
 

 

Isolating Patterns of Failure in Department 
of Defense Acquisition  

Lisa Brownsword  
Cecilia Albert 
David Carney 
Patrick Place 
Charles Hammons 
John Hudak 

June 2013 

TECHNICAL NOTE 
CMU/SEI-2013-TN-014 

Acquisition Support Program 

http://www.sei.cmu.edu 

 

http://www.sei.cmu.edu


 

 

Copyright 2013 Carnegie Mellon University 

 

This material is based upon work funded and supported by the Department of De-
fense under Contract No. FA8721-05-C-0003 with Carnegie Mellon University for 
the operation of the Software Engineering Institute, a federally funded research and 
development center.

 

Any opinions, findings and conclusions or recommendations expressed in this materi-
al are those of the author(s) and do not necessarily reflect the views of the United 
States Department of Defense. 

 

This report was prepared for the 
SEI Administrative Agent 
AFLCMC/PZE 
20 Schilling Circle, Bldg 1305, 3rd floor 
Hanscom AFB, MA 01731-2125 

 

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE 
ENGINEERING INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” 
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF 
ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER 
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR 
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 
OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON 
UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH 
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT 
INFRINGEMENT. 

 

This material has been approved for public release and unlimited distribution except 
as restricted below. 

Internal use:* Permission to reproduce this material and to prepare derivative works 
from this material for internal use is granted, provided the copyright and “No Warran-
ty” statements are included with all reproductions and derivative works. 

External use:* This material may be reproduced in its entirety, without modification, 
and freely distributed in written or electronic form without requesting formal permis-
sion. Permission is required for any other external and/or commercial use. Requests 
for permission should be directed to the Software Engineering Institute at permis-
sion@sei.cmu.edu. 

* These restrictions do not apply to U.S. government entities. 

Architecture Tradeoff Analysis Method®, ATAM®, Carnegie Mellon® are regis-
tered in the U.S. Patent and Trademark Office by Carnegie Mellon University. 
DM-0000270 

. 

 

mailto:permis-sion@sei.cmu.edu
mailto:permis-sion@sei.cmu.edu


 

CMU/SEI-2013-TN-014 | i 

Table of Contents 

Acknowledgements vii 

Abstract ix 

1 Introduction 1 
1.1 Background 1 
1.2 Same Project, Competing Goals 1 
1.3 Study Approach 2 

1.3.1 Phase One 2 
1.3.2 Phase Two 3 

1.4 Terminology Used for this Report 3 

2 Observed Anti-Patterns 5 
2.1 Characteristics of the Patterns We Observed 5 
2.2 Overview of Findings 5 
2.3 About the Consequences of The Anti-Patterns 6 
2.4 Observed Anti-Patterns 6 

2.4.1 Undocumented Business Goals 6 
2.4.2 Unresolved Conflicting Goals 8 
2.4.3 Failure to Adapt 10 
2.4.4 Turbulent Acquisition Environment 11 
2.4.5 Poor Consideration of Software 12 
2.4.6 Inappropriate Acquisition Strategies 14 
2.4.7 Overlooking Quality Attributes 15 

2.5 Observations 17 

3 Countering the Anti-Patterns 19 
3.1 Necessary Entities and Artifacts 19 
3.2 Necessary Relationships 20 
3.3 Avoiding the Anti-Patterns 22 
3.4 Preliminary Thoughts on a Method 24 

4 Conclusion 26 

Appendix A: Interview Template 27 

References 29 

 

  



 

CMU/SEI-2013-TN-014 | ii 



 

CMU/SEI-2013-TN-014 | iii 

List of Figures 

Figure 1: Key Entities and Relationships Identified During Our Analysis 21 

Figure 2: Anti-Patterns That Affect Specific Relationships and Entities 22 

 

  



 

CMU/SEI-2013-TN-014 | iv 



 

CMU/SEI-2013-TN-014 | v 

List of Tables 

Table 1: Frequency of Anti-Patterns 17 

Table 2: Distribution of Anti-Patterns 17 

 

  



 

CMU/SEI-2013-TN-014 | vi 

  



 

CMU/SEI-2013-TN-014 | vii 

Acknowledgements 

We owe a debt of gratitude to our colleagues Paul Clements and Len Bass, whose work and in-
sights on the importance of capturing and analyzing business goals and quality attributes became 
the foundation for this research. 

We would like to express our thanks to the SEI personnel whom we interviewed for the data in 
this report: Michael Bandor, Ronald Kohl, Harry Levinson, Patricia Oberndorf, James Smith, and 
Eileen Wrubel. They gave generously of their time and expertise, and we are deeply in their debt. 

We would also like to thank James Smith for his insightful comments on the content of this 
report. 



 

CMU/SEI-2013-TN-014 | viii 



 

CMU/SEI-2013-TN-014 | ix 

Abstract 

This report documents an investigation into issues related to aligning acquisition strategies with 
business and mission goals. The investigation was motivated by the observation that a significant 
contributing factor in troubled or failing acquisitions was the misalignment between the software 
architecture and the acquisition strategy. An examination of a number of acquisition programs led 
to the discovery of seven repeatable patterns of failure to: (1) document business goals, (2) re-
solve conflicts between goals, (3) adapt to changing needs, (4) accommodate turbulence in the 
acquisition environment, (5) give due consideration to software needs, (6) use appropriate acquisi-
tion strategies, and (7) understand and use software quality attributes to create the architecture. 

In addition to a detailed description of these patterns, the authors define the artifacts and the rela-
tionships that would have to hold between these artifacts in order to combat the failure patterns. 
Finally, they offer some suggestions on a method, woven from existing methods, for developing 
the artifacts with sufficient content that one can reason about the strength of the necessary rela-
tionships.  

 

 

  



 

CMU/SEI-2013-TN-014 | x 

 



 

CMU/SEI-2013-TN-014 | 1  

1 Introduction 

1.1 Background  

Major acquisition programs now rely on software to provide substantial portions of system per-
formance. Not surprisingly, software issues are driving system cost and schedule overruns. All too 
often, however, software is no more than a minor consideration when the early, most constraining, 
program decisions are made. This generally has negative consequences, most often in terms of 
misalignments between the software architecture and system acquisition strategies. Our analysis 
of troubled programs shows that these misalignments lead to program restarts, cancellations, and 
failure to meet important mission or business goals. This research is focused on enabling organi-
zations to reduce their program failures by harmonizing their acquisition strategy with their soft-
ware architecture.  

In this report, we describe the problem of misalignment as it is evidenced in the programs we 
studied. We also outline our thoughts for patterns of behavior that will help organizations avoid 
some common pitfalls related to misalignment.  

1.2 Same Project, Competing Goals 

Complex programs have diverse sets of stakeholders; it is inevitable that some, perhaps many of 
their diverse goals and priorities are in conflict. Operational users, combat commanders, funding 
authorities, and acquisition team members may think they share the same priorities. But when 
interviewed, their answers often vary widely in term of the goals and features they see as the most 
important. In many cases, the solutions that are created are based on goals of one set of stakehold-
ers—goals that can conflict with those of other stakeholders. Ultimately, such conflicts in goals 
result in the misalignment described above. 

For example, an organization we encountered in our assessment of U.S. Department of Defense 
(DoD) acquisition programs showed how easily failures stemming from misalignment of strategy 
and architecture can occur. This organization was rebuilding a major system to replace a critical 
capability. The program manager gave the requirements to the software architect, who returned 
with an architecture he believed to be well-suited to the requirements he received. The architect 
was baffled when the program manager cited the lack of a database as a problem. The architect 
had intentionally eliminated the database because it resulted, in his opinion, in a more elegant so-
lution. As it turned out, the program manager was in charge of an excellent database group that 
was dependent on work from this program. Though the presence of a database satisfied a legiti-
mate business goal (at least in the program manager’s mind), that goal was not captured in any of 
the requirements given to the architect.  

In another example, a program manager with a business goal to reduce the time to field a new 
system expected that the strategy of reusing an existing software component was a reasonable 
approach to rapidly providing a significant part of the system’s capability. But the structure of this 
component was inconsistent with the planned software architecture for the new system. Fortunate-
ly, the program manager recognized this mismatch early enough to reconsider that approach. 



 

CMU/SEI-2013-TN-014 | 2  

1.3 Study Approach 

The first phase of our project was to identify and articulate the relationships between the key ele-
ments that are critical to alignment or misalignment of software architecture and acquisition strat-
egy: 

• the architectures themselves (both software and system) 

• the planned acquisition strategy 

• the quality attributes that drive those architectures and strategies 

• the goals (both business and mission) of all of the stakeholders 

By examining these elements, we sought to pinpoint the patterns of alignment or misalignment 
that tend either to keep the software architecture and acquisition strategy in harmony or to pull 
them apart. These patterns, particularly those that result in misalignment, form a core element of 
our research. 

We will then use these results in the second project phase, where we intend to provide a method 
for organizations and project managers to avoid the anti-patterns we have discovered. We will 
then validate the utility of these methods through pilot applications on projects and programs out-
side the SEI.  

1.3.1 Phase One 

Phase one activities started by using, as a basis, several Independent Technical Assessments 
(ITAs) that had been performed by the SEI. Such assessments are commissioned by the DoD to 
provide third-party analyses of a program’s health, quality of progress, and similar conditions. 
While the details of the programs in question must remain anonymous and confidential, we can 
describe some general attributes of the programs and systems. The domains of the systems ex-
tended from weapons systems to information systems. The majority of systems had a significant 
hardware component. All were large programs, with ambitious expectations; some dealt with un-
precedented systems. But common to all was that, at some point in the program history, there 
were sufficient problems noted that one or more persons in authority had requested an assessment 
from the SEI to provide an independent review of the program’s execution. Thus, while the spec-
trum of success ranged from programs that had successfully fielded system, to those that had 
failed to field anything, all of the programs studied had evidence of at least some failing behavior. 

We therefore felt that the findings of the ITAs would provide useful material for our investigation. 
We carried out confidential interviews with SEI personnel that had participated on these ITAs, 
and elicited from them data that we deemed relevant to the areas of alignment.1 

In these interviews, we sought pertinent information about each program’s acquisition strategy, 
the software and system architectures, the quality attributes that those architectures manifest, and 

 
1 It is important to reiterate that we did not participate on the ITAs themselves, but rather interviewed the SEI person-

nel who had performed the ITAs. 

 



 

CMU/SEI-2013-TN-014 | 3  

the different stakeholders’ goals. The specific areas of the programs that we inquired about in-
cluded the following:2  

• background of the program, including its scope and motivation 

• details of the program, e.g., size, timeline, funding 

• mission and business goals of the program 

• the nature of the software element of the program 

• extensive information about the system architecture, the software architecture, and the rela-
tion between the two 

• acquisition details, particularly about the acquisition strategy, and its ongoing role as the pro-
gram unfolded 

• information about the relative success that the program achieved 

We then analyzed this information looking for patterns of alignment or misalignment. Section 2 of 
this report describes the patterns of misalignment, which we term “anti-patterns,” that we ob-
served.3   

1.3.2 Phase Two 

In phase two, we expect to describe in detail a method that will assist organizations in avoiding 
the pitfalls that result when acquisition strategy and architecture are misaligned. It will set forth 
practices, describe the artifacts that should be created, and the relationships that should be present 
between the key stakeholders in an acquisition program. It will also provide detail for an organi-
zation to validate that they have followed the method sufficiently that the misalignments we de-
scribe are not present. Section 3 discusses our speculations for the new method to be created in 
phase two. In defining this method, we plan to adapt and tailor existing methods where possible. 

1.4 Terminology Used for this Report 

Throughout this report, we use the following terms with these definitions. 

A mission goal is an expression of some operational objective (sometimes referred to as a mission 
driver) and is focused on what the solution should do or how it should behave. These may be de-
scribed in a number of formal documents such as a mission needs statement or a requirements 
document or in other, looser ways. 

A business goal is an expression of some organizational (e.g., Air Force) objective (sometimes 
referred to as a business driver) and is focused on goals relative to the organization and not specif-
ic to the solution. For example, a business goal might refer to budgets, regulations, policies, or the 
state of the industrial base. Some of the business goals will be documented in one, or more, policy 
documents while others may exist but be unstated. 

Quality attributes are properties of a system. We will use the definition from Software Architec-
ture in Practice, 3rd Edition [Bass 2012]:  

 
2 The full template for the interviews can be found in Appendix A. 

3 The term “anti-pattern” is more fully described in section 2.1 



 

CMU/SEI-2013-TN-014 | 4  

A quality attribute (QA) is a measurable or testable property of a system that is used to 
indicate how well the system satisfies the needs of its stakeholders. You can think of a 
quality attribute as measuring the “goodness” of a product along some dimension of in-

terest to a stakeholder. 

A frequently used term that is crucial for this paper is software architecture. We will adopt the 
definition from [Bass 2012], where we find: 

The software architecture of a program or computing system is the structure or struc-
tures of the system, which comprise software elements, the externally visible properties of 
those elements, and the relationships among them. 

The definition of software architecture given above could be used almost directly for system ar-
chitecture. [Bass 2012], while it does not define system architecture, does discuss the differences, 
and we can extend the above definition to: 

The system architecture is the structure or structures of the system, which comprise soft-
ware and hardware elements, the externally visible properties of those elements, and the 

relationships among them. 

It is important to note that the system architect is usually concerned with different quality attrib-
utes than the software architect; sometimes the same qualities will be discussed by system and 
software architects but with different emphasis (expressed with different scenarios) [Klein 2010]. 

An acquisition strategy is defined by the Defense Acquisition University [DAU 2011] as 

A business and technical management approach designed to achieve program objectives 
within the resource constraints imposed. It is the framework for planning, directing, con-
tracting for, and managing a program. It provides a master schedule for research, devel-
opment, test, production, fielding, modification, postproduction management, and other 
activities essential for program success. The acquisition strategy is the basis for formu-
lating functional plans and strategies (e.g., Test and Evaluation Master Plan (TEMP), 
Acquisition Plan (AP), competition, systems engineering, etc.) 

There are numerous definitions of pattern, both general purpose and domain-specific such as 
those for software architecture. We rejected using any of the domain-specific definitions, even 
those for software architecture since they did not cover the range of concepts we are considering 
in this report. Instead, we adopt a general definition, one that will cover not only software archi-
tecture, but also goals, stakeholders, acquisition strategies, and quality attributes.  

Christopher Alexander [Alexander 1977] provided the classic characterization of pattern thus:  

Each pattern describes a problem which occurs over and over again in our environment, 
and then describes the core of the solution to that problem, in such a way that you can 
use this solution a million times over, without ever doing it the same way twice; in other 

words, a pattern is a template that can be used in a specific situations. 

We defer a discussion of how we characterize a pattern until the next section. 



 

CMU/SEI-2013-TN-014 | 5  

2 Observed Anti-Patterns 

2.1 Characteristics of the Patterns We Observed 

Given that we used SEI ITAs as the primary source of information, and that ITAs are typically 
carried out with programs that are in some jeopardy, it is not surprising that most of the data we 
captured are negative rather than positive. This was, in fact a useful feature, since analysis of 
these data has led us to observe several recurring patterns; because of their negative consequenc-
es, and following common usage throughout the software engineering community, [Brown 1998] 
we characterize these as anti-patterns. 

The way in which we describe an anti-pattern is by various elements that characterize it. Rather 
than following a large and complex definition of many anti-pattern elements (some definitions list 
as many as 10 elements), we take the premise that an anti-pattern is itself a pattern, though one 
that produces harmful results. Therefore, an anti-pattern can be characterized by the same ele-
ments that characterize a pattern. 

Buschmann et al [Buschmann 1996] provided a form for describing patterns, calling out the need 
to give patterns a name, define the context (environment), the problem, and then the solution. For 
our anti-pattern descriptions, we also call out the notion of consequence, as defined by Gamma et 
al. [Gamma 1994]. In lieu of calling the observed activity “solution,” we have titled that activity 
“observed response” (i.e., to the problem). Thus, each of our anti-patterns will have the following 
elements: 

• pattern name (readily identifies some key aspect of the problem) 

• context (situations where the pattern occurs) 

• problem (the recurring issues and the forces that characterize the problem, such as require-
ments, constraints, and desirable properties, that the context creates)  

• observed response (the manner in which people attempt, consciously or otherwise, to solve 
the problem) 

• consequences (the results of applying the observed response to the problem in the given con-
text) 

2.2 Overview of Findings 

In each of the programs studied, we observed several instances of activities and behaviors that 
qualify as anti-patterns. In some cases, the anti-patterns were of sufficient magnitude that they had 
severe negative effects on program success.  

While none of the anti-patterns were observed in all of the programs we studied, all were suffi-
ciently pervasive that they were true patterns of behavior (i.e., none of the anti-patterns were seen 
in only one program).  

Finally, it is valuable to note that, in preparing the descriptions of the anti-patterns that follow, the 
major source of our data was the analyses of interviews that we carried out. But these data are also 
supported by decades of experience, on the part of all of the authors of this report, in studying, 



 

CMU/SEI-2013-TN-014 | 6  

assessing, and participating in actual programs. Virtually all of the conclusions that derived from 
our interviews were strongly supported by our aggregate experiences as active professionals, in 
both government and non-government roles, in the domain of DoD acquisition. 

2.3 About the Consequences of The Anti-Patterns 

The anti-patterns, like most other factors that have a negative effect on acquisition programs, all 
eventually result in a small number of familiar and unhappy consequences: schedule delays, cost 
overruns, delivery of less than was promised, or outright program cancellation. In that sense, the 
ultimate consequences of these anti-patterns in the programs we studied will all have an expected 
similarity. 

However, the immediate consequences of different anti-patterns will differ in many ways: the 
immediate effects of, for example, leaving key business goals unstated will be quite different from 
those that result from a turbulent acquisition environment. And since, in the methods we hope to 
develop, we intend to focus on some of the immediate and visible symptoms of anti-patterns as a 
way to minimize or eliminate their negative influence, the immediate consequences are of consid-
erable importance. 

Therefore, in the descriptions that follow, we shall indicate some of these immediate consequenc-
es, though we will also mention, wherever possible, the longer-term consequences that we ob-
served in each case. 

2.4 Observed Anti-Patterns 

The set of anti-patterns we observed in these programs consists of the following: 

1. Undocumented Business Goals  

2. Unresolved Conflicting Goals 

3. Failure to Adapt  

4. Turbulent Acquisition Environment 

5. Poor Consideration of Software 

6. Inappropriate Acquisition Strategies  

7. Overlooking Quality Attributes 

Each of these is discussed in the subsections below. 

2.4.1 Undocumented Business Goals 

Context 

This anti-pattern stems from a lack of precise, well-defined, and well-documented business goals 
for a DoD acquisition, goals that would correspond to the precise, well-defined mission goals 
usually created for a program. It is a serious issue, since the DoD’s business goals are the major 
drivers for an acquisition strategy, and the software plays a major role in system functionality. But 
the actual role that the detailed business goals play in the software architecture is often minimal. 



 

CMU/SEI-2013-TN-014 | 7  

Problem  

Although business goals obviously influence a program’s acquisition strategy, they can also have 
a strong influence on system and software architecture. This additional influence is seldom recog-
nized, even when it is vital that it should. Examples of such influence include the following: 

• “Avoid vendor lock” or “maximize competition” has potentially significant importance when 
defining software architecture.  

• A mandate to employ reuse as much as possible may have a strong negative impact on the 
software architecture if the software to be reused is itself poorly architected.  

• The goal of a software “open architecture” may have a significant impact on the underlying 
system architecture. 

There are several factors that cause this problem. First, at the high level, many business goals are 
generally very broad mandates, while others are not explicitly expressed at all. Secondly, at the 
detailed level, there is no useful process for capturing and prioritizing business goals in a pro-
gram-specific way comparable to the Joint Capabilities Integration and Development System 
(JCIDS) process that supports definition and prioritization of mission goals and their associated 
requirements. 

This anti-pattern is particularly problematic in programs that are building a system that must inte-
grate with others systems (which may themselves be in varying stages of development). While the 
high-level goal of an integrated system of systems (SoS) may be explicit, the detailed goals (to-
gether with an understanding of needed resources) for the SoS are often left unspecified. Alterna-
tively, the detailed goals may be explicit but the overall goals are undefined. 

Observed Response to the Problem 

The general response when this anti-pattern is present is that the architect has no other choice, and 
hence the mission requirements defined by the operational side drive the architecture, which then 
reflects only those mission requirements. Yet were the detailed business goals available, some, 
perhaps many, of those business goals might be critical enough to overshadow some of the mis-
sion requirements. Alternatively, the architect, frequently based on experience from other pro-
grams, will simply assume a set of business goals in making his or her architectural decisions.  

An example can be seen in an instance where there is an implicit but unspecified business goal 
that favored a highly distributed contractor/subcontractor profile. Lacking awareness of that goal 
(because it is unstated), a software architect might reasonably design a monolithic architecture to 
satisfy a mission goal for performance.  

 Consequences 

The Undocumented Business Goals anti-pattern was observed in three of the six programs under 
study. In the program in which it was most visible, a key element for the program was to build a 
new system with significant new capabilities. The acquisition strategy specified a slow, deliberate 
pace to ensure that the new capabilities were defined correctly. A competing business goal was to 
replace several systems that were “end-of-life.” Not stated in this goal was the urgent need to re-
place these failing systems as quickly as possible. When the operators and maintainers of the leg-
acy systems became aware of the intended acquisition strategy, they forced a major change in fo-



 

CMU/SEI-2013-TN-014 | 8  

cus for the program. The sequence of the acquisition activities needed to be altered, and the con-
sequence was a significant delay in meeting either goal. 

Another business goal in the same program (and one that is commonly undocumented) was the 
strong but unstated desire on the part of program management to avoid using a particular contrac-
tor, even though there was a requirement to use a key component that the contractor had created. 
This produced impossible internal conflicts and resulted in misleading and contradictory finger-
pointing until the program was halted. The program has not been cancelled, but the end-users are 
still waiting for replacements for their failing systems. 

In the other programs where this anti-pattern was observed, the effect was less pronounced. Sys-
tems were delivered, though with less functionality than was expected. In all cases, follow-on 
programs have been started to create the functionality that was originally promised by these pro-
grams. 

In sum, the overall effect of the Undocumented Business Goals anti-pattern is that important guid-
ing documents, in particular, the architecture and acquisition strategy or both, are unable to reflect 
the joint influence of both business and mission goals. Inevitably, the lack of documentation of 
missing business-related goals (and their associated quality attributes for the architecture) will 
result in a system that fails to meet the expectations of at least some of the key stakeholders, be-
cause the joint expectations of all of the stakeholders have never been adequately reasoned about.  

This anti-pattern is also very closely related to anti-pattern #2 (Unresolved Conflicting Goals), 
and though they are distinct, the boundaries between them are not always clearly defined. 

2.4.2 Unresolved Conflicting Goals 

Context 

The Unresolved Conflicting Goals anti-pattern is often a direct consequence of the previous one, 
the distinction being that the first anti-pattern refers to the absence of well-documented business 
goals, while this one refers to the lack of an analysis and de-confliction of the known goals. 

Problem  

The variety and scope of mission and business goals can be very large, and for a program of any 
significance, there will likely be conflicts between some of these diverse goals and priorities. One 
factor that compounds the problem is that the business goals and the mission goals are often de-
veloped by people from different organizations, organizations with very different concerns. 

To reason about these conflicts requires that all of these goals be considered jointly, so that their 
mutual influence can be understood and misalignments negotiated. Reasoning is obviously impos-
sible if, as in the previous anti-pattern, the business goals are not well-documented. But even if 
there is a set of well-documented business goals, no processes or criteria exist by which tradeoffs 
between important business and mission goals can be made. It is often not even known who 
should arbitrate such goal conflicts. 

A frequently observed example of the Unresolved Conflicting Goals anti-pattern is reflected in the 
conflicting goals of introducing a new or updated system, but with the additional goal to avoid 
affecting the way that the current end-users perform their tasks. At best, this is a conflict of expec-



 

CMU/SEI-2013-TN-014 | 9  

tations that is not fully understood until the system is deployed. At worst, this conflict presents a 
barrier to deployment and results in program termination. In another example, a mission goal re-
sulting in a central, compact architecture was at odds with a business goal of having many widely 
separated subcontractors and installations (e.g., to ensure a political basis for program survival).  

Finally, one specific problem that is often observed, and which mixes both business and mission 
elements, is that a program shares dependencies with other systems in a larger SoS context. Too 
often, each of the systems is considered in isolation, with the mission and business effects each 
program is desired to have on the others being largely ignored. When these effects surface, joint 
consideration is often carried out too late in program execution to be effective. 

Observed Response to the Problem  

Program stakeholders tend to separate into business (e.g., acquisition strategy) and mission (e.g., 
system and software architecture) communities, each of which tends to work in isolation from the 
other. Given this separation, program personnel tend to produce artifacts that reflect the goals and 
priorities known mainly to them; these in turn tend to be misaligned, in that they reflect unre-
solved conflicts between business and mission goals such as those described above. 

Consequences 

The Unresolved Conflicting Goals anti-pattern was observed in five of the six programs under 
study. In one program, various business goals about reuse, using multiple contractors, reducing 
integration costs, and such mission goals as greatly increased performance, had collided with nu-
merous internal conflicts. When the gravity of the conflicts were belatedly understood (by an in-
dependent “tiger team”), both the initial acquisition strategy and initial architecture were aban-
doned, and a major reconsideration of both—in which they would be reconciled and aligned—
was begun. While this brought about a significant delay, it avoided the far worse result of a sys-
tem that failed both its business and mission stakeholders  

In another program where this anti-pattern was observed, the program had chosen a strategy of 
performing a complete architectural transformation of an existing system, a strategy that ignored 
the more practical goal of the user community, which demanded the development of new capabili-
ties; transforming the existing architecture would enforce a massive delay in getting those new 
capabilities. Eventually an attempt was made to do both at the same, which was not successful.  

In general, it is likely that, in a program of any significance, conflicts between business and mis-
sion goals will exist. But if the conflicts are not reconciled before the acquisition strategy and the 
architecture (both system and software) are defined, the negative effects these conflicts have can 
be large. Unless joint consideration of mission and business goals is carried out early in program 
execution, conflicts between goals will soon become difficult, or even impossible to reconcile. 
And ultimately, stakeholders who expected their mission or business goals to be reflected in the 
acquisition strategy and then satisfied by the software architecture are unhappily surprised when 
the system cannot support their mission or business objectives.  



 

CMU/SEI-2013-TN-014 | 10  

2.4.3 Failure to Adapt 

Context 

The Failure to Adapt anti-pattern often occurs when program duration is long. The reasons for 
length can be inherent to an acquisition program, e.g., when a system is unprecedented, and re-
quires considerable time to solve massive engineering problems (for instance, creation of the Joint 
Strike Fighter). Or the reasons for extended program duration can be circumstantial, such as a 
protracted, complex protest to a contract award. This anti-pattern can also occur when a program 
evolves from providing limited capabilities to providing a much wider range of capabilities. This 
anti-pattern is very closely related to anti-pattern #4 (Turbulent Acquisition Environment). 

Problem  

In most programs, both the acquisition strategy and the architecture are optimized to meet the 
goals and priorities that exist at the start of the program. However, goals and priorities naturally 
evolve over time: examples of such change could include the need to combat new and unexpected 
threats, or a desire to modernize a capability using new technology. The essential problem lies in 
the fact that the architecture and acquisition strategy that are initially defined may not be flexible 
enough to respond to these changes without a good amount of revision and redefinition.  

Further, and compounding the problem, there are no widely applicable processes for rapidly revis-
ing an acquisition strategy for changed business goals, nor are there widely used processes to ac-
commodate changes to an architecture as a result of such changed goals. 

Observed Response to the Problem 

When such changes as those described above occur, program personnel are often unsure about 
whether the architecture and/or acquisition strategy can accommodate the needed changes and, 
even if they can, whether the changes can be accomplished, given the time and effort that will be 
required (e.g., to get all necessary approvals for a revised acquisition strategy). Hence, programs 
tend to continue executing as though there has been minimal change to the initial goals and priori-
ties; there is little impetus to revise the acquisition strategy, nor make anything more than minimal 
alterations to the architecture. In effect, the program is operating with either an implicit change in 
acquisition strategy, or a mismatch between the architecture defined initially and the changed 
mission goals, or both.  

Consequences 

In one of the programs we studied, this anti-pattern had a considerable negative effect. In this case 
the program initially had a very successful architecture and acquisition strategy. The program was 
so successful that its scope grew from delivering capability for one system to delivering capability 
to all systems of a similar type. The architecture and acquisition strategy survived this change in 
scope initially, but as the separate systems matured, and as need arose for them to interoperate, 
unexpected demands were soon placed on the architecture. An additional factor was that the 
stakeholders had a new mission need for increased system reliability—a new quality attribute for 
this program. At this point, both the architecture and the acquisition strategy failed. This program 
has been advised that a strategic pause is required while the architecture and the acquisition strat-



 

CMU/SEI-2013-TN-014 | 11  

egy are reconsidered in light of both the new requirement (reliability) and the increased complexi-
ty of what is now a system of systems. 

In another program in which this anti-pattern was observed, the natural evolution of the program 
included adding stakeholders, with additional requirements on the architecture, which strained the 
original single architecture to the point where several different architectures were being defined. 
But the original acquisition strategy (including its cost and schedule assumptions) was never re-
vised, leading to the perception that the program was extremely late and over budget. In truth, the 
additional stakeholders and extensions to the architecture should have been accommodated, and 
the acquisition strategy revised accordingly. The result for the program was that fielding of sys-
tem failed to occur. 

In general, the Failure to Adapt anti-pattern reflects a natural tendency to stay the course, even 
when circumstances change and external conditions evolve. If the degree of evolution is small, the 
negative effect of this anti-pattern will likely be minimal. But when the evolution takes place con-
tinuously, over long periods of time, the effect of failing to adapt the architecture in concert with 
the acquisition strategy can be severe. 

2.4.4 Turbulent Acquisition Environment 

Context 

The Turbulent Acquisition Environment anti-pattern is closely related to anti-pattern #3 (Failure 
to Adapt). But in this case, the cause is not extended program evolution, but rather severe instabil-
ity in multiple program elements. Instability is manifest by changes in goals, strategy, or architec-
ture that are so frequent and contradictory, they require adaptation that, even under the best cir-
cumstances, the program is unable to accommodate. These changes can be political, strategic, 
technological, or fiscal.  

Problem  

Several causes can bring about program turbulence. Budgets can undergo major revisions, and 
major portions of a program’s funding can be withdrawn. There can be suddenly changed mission 
circumstances, or rapid dissemination of radically new technologies. Programs, particularly if 
they are perceived to be in severe difficulty, can face significant revisions of goals and purpose. 
Joint programs often undergo periodic management shifts when different services assume primary 
responsibility. 

In cases where one or more of the above conditions are present, the magnitude of the requested 
change is often unrealistic, impractical, or impossible, given time and resource realities. 

As the program personnel attempt to adapt to the changes, the original architecture and acquisition 
strategy may now be highly unsuited to the changed conditions that have been levied on the pro-
gram. The program falls into a mode of “architecture of the day” or “acquisition strategy of the 
day.” Equally problematic and an important part of the problem is that the program is usually still 
contractually held to some part the original acquisition strategy. 

  



 

CMU/SEI-2013-TN-014 | 12  

Observed Response to the Problem 

The frequent and significant changes in mission or business goals overpower the ability of the 
acquisition strategy or architecture (or both) to accommodate them. Thus, the original acquisition 
strategy is implicitly abandoned, but without having a well-defined new strategy created. Alterna-
tively, the architecture is stretched to the breaking point, and loses all relation to the original ac-
quisition strategy. 

Yet many programs attempt to continue executing with, at most, minimal explicit revision of the 
acquisition strategy and/or architecture. The necessary task to revise the acquisition strategy to 
fully account for the changed goals is seldom performed, nor is the work needed to revise the 
original architecture carried out as carefully as is required.  

Consequences 

The Turbulent Acquisition Environment anti-pattern was observed in three of the six programs 
under study. In one of them, significant changes to mission, architecture, hardware, and program 
direction each occurred, some repeatedly. For instance, the program began with a strong research 
basis, but very quickly was given mandates to field equipment as quickly as possible. Different 
quality attributes were given different priorities as the architecture evolved through several itera-
tions of development. Different contractors were given conflicting priorities throughout program 
execution. The result was that the program fielded a small fraction of what was originally 
planned, after which the program was cancelled.  

In another, less volatile example, a program started execution in a slow, deliberate manner. After 
several years, a key stakeholder expressed concern that legacy systems were not being replaced 
quickly enough. This triggered a major program redirection which caused all funding to be sus-
pended until two independent review teams could provide recommendations. The two teams had 
different but complementary program areas to study. The reports of the two teams were in disa-
greement (one saw no way forward for the program, the other recommended changes in direction 
as a possible solution). The program was eventually cancelled having produced nothing but doc-
umentation. 

There is little doubt that the environment of U.S. DoD acquisitions always has some instability. 
But in the final analysis, when the environment is truly turbulent (i.e., when this anti-pattern is 
strongly present), the best result is likely to be systems that are poorly fitted to the purposes for 
which they are to be used. In the worst case, they may be unfit for use. 

2.4.5 Poor Consideration of Software 

Context  

The Poor Consideration of Software anti-pattern occurs when critical decisions are made, espe-
cially early in a program, that have strong negative implications on the system’s software. There 
is a historical basis for this behavior: for decades, the DoD acquired systems that were primarily 
hardware. But while the role and importance of software has grown significantly in recent years, 
the traditions and habits of acquisition still reflect the earlier, hardware-centric posture. 



 

CMU/SEI-2013-TN-014 | 13  

Problem 

Very often, software is not deemed a critical factor in decisions made at the earliest stages of a 
program. These decisions generally are made with little or no understanding on how software 
must be accounted for in the acquisition strategy or the architecture (or both).  

A symptom of this is where contracts are organized based primarily on the system architecture 
and fail to take into consideration the very sizable role of software. Assumptions are made about 
the expected integration of software entities that are created separately; such assumptions are of-
ten made with no understanding of the difficulties that arise when complex independent software 
systems must interoperate or be integrated. Unfortunately, this leads to system architectures and 
acquisition strategies that over-constrain the yet-to-be-defined software architecture, thus adding 
significant complexity to software development and integration. 

For instance, major decisions that are made when setting up a program typically focus on system 
functionality and the system’s hardware components. Software considerations, to the extent that 
they are addressed at all, are explicitly deferred to late in the system life cycle—after the hardware 
aspects of the program have been defined and, sometimes, built. Even in a software-only system, 
the real difficulties that the software can pose (e.g., integration of many heterogeneous compo-
nents) are largely ignored.  

Another symptom is that quality attributes (QAs) of importance to the system engineering com-
munity may be quite different from those significant to the software community. System engi-
neers are very concerned about power and weight efficiency; whereas software engineers typically 
are not.  Even if the two communities speak of a single QA (e.g., reliability), they often refer to 
different things. For instance, system engineers might be concerned about the wear and tear on 
physical devices before failure of the device. In contrast, software engineers tend to think of relia-
bility as the likelihood of the software producing the correct outcome consistently. Unfortunately, 
early decisions about system quality are typically are decisions about system and not software 
QAs. 

Observed Response to the Problem 

As a result, the acquisition strategy either is created with a strong focus on system architecture, or 
in software-only systems, fails to address the software architecture satisfactorily. In the former 
case, this inevitably produces a large gap between the system and software architectures; in the 
latter case, the planned software acquisition strategy is unrealistic and impractical.  

A common “solution” is that the software architect tries to play “catch up” and fit the software to 
the system architecture. Another “solution” is to ignore the eventual complexities of integration 
and expect that they can be resolved later. In these cases, the result is often that the system con-
straints force software choices that are suboptimal for the whole system.  

Consequence 

The Poor Consideration of Software anti-pattern was observed in three programs. In one program, 
two critical early decisions about software were made with very little understanding of software’s 
inherent complexity. The system was large and complex, with three major software components. 
An early decision concerning the integration of those three components downplayed the details of 



 

CMU/SEI-2013-TN-014 | 14  

that integration: who would do it, what resources it would need, and how difficult it would be. No 
attempt was made to base this decision on expert software advice, nor on data readily available 
from comparable programs about the difficulty of such a task. Another decision related to the as-
sumption that the system could later be made to interoperate with another complex software sys-
tem. However, no rigorous assessment was made of the difficulty of accomplishing that interoper-
ation nor of the resources the integration would require. In both cases, the assumptions proved 
false, and the program was cancelled. 

Another program sought to build a software product line that was hardware independent. It started 
as a research program, but the effort to prove that this was feasible was abandoned when the pri-
ority shifted to delivery of an operational product. Unfortunately, much time had passed and con-
siderable resources were expended before the program’s failure caused it to be cancelled.  

In general, in the presence of this anti-pattern, at best, there will be major software requirements 
that cannot be satisfied. In a system with both hardware and software elements, this is often a di-
rect result of a software architecture that had to be made to fit poorly into a system architecture 
that was already defined. Further, the problems and delays that result from the mismatch between 
the system and the software architectures are typically blamed on the software components alone. 
In the worst cases, these suboptimal decisions are reflected in system level schedule delays and 
cost overruns. 

2.4.6 Inappropriate Acquisition Strategies  

Context 

Starting at the earliest points of a program (i.e., the awareness of need for a new or updated sys-
tem), one urgent, yet often unstated, imperative is to move quickly to avoid any eventualities that 
might delay, or even prevent a program from achieving its desired acquisition milestones. This 
imperative is often exacerbated by the need to spend an amount of money that was established as 
many as two years previously, at a point where little was known about the realities that the pro-
gram would face. It is further exacerbated by the lengthy review process before a new contract 
can be awarded. These realities have led to acquisition strategies that are often poorly suited to an 
individual program’s needs. 

Problem  

There are multiple causes of the Inappropriate Acquisition Strategies anti-pattern. Program offices 
might 

• wish to avoid protests 

• get quick approval for a program (e.g., before anticipated budget cuts) 

• lack sufficient acquisition expertise to develop an acquisition strategy that will quickly gain 
approval 

• have a particular acquisition strategy imposed by a higher authority 

In another scenario, some key business goals (e.g., split an acquisition that is conceptually a single 
system into multiple acquisitions to avoid a “big bang”) are in direct conflict with the technology 
to be used, the system to be built, or both.  



 

CMU/SEI-2013-TN-014 | 15  

Note that these causes can be either external (protests, budget cuts) or internal (inexperience of a 
program office to develop and defend a solid acquisition strategy).  

Observed Response to the Problem 

Whatever the particular cause, the result is that the primary goal of the program office and the 
source selection team is to get through a competition and issue a contract as quickly as possible. 
Although the chosen acquisition strategy might have a poor fit with the business and/or mission 
goals for the system, the inappropriate acquisition strategy is put in place. The program begins 
execution, deferring or ignoring the parts of the strategy that have a poor fit with the real needs of 
the system to be built and, too often, the wrong contract relationship with the software develop-
er(s).  

Consequences  

The Inappropriate Acquisition Strategies anti-pattern was observed in five of the six programs 
under study. In one, the fear of a “big bang” approach led to splitting the intended large system 
into two separate acquisitions, with the assumption that the two systems could later be integrated 
back into a large SoS. The second program suffered a very long and complex protest, and did not 
get underway until several years after the first had begun. By that time, the first program had 
completed most of its requirements, and was nearing its initial fielding. However, there had been 
no input from the stakeholders of the second system about the interfaces that would be needed to 
make eventual integration of the two systems feasible. Thus, the plan for integrating the two sys-
tems was abandoned, and the second program was eventually cancelled. The first program fielded 
a system that provided only a small portion of the expected functionality. 

In another program, a business goal was to avoid being locked into using a single vendor. The 
program adopted a strategy to align the program with a significant segment of the commercial 
marketplace so that there were more opportunities to use commercial hardware and software in 
the system. Unfortunately, the incentive structure for these third-party suppliers was not well 
thought out. Many years into program execution, it was still not clear how a commercial vendor 
could get involved in the program development without a formal contract. The program has since 
been cancelled. 

In general, in the presence of this anti-pattern, one of two immediate consequences will emerge. 
Either the acquisition strategy is ignored as the program unfolds, or the program is forced to bend 
the needs of the system to the inappropriate strategy. In the latter case, the system can reach a 
point where it can no longer meet its mission and/or business goals.  

2.4.7 Overlooking Quality Attributes 

Context: 

In the earliest stages of a program’s life, there may be no formal program office and only minimal 
accompanying funding to perform necessary work. Further, there is significant pressure to rapidly 
produce the acquisition strategy and initial architecture in order for the program to be funded. 
However, there may be no requirement to use software quality attributes (QAs) to define that ar-
chitecture, and little incentive to do so. 



 

CMU/SEI-2013-TN-014 | 16  

Further, in many cases, the detailed business goals are unwritten (see anti-pattern #1), or the im-
portance of the software is ignored (see anti-pattern #5) and hence there is little opportunity to 
expose the software QAs that the system is expected to manifest. 

Problem 

The program overlooks the software QAs that should support the goals, whether mission or busi-
ness. Instead, programs rely on key performance parameters (KPPs), which often are not broken 
down in sufficient detail to allow architects to reason about the necessary alignment between the 
software architecture, system architecture, and aggregate set of goals for the system. 

Observed Response 

To meet the reporting needs and approval decisions for a system, programs put their engineering 
resources into eliciting and capturing the functional capabilities and requirements, and provide 
only minimal attention to quality attributes by focusing on a limited set (e.g., performance, avail-
ability). Even worse, the details of those QAs are more often focused on the concerns of system 
engineers rather than software engineers.  

As a result, architectural decisions that should be based on extensive consideration of all quality 
attributes—software as well as systems—are made by “gut feel” or by adopting the architecture 
from a similar or idealized system, rather than by explicit analysis that placed equal importance 
on the specific software QAs for the system. 

Consequences 

The Overlooking Quality Attributes anti-pattern was observed in four of the six programs under 
study. In one joint program, the system was to be integrated into operations in each of the military 
services. However, the concept of operations for each of the services was different (i.e., where the 
system would be hosted, security needs, and what other systems would be integrated). These dif-
ferences were not recognized early in the program. Neither the acquisition strategy nor the archi-
tecture accommodated these differences. The QAs that were constructed reflected the needs of 
just one of the services—these QAs focused only on technical issues only and explicitly ignored 
that lone service’s business goals. It eventually became apparent that the program office and the 
end users had very different approaches to meeting even the single service’s stated needs. 

In another program, the QAs were inherited from an earlier version of the program—a version 
with substantially smaller scope. These QAs were not reviewed and updated as the program scope 
expanded, and as shown in anti-pattern #3 (Failure to Adapt), neither the acquisition strategy nor 
the system and software architecture were updated to reflect the increased scope. This became 
evident when the major priority changed from providing additional mission capability to increas-
ing system reliability, and it proved impossible to reasonably analyze the effects of this change.  

In general, the primary consequence of this anti-pattern is that the resultant system architecture 
(and the likely inefficient software architecture) will satisfy only some of the goals; others will be, 
at best, partially satisfied and often unsatisfied. This means that at least some stakeholders will be 
dissatisfied with the resulting system. Adding to this dissatisfaction is that there will be no appar-
ent rationale for why their goals were omitted. 



 

CMU/SEI-2013-TN-014 | 17  

In the longer term, since sufficient knowledge of the QAs is lacking, the program will not have 
the strong analytic base needed to fully understand the impacts of different modes of evolution 
that might be needed over the system’s life cycle.  

2.5 Observations 

Although our initial data set is small, we have correlated the data with the team’s extensive expe-
rience with large, government programs. We believe that the following observations are of inter-
est. Our hope is that, with more data, we can find more definitive correlations to permit some de-
gree of predictive insight in the presence of specific combinations of anti-patterns. 

In the following tables, the anti-patterns are designated by numbers and individual programs are 
referred to by letters. Table 1 shows the frequency of the anti-patterns within the six programs. 
The distribution of anti-patterns in each program is shown in Table 2. 

Table 1: Frequency of Anti-Patterns 

Anti-
pattern 

Anti-pattern title 
Number of programs 

where observed 

1 Undocumented Business Goals 3 

2 Unresolved Conflicting Goals 5 

3 Failure to Adapt 2 

4 Turbulent Acquisition Environment 3 

5 Poor Consideration of Software 3 

6 Inappropriate Acquisition Strategies 5 

7 Overlooking Quality Attributes 4 

Table 2: Distribution of Anti-Patterns 

Program Number of anti-patterns present 

A 3 

B 6 

C 4 

D 3 

E 5 

F 4 

No program exhibited fewer than three anti-patterns, and none exhibited more than six. In terms 
of influence on the programs, the degree of influence varied widely. A given anti-pattern could be 
seen as having minimal influence on Program X, but near-catastrophic influence on Program Y. 
The mere total of anti-patterns present in a program was not a decisive factor. For instance, the 
program in which we observed six anti-patterns has fielded systems, though with some degree of 
problems. Both programs showing the fewest number of anti-patterns (three) produced no fielded 
systems.  

However, we believe that the relative strength of an anti-pattern is critical, particularly when mul-
tiple strong anti-patterns are present. This appeared to be the case, though our data is not yet deci-
sive. In one program, for instance, two anti-patterns that appeared to be strongly present resulted 



 

CMU/SEI-2013-TN-014 | 18  

in very great cost overruns, serious delays, and eventual cancellation. In another example, the 
combination of two apparently strong anti-patterns brought the program to the brink of disaster, as 
a calamitous sequence of missteps were about to be taken. We will continue to gather additional 
data in this regard, in order to support this assertion. 



 

CMU/SEI-2013-TN-014 | 19  

3 Countering the Anti-Patterns 

The anti-patterns described in the preceding section provide evidence of undesirable behaviors 
that are repeated across multiple programs. It is likely that if the people engaging in these behav-
iors were aware of the consequences they would behave differently. Thus, we conclude these un-
desirable behaviors are not intentional, but indicate flaws in the existing approach to the acquisi-
tion of software systems. One significant end result of these flaws is that architectures and 
acquisition strategies are often misaligned, with painful effect. 

We believe that at least part of the solution to this problem lies in analyzing how these anti-
patterns operate both at the micro and at the macro level. In the previous section, we examined the 
individual consequences of each anti-pattern. In the present section, we consider how they jointly 
can affect the major entities that mutually participate in the complex acquisition process.  

We first consider these entities, and how they are made manifest in specific artifacts. We then 
consider how these entities and artifacts are related. Our assertion is that the presence of each anti-
pattern is an indication of weakness in either an artifact or in one or more of its relationships. Fi-
nally, we will provide a tentative description of a method that, if followed, will ensure that the 
necessary artifacts are constructed and that the important relationships between them hold. 

3.1 Necessary Entities and Artifacts 

The seven anti-patterns we observed related to a fairly small number of distinct entities, each of 
which has major importance for a program and the system it is building. For instance, one anti-
pattern focused on how programs ignored the impact of quality attributes; another focused on how 
business goals are often unexpressed. The import of the first of these, i.e., quality attributes, is 
borne out by ample evidence and experience: it has repeatedly been shown that the main drivers 
for software architecture should be the quality attributes that the system must exhibit [SEI 2010]. 
Those quality attributes are derived from another key entity, the mission needs expressed by 
stakeholders.  

The business goals for a program are another key entity. But these may be the goals of a very dif-
ferent set of stakeholders, and may be either expressed only generally or be only implicit. Alt-
hough not commonly understood, the business goals, like mission goals, will have quality attrib-
utes that should be the main drivers for the acquisition strategy. We assert that these other quality 
attributes are at least as important as those derived from the mission goals. We will henceforth 
refer to these other QAs as “acquisition quality attributes.” 

Given these two sets of goals, which in turn are the principal drivers for two very critical entities 
(i.e., the acquisition strategy and the software and system architectures), the potential for conflicts 
between those goals is large, as is shown in the anti-pattern of conflicting goals.  

And finally, the notion of “the stakeholders” actually embodies a complex and diverse collection 
of individuals and organizations; they are the sources for the goals and the recipients of the bene-
fits of the system to be created. 

We can posit, therefore, that there are several key entities of interest: 



 

CMU/SEI-2013-TN-014 | 20  

• mission goals 

• the (mission) quality attributes implicit in those goals  

• business goals 

• the (acquisition) quality attributes implicit in those goals  

• the acquisition strategy 

• the software and system architectures, which are closely related, but separate 

• the different sets of stakeholders who have expressed needs that are captured by the mission 
and business goals 

While these entities represent a diverse set of things, including humans (stakeholders) and intan-
gibles (goals), we also posit that all of these entities must, at least in some manner, be manifest in 
physical artifacts. Some such artifacts are immediately obvious: the mission goals will ultimately 
be reflected in a requirements specification; an acquisition strategy document is mandatory for 
any program. But other artifacts are less well-defined, and may not even be present in a given 
program. We assert that they are just as necessary. 

The stakeholders for a given acquisition, for instance, cannot be a vague collection of unknown 
persons, but must be defined with at least minimal specificity: “the human resource personnel 
who do data entry for the Air Force Logistics Command,” “the Assistant Secretary of the Navy 
for XYZ,” and so forth. The definition of the stakeholders may not have a formal document type 
associated with it, but it must be physical: there must be a way to determine who precisely has one 
or another goal, if only to assist in determining priorities and negotiating conflicts. Similarly, the 
business goals themselves may first be only general expressions found in a Statement of Need. 
But eventually, those must find some form of detailed notation in a physical document that is a 
real analog to a requirements specification.  

Thus, we assert that each of the entities listed above has an associated artifact, which we can in-
spect, reason about, and compare with other artifacts of the acquisition process. 

3.2 Necessary Relationships 

These entities are related to each other by means of several different relationships. For each, we 
use the notation of: “Entity X   <relationship>   Entity Y.” The following are the pertinent rela-
tionships: 

• <have> 

• <are embodied by> 

• <are consistent with> 

• <drive> 

• <constrains> 

• <informs> 

Before we describe each of the entity-relationship pairs that we believe are relevant, we show all 
of these entities and relationships in Figure 1. Some relationships are unidirectional, and the arrow 
indicates which entity is the actor, e.g., for “X <drive> Y” the direction of the arrow is from X to 



 

CMU/SEI-2013-TN-014 | 21  

Y. Some of these relationships are reflexive, e.g., “X <informs> Y” and “Y <informs> X.” In 
these cases, the arrow is two-headed. 

 

 

Figure 1: Key Entities and Relationships Identified During Our Analysis 

<Have> relationships: There are two <have> relationships: Stakeholders have business goals, 
and Stakeholders have mission goals. It is likely that the stakeholders of the former and those of 
the latter sets of goals will be at least partially different. It is also likely that, even within the 
stakeholders with one set of goals, e.g., mission goals, that there will be different subgroups with 
non-intersecting goals. 

<Are embodied by> relationships: There are two <are embodied by> relationships: Business 
goals are embodied by acquisition quality attributes, and Mission goals are embodied by soft-
ware/system quality attributes. As in the above instance, there is likely to be diversity in each re-
lationship, since not every quality attribute will have reference to each goal, and vice-versa. 

<Are consistent with> relationships: There is one <are consistent with> relationship: Acquisi-
tion quality attributes are consistent with software/system quality attributes. This relationship is 
reflexive (each set of quality attributes is consistent with the other), and is a central element in our 
assertion about the role of anti-patterns in the alignment of acquisition strategy and software ar-
chitecture. Unless this relationship holds true, we assert that the desired alignment will almost 
certainly not be present. 

<Drive> relationships: There are two <drive> relationships: Acquisition quality attributes drive 
acquisition strategy, and Software/system quality attributes drive software/system architectures. 
Through these relationships, the importance of the previous one becomes obvious: if the two sets 
of quality attributes are consistent with each other, there is at least the possibility that the acquisi-



 

CMU/SEI-2013-TN-014 | 22  

tion strategy and the architectures will be in alignment. If the two sets of quality attributes are in-
consistent, the possibility of alignment is slim. 

<Constrains> relationships: There is one <constrains> relationship, between the acquisition 
strategy and the two architectures, and it is a reflexive relationship: Acquisition strategy con-
strains and is constrained by software and system architectures. In other words, the alignment 
between these entities is a product of how they mutually affect each other, reflecting the quality 
attributes that helped to define each of them.  

<Informs> relationships: There is one <informs> relationship, and like the previous relationship, 
it is a reflexive relationship: Software architecture informs and is informed by system architec-
ture. As with the <constrains> relationship described above, balance between these two architec-
tures can only be achieved if they are defined jointly, with the software quality attributes and sys-
tem quality attributes contributing in proper proportion to the eventual architecture of the whole 
system. 

3.3 Avoiding the Anti-Patterns 

In the preceding sections, we described the relationships between entities that should hold for an 
acquisition to be feasible. However, the anti-patterns are evidence that the relationships between 
these entities are either not present or are too weak. The following discussion connects weak or 
non-existent relationships to the anti-patterns: the stronger the relationship, the lower the chance 
that the anti-pattern will occur. Figure 2 shows the anti-patterns and the relationships they affect.  

 

Figure 2: Anti-Patterns That Affect Specific Relationships and Entities 

Stakeholders have business goals. While stakeholders have business goals, these goals are often 
not expressed; the problem is exacerbated by the lack of a process for recording business goals. If 



 

CMU/SEI-2013-TN-014 | 23  

these goals can be captured, so that the collection of business goals, stemming from all 
stakeholders, exists in a coherent document, then the anti-pattern #1 cannot occur; the business 
goals will have been documented. 

Stakeholders have business goals and have mission goals. In addition to business goals, stake-
holders also have mission goals. If a program office captures and records these goals, then the 
office can reason about changes in the acquisition environment. It can determine whether the in-
evitable changes can be accommodated within the program’s current scope or whether a reset of 
the acquisition strategy or the architectures or both will be required. If a program office can per-
form such reasoning then, though turbulence in the acquisition environment cannot be prevented, 
the office can have an appropriate response to the turbulence and prevent the occurrence of anti-
pattern #4. 

Business goals and mission goals are embodied by quality attributes. If the business and 
mission goals are analyzed and re-expressed in terms of acquisition quality attributes and 
software/system quality attributes respectively then it is clear that anti-pattern #7 cannot occur 
since the quality attributes will have been carefully analyzed as part of program creation. 
Obviously, the completeness of these relationships is dependent on the expression of both 
business and mission goals. 

Acquistion quality attributes are consistent with software and system quality attributes. 
While we expect that the representations of acquisition quality attributes and software and system 
quality attributes will be different, we expect that it will still be possible to reason about all 
quality attributes, comparing and performing tradeoffs between the two types of attributes in a 
similar fashion to the reasoning that can be performed about software quality attributes. 
Obviously, if tradeoffs have to be made, then some stakeholder expectations may not be met, but 
the program office can know which expectations will not be met, and negotiate with the 
stakeholders. If the quality attributes are consistent with each other, then conflicts among the 
goals will have been resolved and anti-pattern #2 will not occur. 

Software and system quality attributes drive architecture. Nearly 20 years of research into 
quality attributes has demonstrated that they should be the primary influences on both software 
and system architectures. It is clear that every architecture supports some quality attributes and 
does not support others. In the situations where the quality attributes are used to create the 
architectures, then we can be certain that those qualities important to the program have been 
considered and the resultant architecture is consistent with the quality attributes. In such a case, 
anti-pattern #5 cannot occur. 

Acquisition quality attributes drive the acquisition strategy. While there is no current practice 
for deriving the acquisition strategy from the acquisition quality attributes, the analogy to 
architecture and quality attributes is clear. If the acqusition strategy is derived from the qualities 
that have been developed from the business goals then it is likely that the strategy will indeed 
reflect all the stakeholder expectations and cannot be considered to be inappropriate to the 
institutional goals of the organizations involved, thus preventing the occurrence of anti-pattern #6. 

Acquisition strategy constrains and is constrained by architectures. Even when the acquisition 
strategy and the software architecture are specifically aligned, this alignment must be maintained 
through the life of the system and/or the life of the program office. As the system matures, new 



 

CMU/SEI-2013-TN-014 | 24  

goals emerge that must be accommodated in the acquisition strategy or the architecture or both. 
Ensuring that the architectures continue to constrain the acquisition strategy and the acquisition 
strategy continues to constrain the architectures will increase the likelihood that the program is 
feasible. In such a way, anti-pattern #3 can be prevented from occurring. 

3.4 Preliminary Thoughts on a Method 

Discovering and documenting the anti-patterns is only the beginning of addressing the problems 
of misalignment. Characterizing the general shape of an acquisition model that would avoid (or at 
least minimize) these anti-patterns is a meaningful next step. To that end, the second phase of our 
project is to create a method that helps programs avoid the anti-patterns we have discovered and 
provide options that could help a program to better align its acquisition strategy and software ar-

chitecture so stakeholders’ mission and business goals are better satisfied.  

Software-reliant systems are inherently social as well as technical endeavors. A key facet of our 
method, therefore, will be its ability to bring disparate actors together—often for the first time—to 
rationally identify and discuss issues of mutual concern and be able to make hard choices based 

on rational information.  

We plan to adapt and tailor existing methods where possible. We are currently exploring methods 

in the following areas: 

• Identifying Salient Stakeholders: There are many requirements elicitation and analysis meth-
ods. Unfortunately, most of these methods assume that it is possible to know which stake-
holders will most affect or be most affected by the program. We are looking at Controlled 
Requirements Expression (CORE) [Mullery 1979], a method that assists developers in identi-
fying stakeholders related to a given acquisition to help developing a more complete list of 
stakeholders.  

• Defining Business and Mission Goals: Pedigreed Attribute eLicitation Method (PALM) 
[Clements 2010] is a central element of our new method. PALM enables organizations to sys-
tematically identify the high-priority mission and business goals from the system stakehold-
ers. The architectural implications of those goals are then captured in quality attribute re-
quirements. We will extend PALM to investigate the acquisition strategy implications that a 
business or mission goal might have.  

• Analyzing Quality Attributes: Quality Attribute Workshops (QAW) [Barbacci 2003] are a 
well understood method for developing definitions of the quality attributes that form the basis 
for deriving the software architecture. We will look at using the same approach to derive at-
tributes that should drive the acquisition strategy.  

• Trading off Architecture and Acquisition Strategy Options: Methods such as Architecture 
Tradeoff Analysis Method (ATAM) [Clements 2001] or Cost Benefit Analysis Method 
(CBAM) [Kazman 2002] are used to ensure consistency of software and system quality at-
tributes. We will analyze these methods to explore consistency between the acquisition strat-
egy and its driving quality attributes. 

We have also identified some areas where there is no obvious starting point. To fully represent the 
relationships shown in Figure 1 above, further research is needed in the following areas: 



 

CMU/SEI-2013-TN-014 | 25  

• We assert the existence of a set of acquisition quality attributes (AQAs)—attributes derived 
from the program’s business goals that drive the quality of the acquisition strategy. Examples 
of these acquisition quality attributes could be “supplier replaceability” or “contract manage-
ability.” We need to explore these AQAs in more detail so that we can  

1. more clearly describe what they are and show their relationship to the acquisition 
strategy and, perhaps, the software, architecture  

2. find a way to represent these AQAs in a way that allows the program office to 
reason about them, prioritize them, and de-conflict them with the QAs derived 
from the mission goals that drive the software architecture 

• We need to define an approach to assess the extent to which the acquisition strategy and the 
software architecture are (or are not) aligned and characterize the risk this poses to program 
success. 

• We need to tie all of these independent methods together in a way that supports very early 
program decisions. It must be able to operate on the data that is available before contract 
award; it cannot overwhelm limited program resources or stakeholders; and, it must provide 
significant value to the program manager and those who oversee him or her. 

 

. 

 

 



 

CMU/SEI-2013-TN-014 | 26  

4 Conclusion 

Through performing the research and analysis described in the previous sections, we have learned 
a considerable amount about the role that anti-patterns play in U.S. DoD acquisitions, particularly 
with respect to the alignment or non-alignment between acquisition strategy and software and 
system architectures. We have seen that the negative influence of anti-patterns (and the subse-
quent misalignments) can run the spectrum from non-fatal schedule delays and cost overruns, to 
catastrophic failures, with millions were spent producing nothing of value. 

We have also learned that the effect of these anti-patterns can most easily be observed through 
several key entities, and the relationships that should hold between and among them. It is through 
the lens of these entities and relationships that we intend to begin work on the next phase of our 
project, which is to define a method useful in combating the anti-patterns. 

Note that we do not assert that anti-patterns are the only negative influence on acquisition: there 
are many other forces in play when a program is encountering problems. Intractable technology, 
changes of mind by senior management, and many other such factors can lead a program to the 
brink of failure or beyond. 

That said, we believe that anti-patterns have indeed been a major negative factor, certainly in the 
six programs we described in this report, and also in many other comparable programs in our col-
lective experience. For that reason, we strongly believe that the next phase of our work will have 
significant importance.  

Thus, our intention is to build on the present work, to explore the critical issue of acquisition qual-
ity attributes, and to create a method for avoiding these anti-patterns. We strongly believe that it 
will be a tool whereby programs can, with minimal disruption of present practice, take proactive 
steps to avoid the pitfalls seen in the present analyses. This alone will not guarantee success. But 
we believe that it will be a significant factor in avoiding failure. 

 



 

CMU/SEI-2013-TN-014 | 27  

Appendix A: Interview Template 

The following is the interview template that was used to interview the SEI personnel who per-
formed the Independent Technical Assessments on the six programs. 



 

CMU/SEI-2013-TN-014 | 28  

Section Topic Question Response 

Interviewee Infor-
mation 

What was the interviewee’s role in the pro-
gram? 

 

Background ITA background (including scope and motiva-
tion) 

 

Program Details Is there a short, succinct description of the 
program? 
• Program size:  
• Program timeline: 

 

 What is the nature of the software? (prece-
dented, unprecedented, COTS, GOTS, etc.) 

 

 Is the program a replacement for other pro-
grams? 

 

Program Goals Characterize the program’s mission and busi-
ness goals: goal, who has this goal, im-
portance to them. 

 

 Were the program business goals clearly 
stated? 

 

Architectural Details Is there architectural documentation for the 
program? 

 

 In what form is the architecture described?  
 Who defined the architecture?  
 What constraints were the architects under 

when the architecture was defined? 
 

 When, during the whole life of the program, 
was the architecture defined? 

 

 When, and how, was software considered 
during the architecting process? 

 

 Which, if any, quality attributes were consid-
ered during the development of the architec-
ture? 

 

 Was the architecture driven by the QAs?  
 How were the business/mission goals taken 

(not taken) into account in the architecture? (in 
what ways did they affect the architecture?) 

 

Acquisition Details Is there a succinct description of the acquisi-
tion strategy the program followed? 

 

 What reporting requirements existed for the 
program? 

 

 Where is the program in the overall life cycle?  
 How did known software risks affect the ac-

quisition strategy? 
 

 What were the forms of the contracts?  
 How were the business/mission goals taken 

(not taken) into account in the acquisition 
strategy? 

 

 How was the architecture taken (not taken) 
into account in the acquisition strategy? 

 

Program Success In what ways is the program successful?  
 In what ways is the program not successful?  
Additional Thoughts 
from Interviewee 

What further information or observations are 
important for us to know? 

 

 Are there other people we should interview for 
more detail? 

 



 

CMU/SEI-2013-TN-014 | 29  

References 

[Alexander 1977] 
Alexander, Christopher, et al. A Pattern Language: Towns, Buildings, Construction. Oxford Uni-
versity Press, 1977, ISBN 0-19-501919-9 

[Barbacci 2003]  
Barbacci, Mario, et al. Quality Attribute Workshops (QAWs), Third Edition (CMU/SEI-2003-TR-
016). Software Engineering Institute, Carnegie Mellon University, 2003. 
http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm 

[Bass 2012] 
Bass, Len, et al. Software Architecture in Practice, 3rd Edition. Addison-Wesley, 2012. 

[Brown 1998] 
Brown, W.J., et al. Antipatterns: Refactoring Software, Architecture, and Projects in Crisis. 
Wiley and Sons, 1998 

[Buschmann 1996] 
Buschmann, Frank, et al. Pattern-Oriented Software Architecture Volume 1: A System of Patterns. 
Wiley and Sons, 1996. 

[Clements 2001]  
Clements, Paul, et al. Evaluating Software Architectures: Methods and Case Studies. Addison-
Wesley, 2001. ISBN-10: 0-201-70482-X; ISBN-13: 978-0-201-70482-2 

[Clements 2010] 
Clements, Paul, et al. Relating Business Goals to Architecturally Significant Requirements for 
Software Systems (CMU/SEI-2010-TN-018). Software Engineering Institute, Carnegie Mellon 
University, 2010. http://www.sei.cmu.edu/library/abstracts/reports/10tn018.cfm  

[DAU 2011] 
Defense Acquisition University. Glossary of Defense Acquisition Acronyms and Terms. 14th Edi-
tion, 2011. 

[Gamma 1994] 
Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-
Wesley, 1994. ISBN 0-201-63361-2 

[IEEE 1998] 
IEEE. Standard for Software Quality Metrics Methodology, IEEE Std 1061-1998. 

 

 

 

http://www.sei.cmu.edu/library/abstracts/reports/03tr016.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tn018.cfm


 

CMU/SEI-2013-TN-014 | 30  

[Kazman 2002] 
Kazman, Rick, et al. Making Architecture Design Decisions: An Economic Approach (CMU/SEI-
2002-TR-035). Software Engineering Institute, Carnegie Mellon University, 2002. 
http://www.sei.cmu.edu/library/abstracts/reports/02tr035.cfm 

[Klein 2010] 
Klein, John et al. A Workshop on Analysis and Evaluation of Enterprise Architectures (CMU/SEI-
2010-TN-023). Software Engineering Institute, Carnegie Mellon University, 2010. 
http://www.sei.cmu.edu/library/abstracts/reports/10tn023.cfm  

[Mullery 1979] 
Mullery, G.P. CORE - A Method for Controlled Requirement Specification, CHI479-5/79/0000-
0126500.75. IEEE 1979.  
http://ss.hnu.cn/oylb/tsp/CORE-mullery.pdf  

[SEI 2010] 
Software Engineering Institute. CMMI® for Development, Version 1.3. (CMU/SEI-2010-TR-033). 
Software Engineering Institute, Carnegie Mellon University, 2010. 
http://www.sei.cmu.edu 
  

 

 

 

 

 

 

 

 

http://www.sei.cmu.edu/library/abstracts/reports/02tr035.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tn023.cfm
http://ss.hnu.cn/oylb/tsp/CORE-mullery.pdf
http://www.sei.cmu.edu


 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters 
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of 
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave Blank) 

2. REPORT DATE 

June 2013 

3. REPORT TYPE AND DATES 
COVERED 

Final 

4. TITLE AND SUBTITLE 

Isolating Patterns of Failure in Department of Defense Acquisition 

5. FUNDING NUMBERS 

FA8721-05-C-0003  

6. AUTHOR(S) 

Lisa Brownsword, Cecilia Albert, David Carney, Charles Hammons, John Hudak, Patrick Place 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2013-TN-014 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

AFLCMC/PZE/Hanscom 

Enterprise Acquisition Division 

20 Schilling Circle 

Building 1305 

Hanscom AFB, MA  01731-2116 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

n/a 

11. SUPPLEMENTARY NOTES 

 

12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 

 

13. ABSTRACT (MAXIMUM 200 WORDS) 

This report documents an investigation into issues related to aligning acquisition strategies with business and mission goals. The inves-
tigation was motivated by the observation that a significant contributing factor in troubled or failing acquisitions was the misalignment be-
tween the software architecture and the acquisition strategy. An examination of a number of acquisition programs led to the discovery of 
seven repeatable patterns of failure to: (1) document business goals, (2) resolve conflicts between goals, (3) adapt to changing needs, 
(4) accommodate turbulence in the acquisition environment, (5) give due consideration to software needs, (6) use appropriate acquisi-
tion strategies, and (7) understand and use software quality attributes to create the architecture. 

In addition to a detailed description of these patterns, the authors define the artifacts and the relationships that would have to hold be-
tween these artifacts in order to combat the failure patterns. Finally, they offer some suggestions on a method, woven from existing 
methods, for developing the artifacts with sufficient content that one can reason about the strength of the necessary relationships. 

 

14. SUBJECT TERMS 

Acquisition, strategy, business goals, mission goals 

15. NUMBER OF PAGES 

43 

16. PRICE CODE 

 

17. SECURITY CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 

298-102 

 

 


	Acknowledgements
	Abstract
	1 Introduction
	2 Observed Anti-Patterns
	3 Countering the Anti-Patterns
	4 Conclusion
	Appendix A: Interview Template
	References

