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Abstract: Why does a system exhibit the architecture that it does? What
influences affected the architectural decisions made by its designer(s)? We
hypothesize that these influences flow from the system’s requirements, the
organization’s culture and goals, and the designers’ experience and
background. We posit that the influences are at least partially enumerable, as
are the architectural decisions that they precipitate. This paper discusses the
approach taken in a pilot study to uncover the correlation, if any, between
architectural influences and architectural decisions in large-scale, software-
intensive development projects. We discuss the information extracted in the
context of a set of architectural case studies of systems including air traffic
control, shipboard fire control, military command centers, machine controllers,
database management systems, and flight simulators.

1. Introduction

The cat only grinned as Alice approached... “Cheshire-Puss,” she began, rather timidly...
“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to go to,” said the Cat.

-- Alice’s Adventures in Wonderland, by Lewis Carroll

1.1 Influences and decisions

Why does a system have the architecture that it has? Why do designers choose distributed object-ori-
ented architectures instead of centralized blackboard architectures? Why use event-broadcast-based im-
plicit invocation, rather than pipe-and-filter or direct invocation?

Clearly, an architecture is the summary result of a set of decisions. Architectural decisions include the
motivation and rationale for component selection, interconnection mechanisms, coordination mecha-
nisms, and the selection of architectural styles or idioms. Why was each decision made as it was? Why
wasn’t a new style, a different modularization, another interconnection mechanism chosen?

There are influences at work. An architect designing a hard-real-time system for which he believes the
deadlines will be very tight will make a particular set of choices. That same architect, designing for the
same system in which he believes the deadlines will be easily satisfiable, might make different choices.
And the same architect, designing a non-real-time system, is likely to make quite different choices still.
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This paper describes ongoing work at the Software Engineering Institute (SEI) that attempts to under-
stand the influences at work in the selection of an architecture, the component decisions that are made
to realize a particular architecture, and the relation between the influences and the decisions they pre-
cipitate. Our work is highly influenced by the vision of Garlan and Shaw, in which software architecture
is at the folklore stage of developing science, and is in the process of emerging into an engineering dis-
cipline in which the experience of others is put to practical use in new applications. If we can discover
correlations between architectural influences and architectural decisions, practitioners can reuse the
successful decisions of others with more hope of building satisfactory software systems.

We hypothesize the following:

• The architecture that a system exhibits is a function of a set of influencing factors.

• This set of influences is at least partially enumerable.

• The architecture that a system exhibits is the summary result of a set of component decisions
made by its architect(s).

• This set of decisions is at least partially enumerable.

• For an arbitrary system, a correlation exists between the enumerated influencing factors and
architectural decisions.

The last hypothesis is nontrivial. Certainly any one architectural decision (e.g., how a system is decom-
posed into components) is influenced by many factors, including previously-made architectural deci-
sions. We hypothesize that we can discover a correlation from influences to decisions, independent of
the order in which architectural decisions are made and the influences they have on each other.

This paper describes a pilot project to extract influence and decision data from a set of large software-
intensive systems, as the first step to test whether the correlation hypothesis has any validity or is in fact
even testable.

1.2 The pilot project

The SEI is launching a set of case studies on large-system architectures in an effort to document and
codify the engineering practices that led to successful architectures. These case studies represent real-
world development efforts, typically consuming years of work, and cover a spectrum of applications,
types of development organizations, and customers.

The case studies include the following:

• Initial Sector Suite System (ISSS), a million-line-of-code air-traffic control system for the
Federal Aviation Administration (FAA) to process radar and flight plan data and display real-
time situational displays to controllers at en-route air-traffic control centers.

• CelsiusTech’s shipboard fire-control systems, deployed on warships in several European
navies, and developed as a product line with a common architecture and common reusable
components.

• PRISM, a generic architecture for military command centers developed by the U. S. Army.
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• GenVoca, a method of building application generators developed at the University of Texas
at Austin. GenVoca has been used to produce Genesis, a system that generates product-
quality, high-performance database management systems [1].

• Structural modeling, a method for developing architectures by exploiting common patterns
and structures in an application domain; developed at the Software Engineering Institute, and
used to build sophisticated flight simulation systems [9].

The plan is to use these case studies to understand what data of architectural significance can be extract-
ed from development legacies. This population of case studies and their widely varying application do-
mains, project goals, and development circumstances will certainly not be adequate or appropriate to
provide evidence of any correlation from influences to decisions. However, we hope that they will pro-
vide a rich enough basis to help us understand what kind of information to extract in order to measure
or assess both. If successful, the pilot studies may serve to launch a wider data-gathering effort, perhaps
along the lines of [6].

2. Architectural influences

“Oh, I don’t much care where ...” said Alice.

“Then it doesn’t matter which way you go,” said the Cat.

-- Alice’s Adventures in Wonderland, by Lewis Carroll

Architectural decision makers are influenced by many factors. Properties of the system being built rank
among the most important, certainly, but there are also factors dealing with the culture of the organiza-
tion, as well as the technical expertise and experience of the architects.

2.1 Project-related influences

Architectures serve primarily as a means towards an end, that being the development of a successful
system within the resource constraints provided to the development team. What does “successful”
mean? In the context of the projects we are examining, it means the satisfaction of the requirements.
We categorize requirements as follows:

• time-independent functional requirements. Under the four-variable model of requirements
developed by Parnas and refined by van Schouwen [13], these are the requirements that can
be stated as relations between input and system state on the one hand, and output value on
the other, where system state does not include time. Intuitively, these are requirements that
can be verified by watching the system perform in all of its states and comparing its outputs
against some standard of correctness.

• performance requirements. Informally, these are the requirements that can be checked by
observing the behavior of the system while holding a stop-watch. More formally, they are
relations in the (state x input, output x time) relation in which state is a function of time.
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• afunctional requirements. These are properties of the system that cannot be measured or
inferred by watching the system execute; rather, they are measurements against a
development process of some sort. These include maintainability, openness, portability, and
the like.

Note that under this taxonomy, safety, security, fault-tolerance, reliability, and availability are all func-
tional requirements, in that they are formally described by requirements for the system to produce cor-
rect output in each state of the system’s operating repertoire or “competence set” [8]. Fault-tolerance,
for instance, can be viewed as a matter of requiring specific output (perhaps degraded in some way) in
the presence of a state representing the failure of some of the system’s components. These are often re-
ferred to as quality attributes and lumped together with the afunctional requirements. We separate them
and call them functional quality attributes, because although both attract the designers’ attention during
architecture selection, the methods used to achieve, say, maintainability are quite different from those
used to achieve, say, safety.

What role does each type of requirement play in selecting an architecture? Before addressing this ques-
tion, we draw an intuitive distinction between requirements and driving requirements. Driving require-
ments are those that the architects believe they will have difficulty satisfying;1 we have observed that
these are the ones that motivate the most interesting or far-reaching architectural decisions.

For example, a system might have very strict performance requirements, so strict that violation of any
of them may result in the loss of life or property. However, if the performance requirements are easy to
meet, then the architects may well choose any of several structures for their system, basing their choice
on achieving other requirements that are less prone to satisfaction.

These observations lead to the following two axioms about project-related influences:

P1: The driving afunctional quality requirements are a major influence in the architecture
chosen.

P2: The driving functional quality requirements are a major influence in the architecture
chosen.

Most design tradeoffs pit performance against some other attribute; there is ample evidence (largely an-
ecdotal) that when performance is a driving requirement, it precipitates many major architectural design
decisions. Some performance requirements result from interacting with a system’s environment and re-
flect the embedded nature of the system. For instance, a sensor may provide a new reading every 40
milliseconds and the polling software must be synchronized with it to avoid accuracy fall-off. There-
fore, we add the following axiom:

P3: The driving performance requirements are a major influence in the architecture chosen.

1. As one wag has put it, driving requirements are the ones that drive designers up a tree.
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Table 1 lists the driving requirements for each system in the case-study set, as well as requirements of
somewhat less importance. We would expect to see the driving attributes have a first-order effect in the
architectural decisions, and the secondary ones to show second-order effects, if any.

While functional requirements--i.e., achieving time-independent correctness--play a crucial role in sys-
tem development (claiming sizable testing or verification resources, for example), we posit that they do
not, in fact, play a major architectural role. What does it mean to have a driving functional requirement?
It means that the attainment of correctness is expected to be difficult. This could be caused by any of
the following:

• difficulty in specifying what outputs are required. Solving this is a specification problem, not
an architectural one.

• difficulty in implementing software to achieve the desired results. For example, software that
simulates the physics of sound waves traveling through an ocean during a thunderstorm and
across thermal layers is difficult to get right. However, this is a problem solved by physics
and mathematics, not software architecture. A prudent architectural decision may be to
encapsulate problematic software in a module of its own, so that inevitable changes are
isolated; however, this is not what we would consider a major or far-reaching architectural
decision that offers much insight.

• difficulty in meeting accuracy constraints. Except in unusual cases where data transmission
media may affect the precision of transmitted values, accuracy is a function of the accuracy
of the input values, and the number and types of computations taken to arrive at the final
value. While the distribution of the computations among components is an architectural
issue, the structure of the end-to-end computation is more of an algorithmic issue than an
architectural one. Put another way, the accuracy of a computation would be the same whether
the computing steps were all in the same module or scattered across components.

Therefore:

P4: Driving functional requirements, other than those relating to functional quality
attributes, are not usually a major influence in a system’s architecture.

Table 1: The driving requirements of the case-study set.

Case study Primary requirement Secondary requirements

ISSS (FAA) Ultra-high availability Performance, safety, usability

RCS (NIST) Safety Performance

CelsiusTech Product line development Performance

GenVoca Short time to market Performance

PRISM Reuse Information security, performance

Structural modeling Scalability, integrability Performance
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There are exceptions to this proposition. Suppose a system is distributed and is required to support a
large (but varying) number of users. Suppose that each user’s station can consist of from one to three
consoles, each displaying different data, and that there is a computer in each console that drives that
console’s display. The requirement for the system to be flexibly configured in this manner is a function-
al requirement, and meeting it may well require architectural decisions to be made to ensure that the
right programs are running in the right processors at the right time.

A more common exception is in the realm of data-intensive or shared-information applications. Funda-
mental architectural decisions are often made to assure timely and uniform access to consistent data in
shared-information systems [11]. Therefore, we modify P4 as follows:

P4: Driving functional requirements, other than those relating to functional quality
attributes, are not usually a major influence in a system’s architecture, except in data-
intensive shared-information systems.

2.2 Organization-related influences

The goals and background of the developing organization play an important role in the choice of archi-
tecture. Does the organization have “banked” components that can be (or are mandated to be) reused?
Does the organization plan to develop similar systems, and thus wish to build an architecture for the
entire product line? Is there technology onboard for, say, automatic testing of client-server protocols?

In this section, we enumerate a set of organizational influences that bear on architectural decision mak-
ing, as evidenced by at least some of the projects in our case studies. We posit that the influences arise
from the presence of any core assets on which the organization is anxious to realize a return on invest-
ment, from any organization-wide policies about system development, or from previous projects in
which particular architectural decisions were (or were not) successful. The organization-related axioms
are as follows:

O1: The existence of tools and/or capital infrastructure tailored to particular architectures
will exert a bias towards those architectures.

O2: Organizational goals, such as a mandate to reuse existing products or a desire to evolve
the developing system into a product line, will exert a major influence on the chosen
architecture.

O3: An organization’s development history, as evidenced by architectures of systems
developed previously by that organization, will exert a secondary influence on the chosen
architecture.

2.3 Architecture-related influences

It is an axiom of this work that if an architect has solved a problem successfully in the past, then he or
she is likely to use the same approach to solving the next problem, especially if the two problems are
similar. Similarly, if an approach failed in the past, it is less likely to be given a second chance. Thus:
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A1: Architectures previously used by the project’s architect(s) will exert a major influence
on the chosen architecture. The influence (positive or negative) will be directly proportional
to the perceived success or failure of the prior effort(s).

2.4 Enumerating the influences to extract data from projects

After hypothesizing about the nature of architectural influences, it is still necessary to determine how
to extract the relevant information from a project. Supposing, for example, that a company’s previous
development efforts will play a role is not immediately helpful in formulating an appropriate elicitation
that will help to unmask a correlation. Asking “What architectural styles have your previous develop-
ment efforts tended to exhibit?” simply won’t do. Fortunately, we can appeal to recent efforts to taxon-
omize problem and design spaces.

To test P1, P2, and P3, we can enumerate quality and performance attributes of interest by appealing to
sources such as the International Organization for Standardization (ISO) standard 9126 for quality at-
tributes [4].

To test P4, we can appeal to Shaw’s inventory of shared-information architectures [11] to capture such
aspects as whether the system requirements indicate batch sequential, distributed problem solving of a
statically structured nature, or dynamic integration across distributed systems.

To capture organizational and individual development histories for O3 and A1, we hypothesize that
ways of viewing a problem capture varieties of insight into problem solving. Shaw has catalogued a set
of viewpoints drawn from published and well-known design strategies [10]; the list includes the follow-
ing:

We can also appeal to Blum’s taxonomy of software development methods [2] in this regard, which is
reproduced in Table 3.

One of the goals of the pilot study will be to assess the adequacy of these and other catalogs and to mod-
ify and enhance them where appropriate.

Table 4 summarizes our approach to cataloging influences.

Table 2: Problem viewpoints from Shaw [10]

Functional decomposition Data flow Object-oriented

State machine Event-oriented Process control

Decision table Data structure
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a. JSD: Jackson System Development Method
b. VDM: Vienna Development Method
c. JSP: Jackson System Programming

Table 3: Blum’s taxonomy of software development methods [2]

Problem-oriented Product-oriented

Conceptual

I

Structured analysis
Entity-relationship model

Logical construction of systems
Modern structured analysis

Object-oriented analysis

II

Structured design
Object-oriented design

Formal

III

PSL/PSA
JSDa

VDMb

IV

Levels of abstraction
Step-wise refinement
Proof of correctness

Data abstraction
JSPc

Object-oriented programming

Table 4: Extracting influences to test hypotheses

Axiom Pertains to Criteria for data extraction

P1
P2

Afunctional requirements
Functional quality requirements

ISO Standard 9126 [4];
Driving or nondriving

P3 Performance requirements Source: communication, computation;
Driving or nondriving

P4 Functional requirements Shaw on shared-information system
architectures [11]

O1 Tools and infrastructure Presence of tools that support a partic-
ular architectural style

O2 Organizational goals Presence of reuse repository; desire to
engineer product line

O3 Organizational history Shaw [10] and Blum [2]

A1 Architect’s history Shaw [10] and Blum [2]
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3. Architectural decisions

“... so long as I get somewhere” said Alice.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

-- Alice’s Adventures in Wonderland, by Lewis Carroll

As for architectural influences, we are in a position to take advantage of the work of others in cataloging
and developing taxonomies for architectural decisions. We propose that architectural decisions of inter-
est lie primarily in the realms of component selection and component interaction, but that there are sev-
eral ways to view and catalog these choices. However, there seems to be an overriding architectural
decision that in many ways preempts others: Is the system to be built as one process or several?

3.1 Parallel or sequential?

An architectural decision that drives a host of others is whether or not the system is to be fielded on a
uniprocessor, or whether the software will be built as a set of cooperating and communicating process-
es. If the latter, then a subsidiary decision is whether those processes reside on a single machine (with
perhaps different processors) or on a distributed network on which interprocess communication costs
will play a much more significant role.

We will ask whether the system was built as a single process or multiple processes. If the latter, we will
ask whether the processes reside in the same or different processors, and whether or not a communica-
tions network is involved.

3.2 Component selection

While the nature of components to realize a system is certainly varied and domain specific, it is possible
to categorize each according to a taxonomy such as one proposed by Garlan and Shaw in [12]:

Table 5: Sample component taxonomy, from [12]

Component
type

Description

Pure
computation

Simple input/output relations, no retained state
Examples: math functions, filters, transforms

Memory Shared collection of persistent structured data
Examples: database, file system, symbol table, hypertext

Controller Governs time sequences of others’ events
Examples: scheduler, synchronizer

Link Transmits information between entities
Examples: communications link, user interface
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For each component in the architecture being evaluated, we can assign it a type based on this or a related
taxonomy.

3.3 Interconnection/coordination mechanisms

To catalog the interconnection and coordination mechanisms, we appeal to previously published taxon-
omies. For multiprocess (including distributed) systems, Fernandez has produced the following catalog
of coordination mechanisms [3]:

Some of these are finer grained classifications of more traditional coordination mechanisms such as
shared data, message-passing, and events.

We will ask how and to what extent each of the mechanisms has been used in the project, whether or
not others not listed here have played an important role, and how these choices have helped to satisfy
the project’s driving requirements.

3.4 Connectedness of interaction

After classifying components and how they interact, we will measure how much they interact. Is the
component communication graph fully connected? Or are the interactions carefully managed and re-
stricted? We would expect, for example, that for a system in which the quick extraction of functional
subsets was an important quality attribute, the interactions would be limited and well structured.

Manager State and closely related operations
Examples: abstract data type, many servers

Table 6: Coordination mechanisms from [3]

Barrier Blackboard Bounded buffer

Broadcast Event General semaphore

Lock Mailbox Pulse

Relay Rendezvous Signal

Timed buffer Transporter

Table 5: Sample component taxonomy, from [12]

Component
type

Description
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For each component, we will classify its interactions with other components as unrestricted, managed,
or forbidden. For the managed and forbidden ones, we will ask how and to what extent the designers
felt the management of the interaction helped achieve the driving requirements.

3.5 Volume of interaction

The volume of data that flows between components is a significant architectural decision. For each
component-to-component communication path, we will categorize the data flowing between them as

• none

• scalar parameters

• aggregates of data in simple structures (e.g., arrays)

• aggregates of data in complicated structures (e.g., databases)

3.6 Choice of architectural styles

Garlan and Shaw’s work on architectural styles teaches us that patterns of architecture-level interaction
recur across wide varieties of systems [5]. Although some styles, such as pipe and filter, may be recog-
nizable from the style and layout of component interconnection, others, such as layered organizations,
may not. Therefore, we will poll explicitly for examples of styles enumerated in [5]. For each one found,
we will catalog where it occurs: across the system as a whole, or within a component or set of compo-
nents identified earlier.

For each architectural style in [5], we will ask where and to what extent it was used, and the degree to
which the designers felt it contributed to meeting a driving requirement.

4. Correlating influences and decisions

Although our investigation of correlations between influences and decisions is largely exploratory,
there are some relationships that we expect to see between groups of influences and groups of decisions.

An architecture is usually defined to consist by and large of a system’s components and the relationships
and interconnections among them. However, there are many different kinds of components, intercon-
nections, and relationships. Components may be objects, object classes, modules, programs, functions,
subsystems, processes, or agents. Relationships and interconnections may be “is a sub-module of,” “is
an instance of,” “invokes,” “invokes a program on the interface of,” “sends data to,” “causes to exe-
cute,” “communicates with,” “blocks from executing,” or many others. Many relations have their own
diagram style associated with them (such as data-flow diagrams, call graphs, etc.), each of which shows
quite a different view, possibly of the same system.

Sometimes a diagram will represent more than one view. For example, a pipe-and-filter architectural
style [5] is a description of at least two relations, namely “invokes” and “sends data to.” A layered ar-
chitecture says nothing about which way data flows, nor about who invokes whom; rather, it is more
concerned with a relation that might be best referred to as “is allowed to invoke.” Programs in the same
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layer are free to call each other, for instance, but you can’t tell if they do or not from looking at a layered
diagram. Programs at one layer are allowed to invoke programs at their own or the next inner layer, but
no other. Neither pipe-and-filter nor layered organization diagrams make any statement about, for ex-
ample, how the programs represented by the components are gathered into modules.

The moral is that architecture diagrams tend to show quite different components and relations, and that
there are a large variety of both. Each diagram represents a particular point of view and, more impor-
tantly, represents a specific set of embedded architectural decisions.

A high-level taxonomy of these decisions can be obtained by noting that some of the relations disappear
in the running system, and are used only during development activities. The others are observable in the
execution. For example, the notion of a particular process executing on a particular processor, and com-
municating with another process on perhaps a different processor, has meaning and can be checked at
run-time. However, the concept of a module (a collection of programs related by their functionality or
the information they share) disappears; you may be able to observe individual programs executing at
run-time, but you cannot tell from what module they hail. All secrets (which modules and objects en-
capsulate) disappear at run-time. We call decisions whose effects are observable at run-time dynamic
and all others static. This leads to our first axiom about correlation:

C1: Static architectural decisions tend to affect afunctional properties; hence, driving
afunctional requirements tend to motivate the static architectural decisions. There will be an
observable correlation between driving afunctional requirements and static architectural
decisions.

Module structure, for instance, affects maintainability [7]. The amount of code that can be reused affects
time-to-market, and so forth. We would expect to find a correlation between the driving afunctional re-
quirements and the static architectural decisions, primarily the decomposition into components and the
discipline with which components are (and are not) allowed to communicate with each other.

On the other hand, there is a correspondence between process structures and performance, between
communication paths and security, and between interconnection strategies and reliability. We would
expect to see a correlation between the functional- or performance-related influences and the dynamic
architectural decisions. Thus:

C2: Dynamic architectural decisions tend to affect performance properties; hence, driving
performance requirements tend to motivate the dynamic architectural decisions. There will
be an observable correlation between driving performance requirements and dynamic
architectural decisions.

5. Conclusions

We have posited that there are enumerable influences at work behind architectural decisions and have
suggested high-level taxonomies for both. A pilot study is under way to see if sufficient data can be ex-
tracted from legacy developments to test the hypotheses. If so, then a larger data extraction effort will
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be attempted, so that sufficient data are gathered to observe correlations, if they exist. It is our hope that
we can discover such correlations, and do our part to bring software architecture one step further out of
the realm of folklore and into the world of disciplined engineering.
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