
You do not have to look far to become
aware of the effect that SOA is hav-

ing on software systems. Vendors are
aggressively marketing hardware, soft-
ware, tools, and services that support SOA
implementation within organizations as
diverse as the Department of Defense
(DoD), banks, federal agencies, manufac-
turing companies, and health care
providers. Even more significantly, cus-
tomers are embracing SOA with the goal
of reaching a previously unachievable
level of interoperability among systems
and agility in business practices.

SOA may currently be the best avail-
able solution for achieving interoperabili-
ty and agility, as well as providing a tech-
nology upgrade path that preserves the
investment in legacy systems and simpli-
fies deployment of new systems.
However, our experience from working
with customers considering the adoption
of SOA suggests that they often have a
variety of misconceptions that lead them
to greatly underestimate the effort
required to successfully implement SOA.
These misconceptions are dangerous
because they make organizations more
susceptible to vendor advertising and
hype. In addition, these misconceptions
are often embraced by internal IT organi-
zations, leading them to over-promise
new capabilities, while underestimating
the cost and effort required for achieving
even modest improvements. Although
some of these common misconceptions
also apply to traditional single systems, we
focus on their relevance to SOA-based
systems.

We hope that by recognizing these
misconceptions, organizations can better
understand and evaluate the promises of
vendors and improve their own internal
SOA expectations and planning processes.

Basic SOA Concepts
SOA is a way of designing systems com-
posed of services that are invoked in a stan-
dard way. As an architectural style, SOA is
neither a system architecture nor a com-

plete system. An SOA-based system is
composed of the following:
• Services that are reusable components

that represent business or mission
tasks, such as customer lookup, weath-
er, sensor placement, account lookup,
or credit card validation.

• Service consumers that are clients for
the functionality provided by the ser-
vices, such as end-user applications,
systems, or even other services.

• SOA infrastructure that connects ser-
vice consumers to services.
The most common approach to SOA

implementation is that of Web services,
which relies on common standards that
include HTTP, SOAP, WSDL, and UDDI.
However, other SOA-based systems can
be implemented using such technologies
as MOM, IBM WebSphere MQ, publish-
subscribe systems such as JMS, and
CORBA.

Some SOA Misconceptions
Seven common misconceptions are iden-
tified in the following subsections. The
subsection heading represents a statement
in the form that an organization might
express it. The body of each subsection
discusses why the statement expressed in
the heading can be misleading. It also pro-
vides advice on how to avoid falling into
common traps.

SOA Provides the Complete
Architecture for a System
Chief among SOA misconceptions is the
belief that simply by adopting an SOA
strategy for the enterprise, an organization
has established a complete well-crafted
architecture that will help the organization
achieve its IT goals. In reality, SOA is not
an architecture, but an architectural pat-
tern from which a number of specific
architectures can be derived – both good
and bad. An architectural pattern provides
guidance to an architect that enables lever-
aging best practices for that specific pat-
tern. It defines a set of element types, a
topological layout of the elements that

shows their relationships, semantic con-
straints on elements, and interaction
mechanisms [1]. For example, the ele-
ments in the SOA pattern include service
consumers, service descriptions, service
implementations, and possibly a service
bus. One relationship is that between ser-
vice providers and service consumers. In
the case of Web Services, consumers and
services are connected by HTTP or
HTTPS connectors carrying SOAP mes-
sages. Given the architectural elements, or
building blocks, any number of systems
can be developed based on this architec-
tural pattern. These concrete elements and
their interactions are the architecture of
the system.

The misconception that SOA provides
a complete architecture also leads cus-
tomers to believe that they can buy SOA
off the shelf. Although there are a number
of products available in the marketplace
that can help an enterprise implement

Common Misconceptions About
Service-Oriented Architecture

Service-Oriented Architecture (SOA) is having a major impact on the acquisition and development of software systems
because of its potential for increased business agility, adaptability of applications, interoperability between systems, and reuse
of legacy assets. However, organizations often make decisions on SOA adoption without carefully analyzing the implications
of their decisions. This article outlines a set of common misconceptions about SOA and suggests ways to more effectively
address critical SOA issues that potential users, developers, and acquisition officers may have.

Grace A. Lewis, Edwin Morris, Dr. Dennis B. Smith, Soumya Simanta, and Lutz Wrage
Software Engineering Institute

November 2007 www.stsc.hill.af.mil 27

Acronyms
BPEL Business Process Execution

Language
CORBA Common Object Request

Broker Architecture
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
IT Information Technology
JMS Java Messaging Service
MOM Message-Oriented Middleware
MQ Message Queue
OWL-S Object Window Library for

Services
QoS Quality of Service
SAML Security Assertion Markup

Language
SLA Service-Level Agreement
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
XML Extensible Markup Language
WSCL Web Services Conversation

Language
WSDL Web Service Description

Language
WS-I Web Services Interoperability
UDDI Universal Description,

Discovery and Integration

Software Engineering Technology

SOA, none of them are actually an imple-
mentation of an SOA-based system.
Software architects still need to architect
systems based on the SOA architectural
pattern. They have to design services and
service interactions that meet the quali-
ties that stakeholders expect of the sys-
tem. In addition, the architect(s) must
make decisions on how services are
implemented. Service implementations
may involve developing new software,
wrapping a legacy software system, incor-
porating services provided by third par-
ties, or a combination of these options.

Information about the quality attrib-
utes of SOA-based software systems is
just beginning to become available in the
literature: One report finds that SOA
promotes modifiability, interoperability,
and extensibility, but can have a negative
impact on security, performance, testabil-
ity, and auditability [2]. For a given sys-
tem, the architect needs to understand
the quality attribute requirements and
needs to architect a concrete system
around the tradeoffs that are most
important to the stakeholders of the sys-
tem.

All Legacy Systems Can Be Easily
Integrated Into an SOA Environment
One of the most attractive promises of
moving towards SOA is that it enables
reusing legacy systems, thereby providing
a significant return on the investment in
these systems. However, migrating legacy
systems is neither automatic nor easy. It
might not make business or technical
sense to migrate the legacy system to an
SOA environment.

It is important to understand technical
constraints of the legacy components,
such as immature technology, that may
require significant rework. In addition, it is
necessary to understand business issues,
such as the business case that will justify
the migration of legacy components to
services in the specific context. An
upfront and hands-on analysis of techni-
cal feasibility and the resultant return on
investment will help to avoid last-minute
surprises.

This analysis must answer at least the
following questions:
1. Have consumers for the services been

identified?
2. Is it technically feasible to create a ser-

vice from the legacy system or part of
the system?

3. How much would it cost to expose
services from the legacy system?

4. What changes will have to be made to
legacy systems in order to use these
services?

5. How much will these changes affect
the current end users of the legacy sys-
tem and other dependent production
systems?

6. Are the costs of exposing services,
together with the associated risks of
making the required changes, feasible
from a business perspective?
The bottom line is that there are issues

to take into consideration that go beyond
adding a service interface to an existing
system.

SOA Is All About Standards and
Standards Are All That Is Needed
This statement primarily applies in the
context of Web services, the main stan-
dards-based technology available today to
realize SOA. This leads to a corollary mis-
conception that SOA and Web services
are the same. In reality, Web services are
only one potential approach to SOA
implementation.

It is true that public standards like
those supporting Web services are often
preferable to proprietary solutions
because they are (potentially) supported
by a wider community. But, most Web ser-
vice standards are still emerging and sub-
ject to multiple interpretations.

Basic infrastructure standards that
support the exchange of messages
between service consumer and provider-
such as HTTP, XML, XML Schema,
SOAP, WSDL, and UDDI are the most
developed and mature of the Web service
standards. However, being stable for years
does not mean that the standards are com-
plete. For example, after adopting basic
infrastructure Web service standards,
some organizations found that their ser-
vices still could not communicate infor-
mation effectively with other services due
to different design decisions and flexibili-
ty in the standards. The WS-I Basic Profile
was constructed to provide better interop-
erability across implementations using
basic infrastructure standards [3]. In addi-
tion, revisions to standards are likely in
any area undergoing rapid advances in
technology.

Standards for service composition (e.g.
WSCL, WS-Coordination, BPEL, and
cross-cutting standards [e.g. WS-Security,
SAML, WS-Transaction, WS-Reliability])
are less mature and far less stable than
basic infrastructure standards. Currently,
there are a number of competing propos-
als and standards for service composition
and cross-cutting concerns that conflict
and overlap. Regarding these less mature
areas of Web services, the old saying sums
it up – the best thing about standards is that
there are so many to choose from.

SOA Is All About Technology
Vendors pushing SOA products will (for
good reason) promote their technologies
as the solution to an organization’s IT
problems. However, SOA also entails
changes to the organization’s IT gover-
nance model – the set of rules and regula-
tions under which an IT department oper-
ates, and the mechanisms to ensure com-
pliance with those rules and regulations.
This is especially true if SOA is used to
support business processes or mission
threads. Therefore, a well-defined gover-
nance model that includes items such as
the following is essential for the success of
SOA implementation:
• Service identification that maps to

business or mission goals.
• Service repository management.
• Service implementation guidelines.
• Change management to deployed ser-

vices.
• Mechanisms, tools, and policies for

maintaining and monitoring deployed
services.

• Policy enforcement at design and run
time.

• Security and access control.
• Definition and enforcement of SLAs

between service consumers and
providers.
The implementation of SOA in an

organization should be part of a larger
effort to assure that SOA and related gov-
ernance are aligned with strategic goals
and objectives.

The Use of Standards Guarantees
Interoperability in an SOA
Environment
True interoperability can only be achieved
if service consumers and providers inter-
operate at both the syntactic and semantic
levels. There is interoperability at the syn-
tactic level if they can exchange raw data
elements such as text, numbers, or dates.
There is interoperability at the semantic
level if they understand and agree on the
meaning of exchanged data. For example,
a spacecraft monitoring application may
rely on a service that does an analysis of
data received from onboard sensors. The
service may correctly perform the analysis
of the raw temperature data. However, it
may make an assumption that the temper-
ature data is expressed in Celsius as
opposed to Fahrenheit. In such a case,
there is interoperability at the syntactic
level, but not at the semantic level. In this
example, both the requesting consumer
and the onboard sensor share a common
understanding that the number exchanged
represents temperature. However, there

28 CROSSTALK The Journal of Defense Software Engineering November 2007

Common Misconceptions About Service-Oriented Architecture

November 2007 www.stsc.hill.af.mil 29

must also be a deeper understanding of
the meaning of that value, such as the
temperature unit or where and how it was
measured [4]. The results of an incorrect
assumption in this case could prove disas-
trous for the mission.

In the case of Web services, for ser-
vice consumers and providers to be inter-
operable it is not sufficient to agree on the
representation of data in XML documents
because there is no way to specify the
meaning of data in an XML or WSDL
document other than in text descriptions.
The problem is that text descriptions are
imprecise, are often not filled in, and are
not readable by machines, rendering them
open to multiple interpretations by human
developers. Also, even though the full
XML Schema Datatypes specification can
be used to specify data, it is rare to see
anything other than a data type in the
WSDL document that describes Web ser-
vice operations. Optimal methods of
describing the meaning of Web service
inputs and outputs in a formal manner is
still an area of active research [5, 6].

A Service Registry Allows Service
Binding Dynamically at Runtime
Currently, binding to services is usually
done at design time. This is referred to as
static binding or fully-grounded binding.
Discovery and composition of services
are done at design time such that the
developer can discover the syntax and
semantics of the service before it is actu-
ally used. In the case of dynamic binding,
discovery and composition of services are
done at runtime. This is currently a com-
plex and poorly supported task.

In a basic scenario of dynamic bind-
ing, service consumers retrieve the service
address from a registry before each call to
the service. If there are several providers
of the same service, the service consumer
can choose at runtime which one to use.
The consumer can also rank providers
based on quality of service criteria,
choose a preferred provider, and use oth-
ers as backup if the preferred service is
not available.

More advanced automatic discovery
and composition of new services at run-
time requires the use of common ontolo-
gies by service providers and consumers
within a domain to describe function and
usage of services. Given this shared ontol-
ogy, it would still be necessary to develop
components that can construct the right
queries for the discovery of services, com-
pose services when there is not a single
service that provides the needed function,
and then provide the right data to invoke
the discovered service. Current technolo-

gies have not advanced to a point where
this is possible in production environ-
ments [7].

Testing SOA-Based Systems Is No
Different Than Testing Any Other
Type of System
Testing service consumers, as well as the
services themselves, is challenging for var-
ious reasons. Most traditional testing tech-
niques cannot be directly applied to ser-
vices in the SOA world because testing has
to occur at runtime and in real time [8].
Independent testing of a service from a
service provider perspective is different
from that of a service consumer.
Moreover, the service provider and con-

sumer must collaborate and cooperate to
ensure correctness and trustworthiness of
services [8].

Service consumers can only be fully
tested when the invoked services (or test
instances of them) are available. The ease
of testing will most likely depend on
whether the service is internal or external
to the organization – there is more control
if it is internal.

In an SOA environment it is common
for different services to be owned by dif-
ferent organizations and for services to
use different technologies. Because an
SOA environment is distributed, loosely
coupled, and asynchronous, testing can
be significantly more complex than sim-
ply testing a set of known paths in a sin-
gle system [9]. Modeling and simulation
can provide some guidance and confi-
dence during the design phase, but they
are not a substitution for end-to-end test-
ing of service-based applications [9].
Service consumers will necessarily have
to be prepared to deal (or not to deal)
with degraded service modes and com-
plete service failure.

Services can be reused across applica-
tions that cross enterprise boundaries.
Changes requested by one service con-
sumer in an existing service can result in
undesired results for another service con-
sumer. Changes in service interface and
implementation must be tested continu-
ously by each of the service consumers in
order to ensure that the actual service
behavior conforms to intended behavior.
Finally, service providers have to exten-
sively test their services because they can-
not anticipate all the possible scenarios in
which their service will be used. Testing
has to cover functionality, load testing and
stress testing, as well as other elements
specified in an SLA.

Conclusions
We believe SOA may be the best current
approach for achieving critical interoper-
ability, agility, and reusability goals that are
common to many organizations.
However, we also believe that the difficult
reality of building and managing large-
scale SOA-based systems often gets lost in
the understandable corporate desire for
sweeping improvements and the hype of
vendors.

Our intent is not to discourage organi-
zations from adopting SOA, but to cau-
tion them about some important issues
and risks to consider while creating their
SOA strategy. Most of these issues are
currently active areas of research in the
service-oriented computing community.
The solutions will require time to
mature.u

References
1. Bass, L., P. Clements, and R. Kazman.

Software Architecture in Practice.
Addison Wesley, 2003.

2. O’Brien, L., L. Bass, and P. Merson.
Quality Attributes and Service-
Oriented Architectures. Pittsburgh:
Software Engineering Institute (SEI),
Carnegie Mellon University (CMU),
2005.

3. Web Services Interoperability Organ-
ization. “Basic Profile Version 1.1.”
2004. <www.ws-i.org/Profiles/Basic
Profile-1.1.html>.

4. Lewis, G., and L. Wrage. “Case Study
in COTS Product Integration Using
XML.” Proc. of the Third Inter-
national Conference on COTS-Based
Software Systems, Redondo Beach,
CA, Feb. 1-4, 2004: 41-52.

5. Martin, D. et al. “Bringing Semantics
to Web Services: The OWL-S
Approach.” Proc. of the First Inter-
national Workshop on Semantic Web
Services and Web Process Composi-

“Modeling and
simulation can provide
some guidance and

confidence during the
design phase, but they

are not a substitution for
end-to-end testing of

service-based
applications.”

Software Engineering Technology

30 CROSSTALK The Journal of Defense Software Engineering November 2007

tion. July 6-9, 2004, San Diego, CA.
6. Roman, D., et al. “Web Service Mod-

eling Ontology.” Applied Ontology 1.1
(2005).

7. Metcalf, C., and G. Lewis. Model
Problems in Technologies for Inter-

operability: OWL Web Ontology
Language for Services (OWL-S).
Pittsburgh: SEI, CMU, 2006.

8. Tsai, W. T., et al. “Cooperative and
Group Testing in Verification of
Dynamic Composite Web Services.”

Computer Software and Applications
Conference, Sept. 2004.

9. Acharya, M., et al. “SOA in the Real
World-Experiences.” Lecture Notes in
Computer Science, Volume 3826, Nov.
2005, pp. 437-449.

About the Authors

Edwin Morris is a
senior member of the
technical staff at SEI. He
has more than 20 years
experience in software,
including design and

development of embedded real time
operating systems and tools, manage-
ment of technical staff, and support for
military, government, and corporate
software initiatives. Morris is currently a
member of the ISIS initiative.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-5754
Fax: (412) 268-5758
E-mail: ejm@sei.cmu.edu

Grace Lewis is a senior
member of the technical
staff at SEI where she
currently leads the sys-
tem of systems engineer-
ing team within the

Integration of Software-Intensive
Systems (ISIS) initiative. Her current
interests and projects are in SOA, legacy
system modernization, and software
development life-cycle activities in sys-
tems of systems. She has a bachelor’s
degree in systems engineering and an
executive master’s of business adminis-
tration from Icesi University in Cali,
Colombia, and a master’s degree in soft-
ware engineering from CMU.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-5851
Fax: (412) 268-5758
E-mail: glewis@sei.cmu.edu

Dennis Smith, Ph.D., is
a senior member of the
technical staff and lead
of the ISIS initiative at
the SEI. This initiative
focuses on developing

and applying methods, tools, and tech-
nologies that enhance the effectiveness
of complex networked systems and sys-
tems of systems. He has been involved
with working with DoD organizations in
developing an SOA capability, including
issues of SOA strategy, governance and
migration of legacy assets to SOA.
Previously, he was a member of the
Product Line Systems Program and
technical lead in the effort for migrating
legacy systems to product lines. He has
published a variety of books, articles and
technical reports, and has given talks and
keynotes at conferences and workshops.
He was the co-editor of the Institute of
Electronics and Electrical Engineers
and International Organization for
Standardization-recommended practice
on computer-aided software engineering
adoption, and has been general chair of
two international conferences. Smith
holds a masters and a doctorate degree
from Princeton University, and a bache-
lor’s degree from Columbia University.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-6850
Fax: (412) 268-5758
E-mail: dbs@sei.cmu.edu

Lutz Wrage is a senior
member of the technical
staff at SEI where he is
part of the Dynamic
Systems program. His
research includes work

on SOA and systems-of-systems engi-
neering. Before joining the SEI, he
worked in the area of Enterprise
Resource Planning systems integration
and customization. Lutz holds a degree
in computer science from the Technical
University-Berlin and a master’s degree
in software engineering from CMU.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-7771
Fax: (412) 268-5758
E-mail: lwrage@sei.cmu.edu

Soumya Simanta is a
member of the technical
staff at the SEI, where he
is part the ISIS initiative.
His current research is
focused on system of sys-

tems engineering, service-oriented archi-
tecture, modernization of legacy systems,
grid architecture, and evaluation of cur-
rent technologies that support integration
and interoperability between systems. Pre-
viously, he did software design and devel-
opment in the finance and telecom
domains. Simanta has a bachelor’s degree
in electronics engineering from Sambalpur
University, and a master’s degree in soft-
ware engineering from CMU.

SEI
4500 Fifth AVE
Pittsburgh, PA 15213
Phone: (412) 268-7602
Fax: (412) 268-5758
E-mail: ssimanta@sei.cmu.edu

