed within this environment as users
attempt to complete a mission. Based on their
activities, our system assesses their
knowledge, skills, and abilities.

ACE-Capture
ACE evaluation scenarios are conducted in the
CERT® Simulation, Training, and Exercise
Platform (STEP). This platform allows us to
push out realistic simulations of real DoD
networks through a web browser. The
ACE-Capture module has been integrated into
the STEP platform, allowing unattended
background recording of participants within an
evaluation scenario. This recording is
performed on the backend servers and consists
only of the views we provide to the end users –
thus avoiding the possibility of accidentally
collecting any personal information that may
exists on their personal workstation. Our
recording system is highly scalable. It allows us
to simultaneous record dozens of users per
allocated machine and natively scales with
available hardware.

ACE-Vision
Video recorded by the ACE-Capture system is
processed by a dedicated vision engine that
detects a wide array of GUI elements, as well
as a set of relevant console commands. These
detections (and their associated con�dence
measures) are generated utilizing a highly
optimized, parallelizable algorithm that takes
advantage of the unique conditions available
within our simulation environment.

ACE-Eval
The detections generated within the ACE-Vision
system provide the data for evaluation by
ACE-Eval. This system is composed of
two layers. Layer 1 maps groups of detection
events with associated higher level activities
such as “Opened �le examiner_notes.txt
for editing in gedit” or “Mounted the evidence
drive”. Layer 2 maps these activities to speci�c
activities identi�ed as critical for a given
job role.

Looking Forward
• Merger with existing sponsored work

• Addition of multiple job roles

• Customer-driven assessment creation

Additional use-cases
• Stand-Alone operation

 - Insider Threat Analyst Support

 - Dynamic Workstation Monitor

 - User Study Data Collection

• Template Generation Utility

 - Assessment creation

 - Complatible with user simulation (GUS)

By utilizing the automated
generation of reliable skill reports,
commanders may easily assess
the capabilities of their troops,
at scale, and with the resources
already available.

Research Review 2016Automated Cyber-Readiness Evaluator
ACE

Contact: Rotem D. Guttman | email: rdguttman@cert.org
P12

Distribution Statement A: Approved for Public Release;
Distribution is Unlimited

ACE Architecture Overview: User logged into Simulated Training Environment observed
using Capture System. Captured video is analyzed and transcribed utilizing ACE-Vision.
Vision output is processed by ACE-Eval and used to generate the ACE Skill Report.

Text

Video

ACE Skill Report

Simulated
Training

EnvironmentACE-Capture

ACE-Vision ACE-Eval

Photo: Senior Airman Brett Clashman

Technology and Know-
How for Critical Cyber
Exercises

USCYBERCOM uses SEI learning
technologies to support Cyber
Flag and Cyber Guard tactical
exercises and as the basis for its
Persistent Training Environment.
In addition, AFCYBER, ARCYBER,
MARFORCYBER, and others
choose SEI platforms for their
cyber capabilities exercises.

Copyright 2016 Carnegie Mellon University

This material is based upon work funded and supported by the Department of
Defense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the views of the
United States Department of Defense.

This report was prepared for the
SEI Administrative Agent
AFLCMC/PZM
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS.
CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY
DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM
FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

[Distribution Statement A] This material has been approved for public release and
unlimited distribution. Please see Copyright notice for non-US Government use
and distribution.

Internal use:* Permission to reproduce this material and to prepare derivative
works from this material for internal use is granted, provided the copyright and
“No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification,
and freely distributed in written or electronic form without requesting formal
permission. Permission is required for any other external and/or commercial use.
Requests for permission should be directed to the Software Engineering Institute
at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon® and CERT® are registered marks of Carnegie Mellon University.

DM-0004113

About Us
The Software Engineering Institute (SEI) is a not-for-profit Federally Funded
Research and Development Center (FFRDC) at Carnegie Mellon University,
specifically established by the U.S. Department of Defense (DoD) to focus on
software and cybersecurity. As an FFRDC, the SEI fills voids where in-house
and private sector research and development centers are unable to meet DoD
core technology needs.

©2016 Carnegie Mellon University | 4823 | 03.21.2017

Contact Us
Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA 15213-2612

Phone:	 412.268.5800 | 888.201.4479
Web:		 sei.cmu.edu | cert.org
Email:	 info@sei.cmu.edu

