Software Engineering Institute

Performance of Compiler-Assisted
Memory Safety Checking

David Keaton
Robert C. Seacord

August 2014 (Updated November 2014)

TECHNICAL NOTE
CMU/SEI-2014-TN-014

CERT Division

http://www.sei.cmu.edu

Carnegie Mellon University

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

References herein to any specific commercial product, process, or service by trade name, trade mark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by Carnegie Mellon University or its Software Engineering Institute.

This report was prepared for the

SEI Administrative Agent
AFLCMC/PZM

20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON
UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE
OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK,
OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted be-
low.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distrib-
uted in written or electronic form without requesting formal permission. Permission is required for any
other external and/or commercial use. Requests for permission should be directed to the Software En-
gineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®and CERT® are registered marks of Carnegie Mellon University.

DM-0001495

Table of Contents

Abstract

1 Introduction

2 Background
2.1 Definitions
2.2 Valid Objects
2.3 Intended Referent via Object Tables
2.4 Intended Referent via Pointer Tables
2.5 Thread Safety

3 Methodology
3.1 Initial Performance
3.2 Performance Enhancements
3.3 Performance Characteristics
3.4 Thread Safety

4 Results
4.1 Initial Performance
4.2 Performance Enhancements
4.3 Performance Characteristics
4.4 Thread Safety

5 Related Work

6 Future Work

7 Conclusion

References/Bibliography

vii

N OO WNNDN

= = 00 00 o

_

12
12
12
13
14

15
16
17

19

CMU/SEI-2014-TN-014 | i

CMU/SEI-2014-TN-014 | ii

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Object Table Organization 3
Pointer Table Organization 6
LLVM Code Showing the Effect of Hoisting a Bounds Check Out of a Loop 9
SoftBound Slowdown 13

CMU/SEI-2014-TN-014 | ifi

CMU/SEI-2014-TN-014 | iv

List of Tables

Table 1: Baseline Slowdowns for SAFECode and SoftBound 12

Table 2: Slowdown of SAFECode and Softbound Metadata Maintenance and Propagation Only,
Without Bounds Checks 13

Table 3: Profile of Top 15 Functions when Running 464.h264ref with SoftBound Metadata
Bookkeeping Only 14

CMU/SEI-2014-TN-014 | v

CMU/SEI-2014-TN-014 | vi

Abstract

Buffer overflows affect a large installed base of C code. This technical note describes the criteria
for deploying a compiler-based memory safety checking tool and the performance that can be
achieved with two such tools whose source code is freely available. The note then describes a
modification to the LLVM compiler to enable hoisting bounds checks from loops and functions.
This proof-of-concept prototype has been used to demonstrate how these optimizations can be
performed reliably on bounds checks to improve their performance. However, the performance of
bounds propagation is the dominant cost, and the overall runtime cost for bounds checking for C
remains expensive, even after these optimizations are applied. Nevertheless, optimized bounds
checks are adequate for non-performance-critical applications, and improvements in processor
technology may allow optimized bounds checking to be used with performance-critical applica-
tions.

CMU/SEI-2014-TN-014 | vii

CMU/SEI-2014-TN-014 | viii

1 Introduction

Buffer overflow is the leading cause of software security vulnerabilities. It is responsible for 14%
of all vulnerabilities and 35% of critical vulnerabilities (Common Vulnerability Scoring System
score of 10) over the past 25 years, as reported by Sourcefire [Younan 2013].

The C programming language provides a powerful set of low-level systems programming features
to software developers, which, if misused, can result in buffer overflows. Features such as pointer
arithmetic, pointers that can point to a location other than the beginning of an object, and the defi-
nition of array accesses as pointer dereferences make it difficult to determine if a memory access
is in bounds.

As of November 2014, the TIOBE index shows C as the most popular language with 17.5% of the
market. Because of its simplicity and transparent performance, C is still heavily relied upon by
embedded systems, network stacks, networked applications, and high-performance computing.
Embedded systems can be especially vulnerable to buffer overflows because many of them lack
hardware memory management units. Network software is frequently stressed both by heavy use
in unpredictable environments and by attacks.

For greenfield software development projects (developed without constraints from previous sys-
tems), it may be practical to mandate a language subset or annotations, or to specify a different
language altogether. However, because most development efforts are extensions or modifications
of existing code, it is necessary to find a solution to eliminating buffer overflows that can work
with legacy code.

This necessity introduces additional constraints, for example, that the mechanism should not re-
quire changes to the source code. Because developers often do not have control over the complete
system on which an application will run, application binary interface (ABI) compatibility should
also be maintained. Finally, for the same reason, it should be possible to link checked code with
unchecked binary libraries for which the source code might not be available.

We measured the performance of two memory safety checkers that meet these criteria and added
an optimization that improved performance. In this technical note, we present the results and pro-
vide insight into some of the determining factors of memory checking performance.

Section 2 provides background, and Section 3 explains how we obtained our results. Results are
presented in Section 4. Section 4.4 describes some related work, and Section 6 discusses future
work. We conclude in Section 7.

CMU/SEI-2014-TN-014 | 1

2 Background

2.1 Definitions

When assigning a value to a pointer in C, the software developer has in mind a particular object to
which the pointer should point, the infended referent. A memory access error occurs when an ac-
cess through a pointer strays outside the bounds of the intended referent for that pointer. Because
array accesses are pointer dereferences in C, the same failure mechanism also applies to arrays.

Spatial errors involve accessing an address outside the range of the intended referent. For exam-
ple, an array index may be calculated using an incorrect formula, and as a result, accesses can oc-
cur outside the intended array. This can result in accessing unused memory or an object other than
the one intended. A spatial error may result when a pointer contains an out-of-range value, or
when the pointer’s value is in range but the length of the access extends beyond the end of the in-
tended referent.

Temporal errors result from attempting to access an object after the end of its lifetime. For exam-
ple, a pointer to a stack object may be stored in the heap. If the function invocation containing the
object returns and another function is called, dereferencing the pointer could access unused stack

memory or an address within the new function’s activation record. Any pointer that has a lifetime
that extends outside the lifetime of its intended referent is a potential source of temporal errors.

Sometimes it is convenient to think of a pointer as pointing to an address. By this we mean that
the value contained in the pointer is that address.

2.2 Valid Objects

Compiler-based memory error detection is more likely than other methods to have the information
to track the intended referent. However, not all compiler-based strategies do so. One memory
checking strategy is to maintain a runtime map of addresses where valid objects reside. The com-
piler instruments each pointer dereference to check that a valid address is being accessed.

A map of valid addresses could be as simple as a data structure containing address ranges for the
stack, heap, and static data. This approach can catch some wild pointers but is imprecise because
it allows accesses to bookkeeping information within the stack and heap in addition to program
objects.

To increase precision, the compiler could generate code to build a table containing an entry for
each valid object that might be accessed through a pointer. Statically allocated objects could be
entered into the table at compile time, at link time, or at runtime before main executes. Heap allo-
cation and deallocation routines could manage the entries for heap-based objects, and entries for
stack-based objects could be managed by instrumentation that the compiler would add to the gen-
erated code.

Mudflap, which was built into versions of the GNU Compiler Collection (GCC) prior to 4.9, is an
example of a memory-error detection mechanism that functions in this manner [Eigler 2003]. The

CMU/SEI-2014-TN-014 | 2

compiler instruments the code to register and unregister objects in an object database, which is
implemented as a binary tree constructed at runtime.

AddressSanitizer, which is built into GCC and Clang, works in a similar fashion but implements
the object database using a compressed shadow memory [Serebryany 2012]. Each location in pro-
gram memory has a corresponding entry in shadow memory indicating whether or not that loca-
tion contains a valid object. This mechanism does not require that the object table provide infor-
mation about the beginning and end of each object. When an object is created, all the bytes it
contains are marked valid, and when an object is destroyed, all its bytes are marked invalid.

These types of tools provide useful information and can catch many memory error conditions
such as array accesses walking linearly off the end of an array. However, they may have false
negatives because they track whether a memory address is within any valid object rather than
tracking whether it is within the intended referent of the pointer being dereferenced.

2.3 Intended Referent via Object Tables

One memory safety checking method that tracks the intended referent begins with maintaining a
table of valid objects. As with the mechanism discussed previously, the compiler instruments the
code to check pointer dereferences against the object table. However, in this case, the object table
must keep track of the beginning and end of each object.

Figure 1 illustrates object table organization. The table is indexed by the address range of an ob-
ject. The address contained in a pointer is used as the lookup key to find a match to an object’s ad-
dress range, and the table lookup yields the base and limit addresses of the object. Alternatively,
an object table could contain the base address and the size of the object.

Addresses Memory Object's Object Table

address range
used as index

» Obj base addr
Obj limit addr

4007

Object

4000

Figure 1: Object Table Organization

Pointer arithmetic may result in an address that is outside the intended referent but falls within an-
other valid object described in the object table. Dereferencing the result will appear to be valid if
the intended referent is not tracked. Therefore, to avoid false negatives, there must be some assur-
ance that no pointer strays outside the bounds of its intended referent. To accomplish this, the
code is instrumented to ensure that the result of a pointer arithmetic operation refers to the same
object to which the original pointer referred before the arithmetic took place. For example, con-
sider the following code containing pointer arithmetic.

int *p, *qg;

VA
q=p+ 1;

CMU/SEI-2014-TN-014 | 3

The instrumented code looks up the address contained in p in the object table to determine which
object it designates. The base and limit of that object are then compared against the result of the
expression p + 1 to determine if the new pointer value is still within the same object.

If p points within an object but p + 1 does not point within the same object, an invalid address
has been generated. If p does not point within any known object, then it may point to an un-
checked object. This could occur if the object originated from an unchecked binary library. This is
a source of unsoundness, but checked and unchecked objects can at least be distinguished from
each other. In this case, p + 1 also must not point within any known object; otherwise an invalid
address has been generated.

When the results of the pointer arithmetic are known to have exceeded the bounds of the intended
referent, either by straying outside of the original known object or by wandering into a known ob-
ject from an unchecked location, the expression returns a special value indicating that the address
is invalid. If the pointer is dereferenced later, the dereference check will notice the invalid pointer
and report an error.

This mechanism does not protect against an uninitialized pointer, which may accidentally point
within a known object or may point to an unchecked object. Combining this method with other
techniques, such as initializing to zero each pointer that lacks an initializer, can eliminate this
problem.

The C programming language is somewhat unique in that a C program is allowed to compute the
next address past the end of an object as long as it does not attempt to dereference that address. As
a result, when checking pointer arithmetic, this method must allow the computation of the address
one past the end of an object. When checking dereferences, one past the end is invalid.

This memory safety checking method was introduced by Jones and Kelly [Jones 1997]. It origi-
nally added padding to each object so that the address one past the end was not part of any other
object, which required special workarounds for function parameters to avoid breaking the ABI. In
the Jones and Kelly method, once a pointer strays outside the bounds of an object, it is “stuck™ at
the value that indicates it is invalid.

Ruwase and Lam refined the process by creating a new descriptor for each out-of-bounds (OOB)
pointer value [Ruwase 2004]. They called the descriptor an OOB object. It contains the result of
the offending pointer arithmetic and identifies the object to which it is intended to refer. The ad-
dress of the OOB object is then stored in the pointer where it is available for checking during fu-
ture pointer arithmetic and dereferences. An advantage of this approach is that it can handle real-
world code that calculates an address in stages, where an intermediate stage might be out of
bounds but the final result is in bounds. Although this is undefined behavior in C and is also a vio-
lation of The CERT C Coding Standard rule “ARR30-C. Do not form or use out-of-bounds point-
ers or array subscripts” [Seacord 2014], Ruwase and Lam discovered such operations in enough
actual code that they found it useful to allow them. A disadvantage of this approach is that if a
pointer containing the address of an OOB object is passed to unchecked code, the unchecked code
may store through that pointer, which would damage the metadata contained in the OOB object
itself and therefore compromise the memory safety checking mechanism.

CMU/SEI-2014-TN-014 | 4

Dhurjati and Adve added several optimizations [Dhurjati 2006a]. One of their changes was to set
an out-of-bounds pointer to an inaccessible address that would trap when dereferenced instead of
using the address of the OOB object. They attempted to use this technique to eliminate checks on
dereferences, because the trap would do the work for them. Unfortunately, this scheme fails to de-
tect buffer overflows that occur as a result of a misaligned pointer that points to a location near
the end of the buffer. In these cases, the beginning of the access is in bounds, but the end is out of
bounds. The misalignment might be accidental or intentional. For example, intentional misalign-
ment occurs when networking code packs data items to reduce packet size and to exchange infor-
mation portably among systems with different ABIs. Some processors are unable to perform mis-
aligned accesses, and in those cases the software must perform the packing and unpacking
explicitly. On processors that can access misaligned data directly, the software may make use of
that hardware facility for performance. On such processors, using trap values for out-of-bounds
addresses does not eliminate the need for dereference checks. However, it is still advantageous to
implement OOB pointer values as trapping addresses, even if dereferences are checked, because
then passing an OOB pointer to unchecked code will lead to a trap rather than overwriting the
metadata.

The Dhurjati and Adve approach was implemented in SAFECode [Dhurjati 2006b]. A second ver-
sion of SAFECode, which adds dereference checks, is available for use with recent versions of the
Clang compiler. This second version of SAFECode was selected as one of the memory safety
checkers examined in this study.

Plum and Keaton presented additional work along these lines which included caching the base
and bounds of the intended referent for certain kinds of pointers, as well as a static analysis
method to optimize away some of the checks [Plum 2005]. The work presented in this technical
note adapted part of the analysis as described in Section 3.2.

2.4 Intended Referent via Pointer Tables

Another method for tracking the intended referent is to associate the bounds information with
each pointer rather than with each object. When a pointer is dereferenced, it is compared against
its bounds to determine if the memory access is valid.

Bounds information could be associated with pointers by increasing the size of a pointer to in-
clude its current value, base address, and limit address or size. However, doing so would change
the ABI and would therefore be impractical if the application developer does not have control
over the complete environment. In addition, a large amount of software is written with hard-coded
dependencies on the sizes of pointers and other objects.

A solution is to maintain a table with an entry for each pointer and store the bounds of the in-
tended referent in the table. Figure 2 illustrates pointer table organization. The address of the
pointer, rather than the value contained in the pointer, is the lookup key that is used to find the
base and limit addresses of the intended referent.

CMU/SEI-2014-TN-014 | 5

Addresses Memory Pointer Table

Pointer's
location used
as index
. Obj b: dd
Object 1201 0850 3CT

Obj limit addr

4000

2000

Figure 2: Pointer Table Organization

Pointer

When a pointer is located only in registers and is never written to memory, it does not have an ad-
dress to use as a key for pointer table lookups. In that case, the compiler could allocate memory
space for the pointer anyway, acting as if the pointer variable had its address taken, to generate an
address to use as a unique lookup key.

Alternatively, for pointers that are never stored in memory, the compiler can create additional lo-
cal variables to hold the base and limit, and avoid storing them in the pointer table. This decreases
the size of the table and reduces the number of lookups. Taking this approach a step further, even
if a pointer is sometimes written to memory, as long as its address is never taken so that all ac-
cesses to the pointer are clearly visible and unambiguous, the compiler can create a base and a
limit variable with the same storage duration as the pointer and avoid the pointer table.

Pointer assignments are instrumented to copy the bounds of the source pointer to the bounds of
the destination pointer. The following code illustrates an example.

int *p, *g;

VA

qg=p+1;
The expression on the right side of the equals sign is based on p. Therefore, when the value of the
expression is assigned to g, the bounds of p are also copied to the bounds of q.

Bounds must also be propagated across function calls. This can be performed in a variety of ways,
such as by adding extra parameters to checked functions to carry the base and limit of pointer ar-
guments or by storing the bounds in an alternate stack alongside the regular program stack.

In the object table method, pointer arithmetic is checked because the pointer’s value doubles as
both an address for a future dereference and an indicator of the intended referent (via its entry in
the object table, with the pointer value used as the lookup key). If a pointer calculation resulted in
an address outside the bounds of the intended referent, then without checks on pointer arithmetic,
the information about the intended referent would be lost. In contrast, with pointer tables, a
pointer’s value performs only one function, indicating the address for a future dereference. There
is one set of bounds per individual pointer rather than per object, so the information about the in-
tended referent is not lost even if a calculation results in an out-of-bounds pointer value. Conse-
quently, an advantage of the pointer table method is that pointer arithmetic does not need to be
checked.

CMU/SEI-2014-TN-014 | 6

Moreover, the pointer table method does not need to make any special accommodation for point-
ers that point one past the end of an object. Because only dereferences are checked, one past the
end is treated the same as any other address that is outside the object. Any attempt to dereference
an out-of-bounds address results in an error.

Another advantage of the pointer table method is that it can represent subobjects and suballoca-
tions. Consider the following structure.
struct {
char al[8];
int b;
}osi

Because the object table method associates the bounds with an object, there is one entry for the
object s in the table. The structure s and the array s.a are represented by the same entry, with
the bounds of s. The pointer table method associates the bounds with each pointer, so a pointer
that points to s.a can have tighter bounds than one pointing to s, reflecting the subobject. By
making appropriate annotations or intrinsic functions available, a pointer table system can also al-
low the software developer to narrow the bounds of a pointer explicitly to perform suballocations.

The pointer table approach was implemented by SoftBound+CETS (Compiler Enforced Temporal
Safety for C) [Nagarakatte 2009], which is available for Clang. It is bundled with SAFECode to
provide a choice of memory protection mechanisms in one package.

Unlike other approaches, SoftBound+CETS implements full temporal checking in addition to spa-
tial checking. For simplicity, we focused on spatial checking for our experiment, as implemented
by SoftBound without CETS. We performed our investigation using the latest version of Soft-
Bound as bundled with SAFECode.

2.5 Thread Safety

Two issues arise when performing memory safety checking on multithreaded code. First,
metadata describing shared objects must appear to be created and updated atomically. Otherwise,
the base and bounds might be updated while another thread is reading them, leading to an incon-
sistent set of values being read and used.

Second, in the pointer table method, a shared pointer must appear to be updated simultaneously
with its metadata. Otherwise, a thread might read the pointer and metadata while an update is oc-
curring. This could result in problems such as a newly updated pointer value being checked
against stale metadata, which would cause an incorrect bounds check.

In general, currently existing memory safety checking implementations that track the intended ref-
erent are not designed for thread safety. This includes both SAFECode and SoftBound.

CMU/SEI-2014-TN-014 | 7

3 Methodology

3.1 Initial Performance

As a first step, we evaluated the performance of the existing SAFECode and SoftBound imple-
mentations using publicly available source code. These results may vary from previous results due
to running in different environments and the possibility of modifications to the code occurring af-
ter any previous measurements. In addition, we made some changes to SAFECode and SoftBound
as described in this section.

We chose the following benchmarks from SPEC CPU2006 because they are written in C and
compile cleanly with Clang/LLVM version 3.2, the latest version for which both SAFECode and
SoftBound were available.

401.bzip2 433.milc
458.sjeng 470.1bm
464.h264ref

As distributed at the time of this study, SAFECode added the LLVM readonly and readnone
attributes to several of the checking functions to which it generated calls. However, at the time
that the function calls are examined by optimizations, the calls do not return any results that are
used elsewhere. Consequently, the calls to the checking functions were removed by the dead code
elimination passes of LLVM. We removed the attributes to ensure correct memory safety check-
ing before measuring the performance.

As distributed at the time of this study, SoftBound checked accesses to scalar objects, but it did
not check calls to built-in functions such as 11vm.memcpy, which access an array of objects. We
added support for checking all such LLVM MemIntrinsic calls before measuring the perfor-
mance.

All performance measurements were made at the —-03 optimization level.

3.2 Performance Enhancements
We made three changes to SoftBound to investigate their effects on performance.

First, we hoisted spatial memory access checks out of loops when the loop bounds were known on
entry. As an example, consider the following function.

#include <stddef.h>

void foo (int *a)
{
for (size t i = 0; i < 100; ++1i)
ali] = i;

CMU/SEI-2014-TN-014 | 8

Figure 3 shows the generated LLVM code, including the effect of hoisting the check of the store
to a[i] out of the loop. The optimization removes the struck-out text preceded by minus signs in
the figure and inserts the bold text preceded by plus signs. The beginning of the check is adjusted
to be the first element accessed (the beginning of array a), and the length of the check is adjusted
to include all accesses that will be performed by the loop (400 bytes), rather than checking each
iteration separately.

define void @foo(i32* nocapture %a) nounwind uwtable ssp {
entry:

%0 = tail call i8* @ softboundcets load base shadow stack(i32 1) noun-
wind

%1 = tail call i8* @ softboundcets load bound shadow stack(i32 1) noun-
wind
+ %$bitcast = bitcast i32* %a to i8%*
+ tail call void @__softboundcets_spatial_store dereference_check (i8* %0,
i8* %1, i8* %bitcast, i64 400) nounwind

br label %for.body

for.body: ; preds = $for.body,
sentry

%1.04 = phi i64 [0, %entry 1, [%inc, %for.body]

$conv = trunc i64 %$i.04 to 132

$arrayidx = getelementptr inbounds 132* %a, 164 %i.04

- S2hhi 4+ + — a4+ + 1 29% O r 24 + 1 Q%
oiteast biteast—+ rarrayiax—to—i
— £9i31l 211 odid A frbhoundaeat satial tor dereforonea cheel (19% on
caiscall id ftboundeets—spatial—storedereference—cheeck{s 7
1 Q% o1 1 Q% Ol~a 4+ + 14 AN Nnelintza ~ A
3 - Yhiteast;—i64—4) nounwind
store i32 %conv, i32* %arrayidx, align 4, !tbaa !0
%$inc = add 164 %i.04, 1
$exitcond = icmp eq 164 %inc, 100
br il %exitcond, label %for.end, label %$for.body
for.end: ; preds = $for.body

ret void

}
Figure 3: LLVM Code Showing the Effect of Hoisting a Bounds Check Out of a Loop

To prevent spurious error reports, with the check being executed and the offending access not ex-
ecuted, the check is hoisted only if it postdominates the first basic block inside the loop. It is pos-
sible to improve on this technique. For example, our implementation misses the opportunity to
hoist the checks in the following code fragment.

for (size t i = 0; i < 100; ++1i)
if (some condition)

al[i] = expressionl;
else
al[i] = expression2;

Second, we hoisted bounds checks out of a function and into its callers when we could see all
calls to the function, so that a bounds check will be executed somewhere (if necessary) if it is de-
leted from the original function. To see how this might be beneficial, consider the following pro-
gram.

CMU/SEI-2014-TN-014 | 9

#include <stdio.h>
#include <stdlib.h>

static void foo (unsigned char *a)
{
for (size t i = 0; i < 100; ++1i)
ali] = i;

}

int main (void)
{

unsigned char a[100];

foo(a);
for (size t i = 0; 1 < 100; ++1i)
printf (" %d", alil);

putchar('\n'");

return EXIT SUCCESS;
1

If the bounds check for the access to a[i] is first hoisted outside the loop in foo and then up to
main, it is now in a position where the size of array a is known. Because the length of the bounds
check is also known, it can be compared against the size of a to determine if the bounds check can
be eliminated entirely. This occurs in the case of the preceding program. If, after hoisting the
bounds check into the caller, there still is not enough information to eliminate the bounds check, it
is performed within the caller, in hopes that it can still be eliminated along other call paths to the
original function.

The mechanism used to accomplish this is to treat a bounds check in the called function as a pre-
condition for that function (called a requirement by Plum and Keaton [Plum 2005]), in this case
the precondition that the memory space pointed to by a is at least 400 bytes long. Then all require-
ments are checked at their call sites to see whether the bounds checks can be eliminated for that
call path or merely hoisted out of the called function.

Inlining can accomplish the same thing by effectively hoisting a bounds check into the calling
function, where there might be enough information to eliminate the check. Therefore, this mecha-
nism provides a benefit in cases where inlining is not performed, such as when the called function
is large.

SoftBound is implemented so that it operates on optimized code. First the optimizations are run,
then SoftBound is run, and then the optimizations are repeated in an attempt to improve any code
added by SoftBound. We found that unrolling loops thwarted some of our attempts to hoist
bounds checks. Fully unrolled loops contained a sequence of memory accesses in straight-line
code in place of one access within a loop. We therefore disabled loop unrolling. Alternative ap-
proaches would have been to disable it only for the first pass of optimizations or to write an addi-
tional optimization to combine the adjacent bounds checks that result from unrolling loops.

Our third change was to test the performance of bounds checks on stores only (to prevent arbitrary
code execution), or on strings only (because incorrect string management is a leading cause of
vulnerabilities), or only on stores to strings. Limiting the bounds checks in this way can provide
some insight into the tradeoff between security and performance.

CMU/SEI-2014-TN-014 | 10

3.3 Performance Characteristics

We also measured the performance of SAFECode and SoftBound with checking turned off, to dis-
cover the performance effect of the maintenance and propagation of metadata via the object table
maintained by SAFECode or the pointer table maintained by SoftBound. To accomplish this, we
disabled the portions of SAFECode that emit pointer arithmetic checks and bounds checks, and
we disabled the portions of SoftBound that emit bounds checks, leaving us with the bookkeeping
code only and thereby establishing a ceiling for the performance benefit of bounds check optimi-
zations.

3.4 Thread Safety

After performing performance measurements on the existing (uniprocessor) versions of SAFE-
Code and SoftBound, we modified SoftBound to be thread safe.

For function calls where pointers are passed as arguments, SoftBound propagates a pointer’s base
and bound metadata across the function call using a shadow stack, an alternate stack alongside the
regular program stack. The shadow stack is allocated globally. To make SoftBound’s function
call mechanism thread safe, it was sufficient to make the shadow stack thread local, with one copy
per thread, instead of global.

For pointers whose metadata are stored in the pointer table, a more elaborate scheme was needed.
A thread-local pointer table would not work because the pointers may be shared between threads.
In addition, contention between threads should be minimized, so a single mutual exclusion lock
on the entire pointer table would be counterproductive.

We solved these problems by implementing a one-writer/multiple-reader model on a per-pointer
basis. To write to a pointer’s metadata, a thread must wait for all other readers and writers to fin-
ish accessing that pointer’s metadata, and then set a lock to prevent further accesses by other
threads. The thread then updates the metadata and performs the pointer write (that is, a write to
the pointer itself rather than a dereference of that pointer), and finally unlocks the metadata so
other threads can proceed with their accesses.

To read a pointer’s metadata, a thread waits for all writers to finish accessing it, and then incre-
ments a count of readers that are accessing it. The thread then reads the metadata and performs
the pointer read, and finally decrements the count of readers for that pointer’s metadata.

CMU/SEI-2014-TN-014 | 11

4 Results

4.1 Initial Performance

Table 1 shows the baseline slowdown measured for SAFECode and SoftBound. Unless otherwise
specified, all slowdowns shown in this paper are measured relative to the Clang 3.2 compiler
without bounds checking. SAFECode performance was reduced on average by a factor of 34.82
times, and the average slowdown for SoftBound was 4.36 (that is, a program runs 4.36 times
slower with bounds checking than without it). It should be noted that SAFECode is in the process
of being rewritten. The current rewrite produced the second version of SAFECode, which was
used in this study, but work is still in progress and has so far focused on robustness and usability
rather than performance [Criswell 2011]. It is expected that performance can be improved sub-
stantially in the future. Until then, most of our performance analysis is best performed using Soft-
Bound.

Table 1: Baseline Slowdowns for SAFECode and SoftBound

SAFECode SoftBound
401.bzip2 32.17 3.45
458.sjeng 31.47 3.28
464.h264ref 60.54 7.95
433.milc 37.69 5.25
470.1bm 12.23 1.86
Average 34.82 4.36

4.2 Performance Enhancements

The first two bars of each group in Figure 4 show the slowdown for SoftBound plus hoisting
bounds checks out of loops, and hoisting out of both loops and functions.

As shown in the figure, hoisting bounds checks out of functions did not provide a measurable ben-
efit for our sample set. Our optimization found only three instances of bounds checks that could
be hoisted out of functions, which was not enough to impact performance.

This outcome is partly due to inlining having already done much of the work and partly a result of
performing the entire optimization at compile time. Plum and Keaton describe a method for per-
forming some of the work at link time when information about all functions is available at once
[Plum 2005].

The average slowdown of 3.68 shows that hoisting bounds checks out of loops provides a benefit
compared with the slowdown of 4.36 without the optimization. The remaining three bars show
the slowdown for performing bounds checks only on stores, only on strings, and only on stores to
strings, in addition to hoisting bounds checks out of loops and functions. All three of these cases
provide a performance benefit. The three are similar in magnitude, indicating that a useful tradeoff
between performance and security may be achieved by checking only stores, with an average
slowdown of 2.20. Security-focused applications would not be able to forego checking loads,
however, because information leaks such as the Heartbleed bug would not be detected.

CMU/SEI-2014-TN-014 | 12

m Hoist out of Loops

Hoist out of
Loops+Functions

B Check Only Stores

| I B Check Only Strings

O = N W R U o

AP S I S

QS
,\I‘é‘}Q Q}E;\‘“f ’b@(Q;,,S‘\\ ,\0\?" d?}'b% m Check Only Stores
W v“’h‘s‘ LA & to Strings

Figure 4: SoftBound Slowdown

4.3 Performance Characteristics

An average slowdown of 2.20 is reasonable for many situations but is too high for use in produc-
tion mode for performance-sensitive applications. We investigated the performance breakdown of
SAFECode and SoftBound to gain more insight into where time is spent. Table 2 shows the re-
sults of turning off checking to reveal the bookkeeping overhead.

Table 2: Slowdown of SAFECode and Softbound Metadata Maintenance and Propagation Only, With-
out Bounds Checks

SAFECode Metadata Only | SoftBound Metadata Only
401.bzip2 1.00 1.25
458.sjeng 417 1.23
464.h264ref 5.62 3.15
433.milc 1.01 1.88
470.lbm 1.00 0.97
Average 2.56 1.69

The most striking result in comparison with the initial performance measurements in Table 1 is
that SAFECode has similar bookkeeping overhead to SoftBound, with an average slowdown of
2.56 compared to SoftBound’s 1.69. In some cases, SAFECode’s bookkeeping overhead is too
small even to be measurable, which suggests that when the SAFECode project begins to focus on
performance, the most benefit will be gained by concentrating on pointer arithmetic checks and
bounds checks.

Another interesting result is that hoisting bounds checks out of loops and checking only stores,
which was shown to have a slowdown of 2.20 for SoftBound, is close to the slowdown of 1.69 for
bookkeeping alone. This result indicates that for SoftBound, the most attention should be paid to
improving the speed of metadata bookkeeping.

Table 3 is a profile of the benchmark with the most slowdown, 464.h264ref, running with Soft-
Bound’s metadata bookkeeping only. The top 15 functions are shown. It can be seen from the pro-
file that SoftBound’s shadow stack manipulation, its method for propagating bounds data across

CMU/SEI-2014-TN-014 | 13

function boundaries, takes 32.44% of the time in the benchmark. Metadata loads and stores take
another 16.33% of the time.

Table 3: Profile of Top 15 Functions when Running 464.h264ref with SoftBound Metadata Bookkeep-

ing Only
% of Function Name
Time
15.99 SetupFastFullPelSearch
13.36 __softboundcets metadata load
8.88 __softboundcets_allocate shadow_stack space
7.06 SubPelBlockMotionSearch
5.35 __softboundcets_store base shadow_stack
5.14 __softboundcets_load base_shadow_stack
4.98 __softboundcets_deallocate shadow_stack_space
4.27 __softboundcets_load_bound_ shadow_stack
4.05 FastPelY 14
3.82 __softboundcets_store bound shadow_stack
2.97 __softboundcets metadata store
2.95 FastFullPelBlockMotionSearch
2.74 FastLineléy 11
2.19 SATD
2.08 UMVLinel6Y 11

4.4 Thread Safety

Work with the thread-safe version of SoftBound is ongoing, but initial results indicate that the
slowdown of the thread-safe version over the uniprocessor version is approximately 1.01. That is,

the thread-safe version is only 1% slower than the uniprocessor version.

This additional slowdown is quite small, especially compared to the cost of bounds checking in
general. Given the fact that multithreaded code is becoming ubiquitous, this suggests that future
bounds checking efforts should be thread-safe by default.

CMU/SEI-2014-TN-014 | 14

5 Related Work

Rinard et al. [Rinard 2004] implemented an interesting extension to the Ruwase and Lam object-
table-based memory safety mechanism [Ruwase 2004]. Whenever a store is attempted through an
out-of-bounds pointer, they store the value in a hash table indexed by the intended referent and the
offending offset. If a read is later attempted at the same offset from the object, the value from the
hash table is returned. This has the effect of increasing the size of objects as necessary to accom-
modate all accesses to them. It introduces the possibility of a denial-of-service attack by poten-
tially filling up memory, but in return it not only eliminates buffer overflows but also allows the
program to continue functioning as intended rather than aborting upon an out-of-bounds access.

Intel has announced a set of future processor extensions called the Memory Protection Extensions
(MPX) [Intel 2013]. They are based on SoftBound’s pointer-table-based bookkeeping method.
MPX includes new bounds registers, along with new instructions to accelerate both metadata han-
dling and bounds checking. Because the bookkeeping overhead is addressed in addition to bounds
checks, there may be hope for future bounds checking that is fast enough for production mode in
performance-sensitive legacy applications.

For new code or sufficiently easy-to-convert legacy codebases, Ironclad C++ combines type-safe
language subsetting with bounds checks where necessary for impressive reductions in overhead
[DeLozier 2013].

CMU/SEI-2014-TN-014 | 15

6 Future Work

It would be valuable to explore performance gains on future Intel processors that include MPX
hardware assistance. If performance proves adequate, then buffer overflow checking could be left
in place during production mode. In that case, it might be useful to adapt the technique of Rinard
et al. to the pointer-table-based mechanism so that production mode applications could continue
running correctly even after out-of-bounds accesses.

We hoisted bounds checks across function boundaries at compile time but not at link time because
of difficulties integrating with LLVM’s link-time optimization mechanism. It would be interesting
to see if performing that optimization at link time would create a significant benefit, given that it
would be balanced against link-time inlining performing much of the work at that stage.

Thread safety does not imply asynchronous signal safety. A signal could occur during the critical
section of a metadata update by the same thread, and the signal handler would never reach a state
where the metadata became available for reading or writing. Future work on asynchronous-sig-
nal-safe bounds checking would be worthwhile.

CMU/SEI-2014-TN-014 | 16

7 Conclusion

Buffer overflow is still the most serious problem in software security. The C language is prone to
buffer overflows, but it provides benefits too compelling for some application areas to abandon it,
and the installed base of legacy C code is enormous. Mechanisms are therefore needed to provide
memory safety checking by tracking intended referents. For maximum benefit to legacy code,
such mechanisms should not require changes to source code or ABIs and should be able to check
some code while linking with unchecked binary libraries.

SAFECode and SoftBound both meet these criteria. It is useful to have an independent test of
their performance showing what is achievable by a user downloading the source code. We find
that this type of memory safety checking is expensive. We were able to improve performance by
hoisting bounds checks out of loops and checking only stores and not loads, and the result is use-
ful for many situations. However, the performance is still inadequate for use in production mode
on performance-sensitive applications. SAFECode would benefit most from work on its checking
overhead, and SoftBound would benefit most from work on its bookkeeping overhead, especially
shadow stack manipulation.

If Intel’s proposed new Memory Protection Extensions make it into actual hardware, there is hope
for substantial improvement in performance.

CMU/SEI-2014-TN-014 | 17

CMU/SEI-2014-TN-014 | 18

References/Bibliography

URLs are valid as of the publication date of this document.

[Criswell 2011]

Criswell, John. Huge overhead as a result of checks being not inlined [e-mail sent to the
SVADEYV mailing list], [online]. Available email: svadev@cs.uiuc.edu (December 2011).
http://lists.cs.uiuc.edu/pipermail/svadev/2011-December/000167.html

[DeLozier 2013]

DeLozier, Christian, Eisenberg, Richard A., Nagarakatte, Santosh, Osera, Peter-Michael, Martin,
Milo, & Zdancewic, Stephan A. Ironclad C++: A Library-Augmented Type-Safe Subset of C++
(MS-CIS-13-05). University of Pennsylvania CIS, 2013. http://repository.upenn.edu/cis_re-
ports/982/

[Dhurjati 2006a]

Dhurjati, Dinakar & Adve, Vikram. “Backwards-Compatible Array Bounds Checking for C with
Very Low Overhead,” 162—171. International Conference on Software Engineering 2006, ICSE
06°. Shanghai, China, May 2006. IEEE Computer Society, 2006.

[Dhurjati 2006b]

Dhurjati, Dinakar, Kowshik, Sumant & Adve, Vikram. “SAFECode: Enforcing Alias Analysis for
Weakly Typed Languages,” 144-157. PLDI 2006 - Proceedings of the 2006 ACM SIGPLAN
Conference on Programming Language Design and Implementation. Ottawa, ON, Canada, June
2006. ACM, 2006.

[Eigler 2003]

Eigler, Frank. “Mudflap: Pointer Use Checking for C/C++,” 57-70. Proceedings of the GCC De-
velopers’ Summit 2006. Ottawa, ON, Canada, June 2006. GNU Compiler Collection (GCC),
2006. https://gcc.gnu.org/wiki/HomePage?action=AttachFile&do=get&target=2003-GCC-
Summit-Proceedings.pdf

[Intel 2013]
Intel, RB. Introduction to Intel® Memory Protection Extensions. Intel, 2013. http://software.in-
tel.com/en-us/articles/introduction-to-intel-memory-protection-extensions

[Jones 1997]

Jones, Richard W. M. & Kelly, Paul H. J. “Backwards Compatible Bounds Checking for Arrays

and Pointers in C Programs,” 13-26. AADEBUG 97, Proceedings of the 3rd International Work-
shop of Automatic Debugging. Linkoping, Sweden, May 1997. Linkoping University Electronic

Press, 2007. http://www.ep.liu.se/ea/cis/1997/009/02/index.html

CMU/SEI-2014-TN-014 | 19

mailto:svadev@cs.uiuc.edu
http://lists.cs.uiuc.edu/pipermail/svadev/2011-December/000167.html
http://repository.upenn.edu/cis_reports/982/
http://repository.upenn.edu/cis_reports/982/
https://gcc.gnu.org/wiki/HomePage?action=AttachFile&do=get&target=2003-GCC-Summit-Proceedings.pdf
https://gcc.gnu.org/wiki/HomePage?action=AttachFile&do=get&target=2003-GCC-Summit-Proceedings.pdf
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://software.intel.com/en-us/articles/introduction-to-intel-memory-protection-extensions
http://www.ep.liu.se/ea/cis/1997/009/02/index.html

[Nagarakatte 2009]

Nagarakatte, Santosh, Zhao, Jianzhou, Martin, Milo M. K., & Zdancewic, Steve. “SoftBound:
Highly Compatible and Complete Spatial Memory Safety for C,” 245-258. PLDI’09 - Proceed-
ings of the 2009 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion (PLDI). Dublin, Ireland, June 2009. ACM, 20009.

[Plum 2005]

Plum, Thomas & Keaton, David. “Eliminating Buffer Overflows, Using the Compiler or a
Standalone Tool,” 75-81. Proceedings of Workshop on Software Security Assurance Tools, Tech-
niques, and Metrics (SSATTM "05): co-located with the Automated Software Engineering Confer-
ence 2005 (ASE °05). Long Beach, CA, November 2005. NIST, 2006.
http://hissa.nist.gov/~black/Papers/NIST%20SP%20500-265.pdf

[Rinard 2004]

Rinard, Martin, Cadar, Cristian, Dumitran, Daniel, Roy, Daniel M., & Leu, Tudor. “A Dynamic
Technique for Eliminating Buffer Overflow Vulnerabilities (and Other Memory Errors),” (82—
90). Proceedings - 20th Annual Computer Security Applications Conference (ACSAC). Tucson,
AZ, December 2004. IEEE Computer Society, 2004.

[Ruwase 2004]

Ruwase, Olatunji & Lam, Monica. “A Practical Dynamic Buffer Overflow Detector”

Network and Distributed System Security Symposium NDSS ‘04 (CD ROM). San Diego, CA, Feb-
ruary 2004. Internet Society, 2004. http://www.isoc.org/isoc/conferences/ndss/04/proceedings/

[Seacord 2014]
Seacord, Robert. The CERT® C Coding Standard: 98 Rules for Developing Safe, Reliable, and
Secure Systems, 2nd ed. Addison-Wesley Professional, 2014.

[Serebryany 2012]

Serebryany, Konstantin, Bruening, Derek, Potapenko, Alexander & Vyukov, Dmitriy. “Ad-
dressSanitizer: A Fast Address Sanity Checker,” 309-318. 2012 USENIX Annual Technical Con-
ference (USENIX ATC 12). Boston, MA, June 2012. University of Trier and Schloss Dagstuhl-
Leibniz Center for Informatics, 2012.
https://www.usenix.org/system/files/tech-schedule/atc12_proceedings 0.pdf

[Younan 2013]

Younan, Yves. “25 Years of Vulnerabilities: 1988—2012.” Sourcefire Vulnerability Research
Team, 2013.

http://vrt-blog.snort.org/2013/03/25-years-of-vulnerabilities-1988-2012.html

CMU/SEI-2014-TN-014 | 20

http://hissa.nist.gov/%7Eblack/Papers/NIST%20SP%20500-265.pdf
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7BCadar%2C+Cristian%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7BDumitran%2C+Daniel%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7BRoy%2C+Daniel+M.%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.engineeringvillage.com/search/results/quick.url?CID=quickSearchCitationFormat&searchWord1=%7BLeu%2C+Tudor%7D§ion1=AU&database=3&yearselect=yearrange&sort=yr
http://www.isoc.org/isoc/conferences/ndss/04/proceedings/
https://www.usenix.org/system/files/tech-schedule/atc12_proceedings_0.pdf
http://vrt-blog.snort.org/2013/03/25-years-of-vulnerabilities-1988-2012.html

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY 2. REPORTDATE 3. REPORT TYPE AND DATES

(Leave Blank) August 2014 (Updated November 2014) COVERED
Final

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Performance of Compiler-Assisted Memory Safety Checking FA8721-05-C-0003

6. AUTHOR(S)
David Keaton & Robert C. Seacord

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Software Engineering Institute REPORT NUMBER
Camegie Mellon University CMU/SEI-2014-TN-014
Pittsburgh, PA 15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AFLCMC/PZE/Hanscom AGENCY REPORT NUMBER
Enterprise Acquisition Division n/a
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13.

ABSTRACT (MAXIMUM 200 WORDS)

Buffer overflows affect a large installed base of C code. This technical note describes the criteria for deploying a compiler-based memory
safety checking tool and the performance that can be achieved with two such tools whose source code is freely available. The note then de-
scribes a modification to the LLVM compiler to enable hoisting bounds checks from loops and functions. This proof-of-concept prototype has
been used to demonstrate how these optimizations can be performed reliably on bounds checks to improve their performance. However, the
performance of bounds propagation is the dominant cost, and the overall runtime cost for bounds checking for C remains expensive, even
after these optimizations are applied. Nevertheless, optimized bounds checks are adequate for non-performance-critical applications, and
improvements in processor technology may allow optimized bounds checking to be used with performance-critical applications.

14. SUBJECT TERMS 15. NUMBER OF PAGES
buffer overflow; bounds checking 31

16. PRICE CODE

17. SECURITY CLASSIFICATION OF 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION | 20. LIMITATION OF
REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Abstract
	1 Introduction
	2 Background
	2.1 Definitions
	2.2 Valid Objects
	2.3 Intended Referent via Object Tables
	2.4 Intended Referent via Pointer Tables
	2.5 Thread Safety

	3 Methodology
	3.1 Initial Performance
	3.2 Performance Enhancements
	3.3 Performance Characteristics
	3.4 Thread Safety

	4 Results
	4.1 Initial Performance
	4.2 Performance Enhancements
	4.3 Performance Characteristics
	4.4 Thread Safety

	5 Related Work
	6 Future Work
	7 Conclusion
	References/Bibliography

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /None

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Error

 /CompatibilityLevel 1.4

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /CMYK

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness true

 /PreserveHalftoneInfo false

 /PreserveOPIComments true

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages true

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 300

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages true

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 300

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages true

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 1200

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>

 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>

 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>

 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>

 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>

 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>

 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>

 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>

 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>

 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>

 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>

 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>

 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)

 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>

 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>

 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>

 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>

 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>

 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>

 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)

 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>

 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>

 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>

 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>

 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>

 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>

 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>

 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>

 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>

 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>

 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>

 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /ConvertColors /ConvertToCMYK

 /DestinationProfileName ()

 /DestinationProfileSelector /DocumentCMYK

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks false

 /IncludeHyperlinks false

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles false

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /DocumentCMYK

 /PreserveEditing true

 /UntaggedCMYKHandling /LeaveUntagged

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

]

>> setdistillerparams

<<

 /HWResolution [72 72]

 /PageSize [612.000 792.000]

>> setpagedevice

