
1

The Software Architecture Renaissance

 Paul Kogut
Air Force/NASA CARDS Program (Unisys) and SEI Resident Affiliate

 Paul Clements
 Software Engineering Institute

Introduction

There is a revival of interest in the software product after several years of intense focus by the
software engineering community on the software process. Similarly, within the software design
community, there is a revival of interest in higher levels of design (e.g. software architecture)
after several years of intense focus on object-oriented (OO) design methodologies (e.g. identi-
fying objects, classes and inheritance relations). The increasing importance of software in sys-
tems is also driving the software architecture renaissance. Problems with software architecture
have contributed to the difficulties of large projects like the FAA’s Advanced Automation Sys-
tem [1]. Because architectural decisions are usually made early in the life-cycle, they are the
hardest to change and hence the most critical and far-reaching. Without a good system and soft-
ware architecture it is difficult to achieve satisfaction of the original performance and behav-
ioral requirements and it is probably impossible to accommodate major design changes.
Software architecture also provides the critical context for high leverage reuse of design and
components. The importance of architectural context for reuse is derived from observing the
common practices in mature engineering fields such as civil engineering and chemical engi-
neering. Within software engineering, common practices and solutions within particular appli-
cation areas can be reused to provide domain-wide leverage of architectural-level decisions.
This article provides a brief overview of some of the important architecture related efforts.

What is software architecture? In this article a software architecture is loosely defined as the
organizational structure of a software system including components, connectors, constraints,
and rationale [2][3]. Dewayne Perry and David Garlan, the editors of a special issue of IEEE
Transactions on Software Engineering (expected fall 94), are working on a more formal and
standardized definition.

Software Architecture Science

Currently there is a proliferation of ongoing activities in the science of software architecture.
These activities are considered science because the main focus is on the study of the character-
istics of existing architectures. At Carnegie Mellon University researchers are identifying and
describing architecture styles found in existing software systems [3]. For example, some sys-
tems have a pipe and filter style (e.g. Unix like) while others are object oriented, data centered
(e.g. transactional database systems) or event systems (e.g. objects broadcast events through a
request broker). These styles determine the macro architecture for a whole system. Many sys-
tems have been found to have hybrid styles especially when large components are examined in
more detail.

In the object-oriented community there is a great deal of interest in OO design patterns found

2

in existing systems [4]. These OO patterns are micro architectures that facilitate the synthesis
and understanding of macro architectures. The OO patterns consist of a cluster of classes that
interact to perform a certain common generic function. Researchers are currently identifying
and cataloging these OO patterns to help promote design reuse.

The analysis of the quality attributes of architectures is an important area where much works
needs to be done. One example of architectural analysis was carried out in the domain of user
interface tools [5]. The researchers chose the quality attribute modifiability for their analysis.
They then selected an “ideal” reference architecture and a set of benchmarks (e.g. change a
component such as a toolkit or a menu) as a basis for comparison. Sample architectures were
translated to a standard representation and then evaluated against the reference architecture and
benchmarks.

Software Architecture Engineering

There is also a proliferation of ongoing activities in the engineering of software architectures.
These activities are considered engineering because the main focus is on building architectures
that support the cost effective development of high quality application systems. Many of these
engineering efforts have been focused on developing domain-specific software architectures
(DSSAs) which are architectures for a family of application systems in a domain. DSSAs sup-
port reuse of both design knowledge and components through the use of various models (e.g.
structural and behavioral). The development and application of DSSAs fit under the broad
umbrella of model-based software engineering which also includes domain analysis and other
reuse related activities. The following brief case study discussions cover just a few example
DSSAs including their basic approach.

• The Tektronix oscilloscope architecture was an early example of a domain-specific
software architecture for a product line [6]. Tektronix experimented with architecture
styles such as layered and object-oriented but they found that the pipe and filter style
was best for their domain. The filters are parameterized so that they can be
instantiated for different models of oscilloscope. They also found that the
connections (pipes) were very important for an architecture that supports reuse. They
used formal methods to define 6 different pipe specifications that could be chosen.

• The Software Engineering Institute (SEI) has developed several DSSAs for DOD
domains. The SEI created several specialized object-oriented architecture styles to
support these DSSAs (e.g. object connection update, structured modeling, and object
connection architecture). These specialized styles establish certain categories and
dataflow/control flow rules for classes/objects. A DSSA based on these styles also
includes Ada templates for components. This structure makes it easier to understand
and modify a DSSA as well as generate instances of systems. Early experience with
building these DSSAs was in the domain of Air Force flight simulators [7]. Extensive
experience and guidelines in structured modeling for flight simulators has been
consolidated into a guidebook by the Air Force and SEI [8]. Recently the SEI has
mapped a domain model and the object connection architecture into a generic design
and a set of components for the Army movement control domain [9].

3

• The Air Force Command Center Processing and Display System - Replacement
(CCPDS-R) was built using the Universal Network Architecture Services (UNAS)
tool [10]. UNAS provides middleware to connect communicating Ada processes,
tools to monitor the connection traffic, and a CASE tool to architect and generate a
system. The UNAS tool provides high leverage architecture based reuse for a
communicating Ada processes architecture style.

• The Air Force sponsored Portable, Reusable, Integrated Software Modules (PRISM)
Program developed an architecture with the goal of maximizing the reuse of existing
commercial and government off the shelf components in command centers [11]. This
goal led to an object-oriented event system architecture style. The emphasis of the
architecture was on interface standards (e.g. SQL). Wrappers were written for
components in order to integrate them.

• The Sematech Computer Integrated Manufacturing Framework is a good new
example of a DSSA for a complex domain [12]. Sematech is a consortium of
semiconductor manufacturers partially sponsored by ARPA. Sematech adopted the
Common Object Request Broker Architecture (CORBA) as its infrastructure and
defined standard domain specific objects. CORBA is an evolving standard for object-
oriented event system architectures. CORBA defines an interface definition
language, an object request broker and object adaptors. Vendor supplied objects must
comply to the framework. Sematech defined a compliance testing methodology to
ensure this compliance.

There are many issues raised by the thrust to develop DSSAs and analyze architectures:

• What Software Architecture Representation Language (SARL) should you choose?
SARLs are critical for capturing the knowledge associated with a DSSA. Commonly
used structured and object-oriented design notations (e.g. those found in CASE tools)
do not fully support DSSAs. SARLs must help various stakeholders understand and
apply DSSA knowledge. SARLs should have associated tools which facilitate the
composition, generation and analysis of application systems derived from a DSSA.
There are a variety of SARLs emerging from the ARPA sponsored DSSA program
and elsewhere. They vary widely in terms of what architecture styles they support and
what forms of analyses they permit.

• How do DSSAs fit into your software development process?

• How are DSSAs developed from domain models and/or reengineered from existing
system designs?

• How do you build the business case for a DSSA? How do you calculate your
revenues from assets (knowledge, components, tools)?

• How do you estimate application development costs in a DSSA based process?

The SEI, CARDS, University of Southern CA, and others are beginning to address these issues.

Pulling It All Together

The SEI and the Air Force/NASA sponsored CARDS (Comprehensive Approach to Reusable
Defense Software) program are working together in a Software Architecture Technology Ini-

4

tiative (SATI) to help transition the most promising architecture-based approaches to practice.
The focus is on DSSAs that support model-based software engineering. The goal is to establish
a repository of knowledge and expertise about the field of software architecture, make it avail-
able to interested parties, and disseminate best practices for architecting a DSSA. Guidance for
selecting and using SARLs and their associated tools is also a high priority.

The ongoing SATI activities include a variety of activities to help consolidate architecture con-
cepts and technology:

• develop an on-line annotated bibliography for software architecture.

• perform a domain analysis of SARLs. This will help characterize the features of
SARLs to support selection from existing SARLs and development of new SARLs.

• document DSSA case studies to illustrate best practices of architecture selection,
evaluation, and usage.

• establish partnerships and collaborative agreements with organizations that are
developing a DSSA.

References

1. Gary Stix, “Aging Airways,” Scientific American, May 1994, pp. 96-104.

2. Dewayne E. Perry, Wolf, A., “Foundations for the Study of Software Architecture”
ACM SIGSOFT Software Engineering Notes, Vol. 17, No. 4, October 1992, pp. 40-52.

3. Garlan, Shaw “An Introduction to Software Architecture” in Advances in Software
Eng. and Knowledge Eng. editors: Ambriola and Vincenzo, World Scientific Publishing
Co. 1993

4. Dutton, Sims “Patterns in OO Design and Code Could Improve Reuse” IEEE Software
May 1994 pg. 101.

5. Kazman, Bass, Abowd, Webb “SAAM: A Method for Analyzing the properties of Soft-
ware Architecture 16th ICSE May 1994

6. Garlan, Delisle “Formal Specifications as Reusable Frameworks” In VDM 91 Springer
Verlag LNCS 551

7. Lee, Rissman, D'Ippolito, Plinta, Van Scoy “An OOD Paradigm for Flight Simulators”
CMU/SEI-88-TR-30 1988

8. “Structural Modeling Guidebook”, ASC/YT Training Systems Program Office, Wright-
Patterson Air force Base, April 1994

9. Peterson, Stanley “Mapping a Domain Model and Architecture to a Generic Design”
CMU/SEI-94-TR-8 May 1994

10. Royce and Royce “Software Architecture: Integrating Process and Technology” TRW-
TS-91-04 Dec. 1991

11. “Generic Command Center Architecture Report for the Portable, Reusable, Integrated
Software Modules Program” CDRL Sequence No. A001, Raytheon Company and
Hughes Technical Services Company, May 21, 1993.

5

12. Sematech Collaborative Manufacturing System CIM Application Framework Spec.
March 1994

