
1

Keywords: software architecture, reuse, design, domain

Features of Architecture Description Languages

Paul Kogut and Paul Clements

1 Introduction

1.1 Background: system architecture for system development?

The characteristic approach in mature engineering disciplines (e.g. civil and chemical en-
gineering) is to build systems (e.g., buildings or chemical plants) from known solutions such as
proven designs and existing components [Shaw90,D’Ippolito89]]. Engineers in mature disciplines
also put great emphasis on proactively avoiding costly problems by evaluating the system before
it is built [Liu87]. Models of the system’s architecture are important tools for applying known so-
lutions and doing early evaluation in mature engineering disciplines. In software engineering, the
corollary is modelling the software architecture.

By software architecture, we mean the components into which a system is divided at the
level of system organization, and the ways in which those components communicate, interact, and
coordinate with each other [Garlan93] [Shaw95]. Examples of components include modules, pro-
cesses or tasks, subsystems, Ada packages, or Unix filters. Examples of coordination mechanisms
include procedure call (remote or otherwise), synchronization (e.g., rendezvous), data sharing,
message passing, event broadcast and subscription schemes, and Unix pipes. The architectural
view of a system separates the concerns of components’ functionality (or computation) from the
ways in which components interact to cooperatively perform the system’s job (or coordination).
The architecture represents the first mapping from requirements to computational components and,
hence, it becomes possible, at a high level, to evaluate the feasibility of achieving the requirements
with the proposed design.

In addition, architectural decisions represent substantial resource commitments. The selec-
tion of components and connections, as well as the allocation of functionality to each component,
is a codification of the earliest design decisions about a project. Thus these decisions are the hardest
to change. The choice of components is institutionalized in developing organization’s team struc-
ture, work assignments, management units, schedule and work breakdown structures, integration
plans, test plans, and maintenance processes. Once it is made, an architectural decision is extremely
difficult to retract.

In addition to its organizational implications, an architecture can either permit or preclude
the achievement of most of a system’s targeted quality attributes. Modifiability, for example, de-
pends extensively on the system’s modularization, which in turn, reflects the encapsulation strate-
gies. Likewise reusability of components depends on how strongly coupled they are with other
components in the system. In addition performance depends largely upon the volume and complex-
ity of intercomponent communication and coordination, especially if the components are physical-
ly distributed processes.

Presented at Software Technology Conference, Salt Lake City, April 1995

2

The use of reliable, analyzable architecture models for software will help to

• capture design and component knowledge and rationale, for use and guidance
throughout the development life cycle

• facilitate early analysis and simulation to support feasibility and resource
allocation decisions

In software engineering, an architecture model may apply to a single system as well as to a
family of systems in a domain; the latter is referred to as a generic architecture or a domain specific
software architecture (DSSA). Architecture models for single systems support both development
and maintenance. DSSAs support the development of various systems in a domain. A DSSA pro-
vides a context for components. This context forms a basis for judging a component’s fit to the ar-
chitecture and for developing of components that conform to the architecture.

Figure 1: Example ADL - UniCon

component types:
module

computation
sharedData

seqFile
filter

process
schedProcess

general

sort reverser

pipe

pipe

fileIO

procedureCall

dataAccess

remoteProcedureCall

RTScheduler

connector types:

graphical view

textual view

COMPONENT sort
INTERFACE IS
TYPE Filter

PLAYER input IS StreamIn....
IMPLEMENTATION IS....

3

1.2 Architecture description languages

Architecture description languages (ADLs) are emerging as the notation for architecture
models. ADLs use graphics and text to express architectural information as shown in Figure 1.
ADLs are often supported by tools for creation, modification, browsing, simulation, and analysis.

There are a variety of ADLs emerging from various industrial and academic research
groups. For example, UniCon (language for Universal Connector support) is being developed at
Carnegie Mellon University to explore issues of abstractions for architecture and composition of
systems [Shaw94]; see Figure 1. Some ADLs are commercial products like UNAS/SALE (Univer-
al Network Architectural Services/Software Architects Life-cycle Environment), which was devel-
oped by TRW and marketed by Rational [Krutchen94]. Other ARPA-sponsored ADLs include
LILEANNA [Tracz93], Rapide [Luckham93], MetaH [Binns93], and ArTek/DADSE [Terry94].

ADLs vary widely in the architecture styles they support and that forms of analyses they
permit. Like other tools, there is no one ADL that best fits all possible situations.

A variety of groups use ADLs. Each group has a different perspective of what a good ADL
should be. People involved in the acquisition of software specify ADLs for procurements and eval-
uate architecture models (encoded in an ADL) that are included in proposals and presented at de-
sign reviews. ADLs as an important tools for designing, building, or re-engineering application
systems.For domain engineers, ADLs are even more impratnt; they can be used for developing a
DSSA.

1.3 Characterizing ADLS

The Comprehensive Approach for Reusable Defense Software (CARDS) Program and the
Software Engineering Institute are cooperatively attempting to characterize the features of ADLs.
The purpose of this effort is to

• provide guidance to government and industry organizations for choosing and
tailoring existing ADLs for a particular domain or project.

• improve thearchitecture model for the CARDS Command Center Library
iIdentify weak areas in existing ADLs that require further research

The goal of this research is to examine a representative sample of ADLs and answer these
questions:

• What features do ADLs have?

• What features help describe the differences between ADLs?

Figure 2 shows the relation of ADLs to other, more familiar software engineering notations
and tools. Parts of traditional programming languages (e.g., Ada package specifications) represent
module interconnection, which is also important for ADLs. In addition, requirements specification
languages share some notations with ADLs. Furthermore, Computer Aided Software Engineering
(CASE) environments significantly overlap with ADLs, but there is much Computer Aided Soft-
ware Engineering (CASE) functionality that is not part of architecture (e.g. test tools). After a
preliminary analysis of over 10 example ADLs, we identified with 2 key characteristics:

4

• ADLs support the routine use of existing designs and components in new
application systems.

• ADLs support the evaluation of an application system before it is built.

Figure 2: Relation of ADLs to other notations and tools

Representations and notations used in many structured and object-oriented design methods
are borderline cases of ADLs because they provide weak support for the reuse of designs (e.g. no
constraints and rationale) and little support for early evaluation (e.g. rate monotonic analysis
[Klein93]). However, some ADLs are based on object-oriented notations.

2 ADL Descriptive Model Framework

2.1 Organizing the framework

Since the list of ADL descriptive attributes is quite long, it was important to establish an
organizing frameworkthat would serve two purposes. First, it would help searchers locate particu-
lar attribute in the framework quickly by limiting attention to relevant sections only. Second, dur-
ing creation of the feature list, it would suggest inclusion of other attributes that might otherwise
be forgotten.

We borrowed the high-level organizing framework of a previous language taxonomy study
[Clements92]. As a result, our attributes each reside in one of three sections:

CASE environments/tools

Architecture
description
languages

Programming languages
Requirement

languages
specification

module

Data flow diagrams
State machine formalisms
Formal languages

Graphical tools
Analysis tools
Code generators

Architecture-level abstractions
Architecture refinement/analysis tools

Constraints/rationale/variability knowledge

interconnection
languages

5

• System-riented attributes are attributes related to the application system derived from the
software architecture that was encoded in the ADL. While all are attributes of the end
system, they reflect the ability of the ADL to produce such a system.

• Language oriented attributes are attributes of the ADL itself, independent of the
system(s) it is being used to develop. These attributes include the kind of information
usually found in a language reference manual, if one exists.

• Process-oriented attributes are attributes of a process for using an ADL to create,
validate, analyze, and refine an architecture description, and build an application system.
Included are attributes that measure or describe how or to what extent an ADL allows
predictive evaluation of the application system with respect to that attribute. They are
related to the semantics of the language that support analysis, evaluation, and verification
of the architecture [Vestal93]. These attributes assert that the ADL contains enough
information to allow analysis of an architecture, whether or not tools actually exist that
exploit the capability.

• In addition, the framework provides a place for existing tools to be described. For
example, a language may allow enough timing information to be given to support
schedulability analysis; a rate monotonic analysis schedule analyzer (if it exists for the
language) would be an example of a tool that exploits such information.The analysis
areas are drawn primarily from IEEE Std 1061, “Software Quality Metrics
Methodology.” Many of these attributes are not addressed by any existing ADLs.

Some overlap between these categories is unavoidable. For example; a particular ADL
might have the linguistic feature of expressing timing deadlines, which facilitates the development
of real-time systems and supports analysis of schedulesas part of the development process. How-
ever, we have found that the overall framework is beneficial and that some of the inherent ambi-
guity between attribute categories actually resolved itself at lower levels.

2.2 Using the framework to characterize an ADL

The descriptive model is a framework for characterizing an individual ADL. It describes a
hierarchy of attributes that define important features of an ADL. A set of ADLs characterized in
this framework can then be compared.

The descriptive model is given in the form of a questionnaire to be filled out a particular
ADL. Each question comes with a specific answer scale. The questionnaire provides space for the
answer to be given, justification for it to be provided, plus a free-form notes section where the re-
spondent may elaborate his or her answers. Justification and notes sections are not shown in the
examples (e.g., citing specific language freatures) for space considerations.

At this point, many framework questions are highly subjective. Some questions are of the
form, “Does this ADL provide a high, medium, or minimal amount of support for a particular ca-
pability.” The answer, of course, is in the eye of the beholder, and we hope that our preliminary
round of ADL characterizations will provide insight into ways to make these questions less ambig-
uous.

6

2.3 System-oriented attributes

System-oriented attributes characterize an ADL by enumerating the types of systems for
which they are especially applicable, or, which they were intended to support. We characterize a
system by its predominant architectural style (in the sense of [Garlan93]), its broad taxonomic cat-
egory such as real-time or distributed, and its application domain. Figure 3 illustrates the questions
used to elicit system-oriented attributes with respect to the architecture style(s) supported by an
ADL.

Figure 3: Example of system-oriented attributes. This attribute assesses the ADL’s ability to rep-
resent specific architectural styles.

2.4 Language-oriented attributes

The choice of language-oriented attributes was influenced by earlier related work [Shaw93]
[Webster88]. Language-oriented attributes are divided into the following categories:

Language definition quality: How formally are the syntax and semantics of the language
defined? Are there built-in (or user-defined) rules for completeness and consistency of an architec-
ture description rendered in the language? Is the notion of consistency defined between two sepa-
rate architecture descriptions? Does the language tolerate (allow useful operations on) incomplete
descriptions?

Expressive power of language: Does the language offer powerful architecture-level prim-
itives? Is it extensible, in the sense of adding new statements to the language? How does it describe
architectural components and connectors? What abstractions does the language support or pro-

Architecture style: How well does the ADL allow description of
architectural styles, such as those enumerated in [Garlan93]? An
architectural style is a family of architectures constrained by component/
connector vocabulary, topology, and semantic constraints.

Pipes and filters: linked stream transformers
Main program and subroutines: traditional functional decomposition
Layered: structured layers with well-defined interfaces, and restrictions on

cross-layer invocation
Object oriented: abstract data types with inheritance
Communicating processes: synchronous or asynchronous message-pass-

ing, including client-server and peer-peer
Event system: implicit invocation
Transactional database system: central data repository, query driven
Blackboard: central shared representation, opportunistic execution
Interpreter: input driven state machine
Rule based
Heterogeneous styles
Other styles (specify which)

7

vide? How much nonarchitecture information (requirements, low-level design, code, test plans,
etc.) can be expressed in the language? How well does the ADL support different views of the ar-
chitecture (e.g., syntactic and semantic) which highlight different aspects or perspectives? (Exam-
ples of syntactic views are text and graphical diagrams. Semantic views include data flow, control
flow, or state transition diagrams.) Does the language support automatic translation between
views?

Readability: To what extent does the ADL support embedding comments? To what extent
does the architect have control over the presentation (e.g., layout) of the architectural information?

Characteristics of intended users: Can a domain engineer use the ADL? An application
engineer? A software manager? What level of knowledge is required?

Modifiability of software architecture description: Does the ADL support modularity?
Are effects of change localized or highly distributed? Can descriptions rendered in the ADL be
scaled up to represent large, complex systems? Does the language support multiple instantiation of
components or connectors or subsystems? If so, is the instantiation static or parameterized? Can
descriptions be scaled down to represent coherent subsets of the system being described? What lan-
guage features exist to support these abilities?

Variability: How well does the ADL represent the variations in the application systems
that can be derived from an architecture? (This attribute is illustrated in Figure 4.) The respondent
would be asked to cite specific language features to justify his or her response.

Figure 4: Sample question eliciting an ADL’s language-oriented attribute dealing with support of

Variability: How well does the ADL represent the variations in the
application systems that can be derived from an architecture? Answer:

H = the variability is supported without having to change any but the replaced entities
themselves
M = the variability is supported without having to change any but the replaced entities
and those with which they directly interact
L = the user has to make many non-local changes to express variability

Supports structural variability: adding or deleting components, or adding
or deleting connections between existing components, or replacing com-
ponents or connections with new ones of a different type. (H M L)

Supports component variability: replacing a component with one that has
a different functional interface or connection protocol. (H M L)

Supports component instance variability: replacing a component with one
that has the same functional interface and connection protocol. (H M L)

Supports component inclusion variability: representing variations in the
exclusion or inclusion of components in a single architecture description,
such as explicitly marking them as optional, or allowing the specification of
alternative components. (H M L)

8

architecture variability

2.5 Process-oriented attributes

We have up to now ignored the distinction between a language and any tools or environ-
mental infrastructure to support it. The likelihood that anyone would adopt a language but eschew
all tool support for it, presumably preferring to write his own or proceed manually, is quite small.
Process-oriented attributes exist to explicitly describe the reasoning ability provided by the lan-
guage, and the tool support available to exploit that ability.

For each process step, an ADL is characterized by whether or not the language carries
enough information in it to execute that step and, if so, whether tools exist (that are specific to the
ADL, as opposed to general-purpose operating system utilities) that automate (completely or par-
tially) that step. Respondents are asked to describe the tool and, where appropriate asked to tell
whether the tool relies on simulation or analysis.

Process-oriented attributes assess whether or not the language and its associated infrastruc-
ture provide support for

Architecture creation: Is there a textual editor and graphical editor? Is importation of an
architecture description allowed? If so, what native forms are supported?

Architecture validation: Is there a syntax checker (parser)? Is there a semantics checker?
Is there a completeness and consistency checker?

Architecture refinement: Is there a browser or a search tool? Is there interactive support
for incrementally constraining design alternatives (refinement)? Is version control supported? Can
two representations be compared to see if they represent the same architecture?

Architecture analysis: Can the architecture be analyzed for time and resource economy
(e.g., schedulability, throughput, memory utilization)? Can it be analyzed for functionality (e.g.
completeness, correctness, security, interoperability)? Can it be analyzed for maintainability (e.g.,
expandability, correctability)? Can it be analyzed for portability (e.g., independence from hard-
ware or software environments)? Can it be analyzed for reliability or usability?

9

Application building: What support is provided for building a compilable (or executable)
software system from a specific system design?

Figure 5: Sample question eliciting process-oriented attribute dealing with an ADL’s support for
application building

3 Conclusions and Issues

The descriptive model framework appears to be feasible and reasonably comprehensive
based on applying it to a few ADLs so far. Significant refinement of the fine-grained attributes is
expected based on descriptive modeling of more ADLs. The descriptive model appears as though
it will provide an adequate basis for choosing and tailoring existing ADLs for a particular domain
or project and identifying weak areas in existing ADLs that require further research.

One main issue that has been encountered is subjectivity in determining a value for an at-
tribute. The goal is to reduce subjectivity as much as possible but retain subjective information
when it is deemed useful. Many attributes allow values of high, medium, low. The meaning of
these values are explained in the context of the specific attribute. Free text notes are permitted to
record useful subjective information.

Fine-grained attributes that measure or describe how or to what extent an ADL allows pre-
dictive evaluation of the application system with respect to that attribute are included under the
process-oriented attributes dealing with refinement and analysis. In some cases, such as “time
economy/schedulability,” it is clear that the value is yes when a tool such as rate monotonic anal-
ysis is supported by the ADL. In other cases, such as “reliability,” it is not so clear how an ADL
could explicitly support this predictive evaluation capability. This area is still an open issue al-
though the investigation may lead to new proposed predictive evaluation capabilities for ADL
tools.

Constraint, rationale, and variability information are important for software architecture.-
However, the classification and description of this type of information is immature. Therefore, en-
hancements to the framework are likely in this area.

What support is provided for building a compilable (or executable)
software system from a specific system design?

System composition: the composition or integration of components for:

Single processor target
Distributed system with homogeneous processors and operating systems
Components written in more than one programming language
Distributed system with more than one variety of processors and/or operating
systems

Application generation support

Component code generation
Wrapper code generation
Test case generation
Documentation generation

10

Another issue is the interrelationships between these attributes. For example, will more for-
mal semantics make the ADL more applicable to a real-time systems domain? To make the de-
scriptive model more complete and less subjective, there are plans to add important relations
between attributes, as well as to apply the languages to predefined scenarios involving a variety of
application areas and development activities.

Acknowledgments

The CARDS Program is sponsored by the U. S. Air Force. The Software Engineering In-
stitute is sponsored the U. S. Department of Defense.

References

[Binns93] Pam Binns, Matt Englehart, Mike Jackson, and Steve Vestal. “Domain-Specif-
ic Software Architectures for Guidance, Navigation, and Control,” Honeywell
Technology Center, 1993.

[Clements 92] Clements, P.,Gasarch, C., Jeffords, R. Evaluation Criteria for Real-Time Spec-
ification Languages Naval Research Laboratory Memorandum Report 6935
February 1992

[D’Ippolito89] D’Ippolito, R.“Using Models in Software Engineering” Proceedings of Tri-
Ada 89 ACM

[Garlan93] Garlan, David; and Shaw, Mary. An Introduction to Software Architecture.
(CMU/SEI-93-TR-33). Pittsburgh, Pa.: Software Engineering Institute, Carn-
egie Mellon University, December 1993. Also in Ambriola, V.; and Tortora, G.
(eds.), Advances in Software Engineering and Knowledge Engineering, Vol-
ume I. Singapore: World Scientific Publishing, 1993.

[Liu87] Liu, McGee, Epperley “Recent Developments in Chemical Process and Plant
Design” Wiley 1987

[Klein93] Klein, Ralya, Pollak, Obenza, González, Harbour “Practitioner’s Handbook for
Real-Time Analysis, A Guide to Rate Monotonic Analysis for Real-Time Sys-
tems” Kluwer 1993

[Krutchen94] Krutchen, Thompson “An Object-Oriented, Distributed Architecture for Large
Scale Ada Systems” Proceedings of Tri-Ada 94 ACM November 1994

[Luckham93] David C. Luckham, John J. Kenney, Larry M. Augustin, James Vera, Doug
Bryan, Walter Mann. “Specification and Analysis of System Architecture Us-
ing Rapide” Stanford technical report 1993

[Shaw90] Shaw, M. “Prospects for an Engineering Discipline of Software” IEEE Soft-
ware Nov. 1990

11

[Shaw93] Shaw, M., Garlan, D. “Characteristics of Higher-Level Languages for Software
Architecture” unpublished manuscript 1993

[Shaw94] Shaw, DeLine, Klein, Ross, Young, Zelesnik “Abstractions for Software Ar-
chitectures and Tools to Support Them” unpublished report Feb. 1994

[Shaw95] Shaw, Mary; and Garlan, David “Software Architecture: Perspectives on an
Emerging Discipline” Prentice Hall. 1995

[Terry94] Terry, Hayes-Roth, Erman, Coleman, Devito, Papanagopoulos, Hayes-Roth,
“Overview of Teknowledge’s DSSA Program” ACM SIGSOFT Software En-
gineering Notes October 1994

[Tracz93] Will Tracz, “LILEANNA: A Parameterized Programming Language”, Pro-
ceedings of the 2nd International Workshop on Software Reuse, March 1993

[Vestal93] Vestal, S. A Cursory Overview and Comparison of Four Architectural De-
scription Languages informal technical report Feb. 1993

[Webster88] Webster, D. “Mapping the Design Information Representation Terrain” IEEE
Computer December 1988

12

Presentation Summary

Presenters: Paul Kogut, Paul Clements

Title: Feature Analysis of Software Architecture Description Languages

Software architecture description languages (ADLs) represent a keystone technology in the
paradigm shift towards domain engineering and product-line development, and away from pro-
gramming and one-at-a-time development. There are many existing and emerging ADLs, and
many specification languages that have ADL-like properties. A domain analysis was performed on
the realm of ADLs. Features were identified that describe each ADL, the products produced by us-
ing the ADL, and the processes used to employ the ADL to develop systems. The purpose of the
work is to aid a developer who may be considering using a ADL in his or her work in selecting a
ADL appropriate to the architecting task at hand. An additional intent is to provide a framework
that ADL designers may reference to understand which areas are important and may not be cur-
rently well supported by any existing ADL.

13

Paul Kogut

Paul Kogut works in Unisys Government Systems Advanced Programs at the Valley Forge
Engineering Center. Kogut has worked on the Comprehensive Approach to Reusable Defense
Software (CARDS) Program, which is supported by the Air Force Electronic Systems Command,
since 1992. CARDS is a “virtual company” made up of several companies based in Fairmont, West
Virginia and managed by Unisys. He has done domain modeling for the CARDS Command Center
Library, a model-based, architecture-centric reuse library. Kogut also codeveloped a half-day
CARDS tutorial on software architecture and reuse. As an SEI resident affiliate, he was a member
of the Application of Software Models Project. His primary responsibility was to work on the SEI
Software Architecture Technical Initiative (SATI), which draws on staff from several SEI projects.
From 1983 to 1989, Paul worked for the Army Communications and Electronics Command at Fort
Monmouth on a variety of software development and software engineering research projects.

Kogut has a BS in chemical engineering from Drexel University and an MS in computer
science from Fairleigh Dickinson University. He is a PhD candidate in computer science at Lehigh
University. His dissertation is in the area of acquiring lexical semantic knowledge for natural lan-
guage processing systems.

 Paul Kogut
Unisys Government Systems

70 E. Swedesford Road
Paoli, PA 19301 USA
Phone: (610) 648-2015
FAX: (610) 648-2288

kogut@vfl.paramax.com

Paul Clements

Paul Clements is head of the Software Architecture Technology Project the Software En-
gineering Institute. This project is investigating best practices in the representation, evaluation,
analysis, and creation of software architectures. Prior to coming to the SEI, he was with the U. S.
Naval Research Laboratory in Washington for 14 years where he conducted research in software
engineering of real-time embedded computer systems. He received his BS and MS degrees from
the University of North Carolina at Chapel Hill, and his PhD from the University of Texas at Aus-
tin. He has authored many papers in the field, perhaps the best known of which is “A Rational De-
sign Process: How and Why to Fake It,” with David Parnas.

Paul Clements
Software Engineering Institute / Carnegie Mellon University

Pittsburgh, PA 15213 USA
Phone: (412) 268-8243
FAX: (412) 268-5758
clements@sei.cmu.edu

