

Well There’s Your Problem: Isolating the
Crash-Inducing Bits in a Fuzzed File

Allen D. Householder

October 2012

TECHNICAL NOTE
CMU/SEI-2012-TN-012

CERT Program

http://www.sei.cmu.edu

http://www.sei.cmu.edu

SEI markings v3.2 / 30 August 2011

Copyright 2012 Carnegie Mellon University.

This material is based upon work funded and supported by the United States Department of Defense under Contract No.

FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally

funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do

not necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent
AFLCMC/PZE
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT

INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or

electronic form without requesting formal permission. Permission is required for any other external and/or commercial

use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

® CERT is a registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

* These restrictions do not apply to U.S. government entities.

mailto:permission@sei.cmu.edu

CMU/SEI-2012-TN-012 | i

Table of Contents

Abstract v

1 Introduction 1
1.1 Determining Crash Uniqueness 1
1.2 Prior Work 1

2 Rationale 2
2.1 Optimizing the Number of Bits to Revert 2

2.1.1 Expected Hamming Distance Reduction 2
2.1.2 Probability of Success in a Given Iteration 2

2.2 Iterative Hypothesis Testing 4

3 Results and Discussion 6
3.1 Limitations and Future Work 8

4 Conclusion 9

Bibliography 10

CMU/SEI-2012-TN-012 | ii

CMU/SEI-2012-TN-012 | iii

List of Figures

Figure 1: Test Case Minimization Example 6

Figure 2: Algorithm Performance 8

CMU/SEI-2012-TN-012 | iv

CMU/SEI-2012-TN-012 | v

Abstract

Mutational input testing (fuzzing, and in particular dumb fuzzing) is an effective technique for
discovering vulnerabilities in software. However, many of the bitwise changes in fuzzed input
files are not relevant to the actual software crashes found.

This report describes an algorithm that efficiently reverts bits from the fuzzed file to those found
in the original seed file, keeping only the minimal bits required to recreate the crash under inves-
tigation. This technique reduces the complexity of analyzing a crashing test case by eliminating
the changes to the seed file that are not essential to the crash being evaluated.

CMU/SEI-2012-TN-012 | 1

1 Introduction

Dumb fuzzing begins with an original, non-crashing seed file and produces mutated (i.e., fuzzed)
files that cause crashes. A fuzzed file may cause different code paths to be executed than the seed
file, but many of these differences are irrelevant to the eventual crash the fuzzed file induces in
the software. Therefore, to facilitate crash analysis, we need to reduce the differences between the
seed file and the fuzzed file while still retaining a test case that can induce the crash that was ini-
tially detected. In this report, we describe an algorithm that efficiently reverts bits from the fuzzed
file to those found in the original seed file, keeping only the minimal bits required to recreate the
crash under investigation.

1.1 Determining Crash Uniqueness

The technique described here depends on the ability to identify unique crashes. We will briefly
explain how this technique can be used for doing so, but the results of the paper are not dependent
on the specific method of crash-uniqueness determination.

It is not sufficient to merely detect that a candidate file causes a crash, as there may be many pos-
sible crashes caused by a mix of input data. Thus we use a fuzzy hashing technique based on dy-
namic test generation for uniquely identifying crashes on Linux systems using the Gnu Debugger
(GDB) [4]. For each crashing fuzzed file found, we gather GDB output and parse the last few
lines of backtrace to determine the crash characteristics. If the backtrace contains a string that
identifies a specific line in the source code (e.g., at foo.c:37) indicating that debugging symbols
are present, we use the source line information. Otherwise, we take the address of each backtrace
line. We currently use five lines of backtrace for the uniqueness determination.

1.2 Prior Work

This work was inspired by Dan Rosenberg’s FuzzDiff tool, which takes a heuristics-based ap-
proach to the problem of test case minimization [5].

CMU/SEI-2012-TN-012 | 2

2 Rationale

Consider the problem space: there are two files, a SeedFile that does not cause a crash, and a
FuzzedFile that induces a crash. The FuzzedFile was derived from the SeedFile by probabilistical-
ly flipping bits.1 Because both files are the same size, we can use the Hamming Distance HD() as
the metric we seek to minimize.

We do not know how many bits are minimally needed to induce the crash, but we know that it
must be in the range 1 ≤ min ≤ HD(SeedFile, FuzzedFile).

When attempting to iteratively minimize the Hamming Distance between the SeedFile and the
FuzzedFile, there are two key questions to answer:

1. How many bits should we attempt to revert back to the SeedFile and the FuzzedFile value in
this iteration?

2. Have we reached a minimum?

We tackle these questions in Sections 2.1 and 2.2.

2.1 Optimizing the Number of Bits to Revert

Deciding how many bits to revert in any given iteration is critical to finding an optimal solution.
Calculate the probability of success in a given iteration as well as the reduction in the Hamming
Distance (i.e., the number of bits restored from the SeedFile) when the iteration is successful.
Multiply these two values to determine an expected reduction for each possible set of parameters.
Then simply select the parameters with the maximum expected reduction.

2.1.1 Expected Hamming Distance Reduction

Calculating the reduction in Hamming Distance is straightforward. Simply iterate through the
FuzzedFile and restore a bit from the SeedFile with the probability p to produce a NewFile such
that

NewHD = HD(SeedFile, NewFile) (1)

and

0 < NewH D < HD (SeedFile, FuzzedFile) (2)

Thus the reduction in distance will be

BitReduction = p × HD (SeedFile, FuzzedFile) (3)

Note that this is equivalent to saying that

NewHD = (1 − p) × HD (SeedFile, FuzzedFile) (4)

2.1.2 Probability of Success in a Given Iteration

Once we know the potential NewHD, we can recast the problem as one of drawing marbles from
an urn and apply the hypergeometric distribution. Consider the following example taken from

1 In our fuzzing environment, we currently use zzuf [1] but any randomized file fuzzing technique would work.

CMU/SEI-2012-TN-012 | 3

E.T. Jaynes’ Probability Theory [2]: An urn contains N marbles, M of which are red, the remain-
der white. If we draw n marbles from the jar, the probability of drawing r red marbles is

,ܯ,ܰ|ݎ)ܲ ݊) = 	 ቀݎܯ ቁ ቀܰ ݊ܯ− − ݎ ቁቀܰ݊ቁ
(5)

In this case, we let N = HD (SeedFile, FuzzedFile), M = the minimum number of bits to induce
the same crash (unknown), and n = NewHD from equation (4). Furthermore, for our trial to be a
success, we would have to draw all the red marbles at once. So we can set r = M . Thus equation
(5) becomes

,ܯ,ܰ|ܯ)ܲ ݊) = 	 ቀܰ − ݊ܯ ቁቀܰ݊ቁܯ−
(6)

Which further reduces2 to

,ܯ,ܰ|ܯ)ܲ ݊) = 	݊! (ܰ	 − !ܰ!(ܯ (݊ !(ܯ− (7)

We still do not know what M	is. However, we can begin by hypothesizing that M = 1	and then
refine our hypothesis as we go (see Section 2.2).

Given that we know

N = HD(SeedFile, FuzzedFile) (8)

and we hypothesize M = 1, using equation (4) we can calculate

ni = (1 − pi)N (9)

and thus P (M |N, M, ni) for each pi where

pi = i/N (10)

and i is an integer in the range 1 ≤ i< N .

We can then multiply the resulting P (M |N, M, ni) values by the

BitReduction = (N − ni) (11)

and choose a

DiscChance = pmax (12)

that satisfies

pmax = p : max(P (M |N, M, ni) × (N − ni)) (13)

with 1 ≤ i < N .

2 N, M, and n	can be in the thousands or even millions at the start of a minimization. Thus, when implementing

this algorithm in code, we found it convenient to transform equation (7) using the log gamma function lnΓ() in
lieu of factorials to avoid extremely large integers.

CMU/SEI-2012-TN-012 | 4

With this series of calculations we have now determined an answer to Question 1 in Section 2:
How many bits should we attempt to revert back to the SeedFile value in this iteration? The an-
swer is DiscChance × HD(SeedFile, FuzzedFile) bits.

Pseudocode for this algorithm is in Algorithm 1.

Algorithm 1: Setting the Discard Chance

for 1 ≤ i ≤CurrHD do
 CDChance[i] ← i/CurrHD
end for
for all CDChance[i] do
 Calculate Phit [i] [see (7)]

 BitReduction[i] ← CurrHD × CDChance[i]
 ExpectedReduction[i] ← Phit [i] ×

 BitReduction[i]
end for
DiscChance ← max(ExpectedReductions)
return DiscChance

2.2 Iterative Hypothesis Testing

Next we address Section 3, Question 2: How do we know whether we have reached a minimum?
There are three ways to determine whether we have reached a minimum:

1. We find a NewFile that induces the same crash as the FuzzedFile with NewHD = 1.

2. We have exhaustively searched all files with a Hamming Distance smaller than NewHD and
found that none of them induces the same crash as the FuzzedFile.

3. We have tried at least x times and failed to find a file with a Hamming Distance smaller than
NewHD that induces the same crash as the FuzzedFile. We define this as a hit.

Of these three ways, both one and two are just convenient shortcuts. The “meat” of the problem
lies in deciding what x should be in three.

Our approach is to iteratively test the hypothesis until there is at least one hit left to be found in
the search space. Here we use the identity that phit = 1 — pmiss (14)

and observe that the chance of getting at least one hit in x tries is

P (≥ 1_hit_in_ x_ tries) = 1 – px
miss =1 − (1 − phit)x (15)

Another way to interpret equation (15) is that if we try x times and failed to find a hit, then P (≥ 1
hit_in_x_tries) is equal to our confidence that phit is incorrect. So we can choose our desired con-

fidence value C (e.g., C = 0.999) such that

C = 1 − (1 − phit)x (16)

and then solve for x

CMU/SEI-2012-TN-012 | 5

ݔ = ln	(1 − (1	ln(ܥ − ௛௜௧) (17)݌

where	phit	= P(M | N, M, n) from equation (7).

If we reach a point where we have x consecutive misses with a given set of parameters, we have
confidence C that phit must be wrong. For phit to be wrong, one of its input variables must be

wrong. However, in equation (7) N is measured, and n was chosen based on the calculations in
Section 2.1, which in turn are based on M . So this leaves M as the variable we should update.

Recall from Section 2.1.2 that we started by hypothesizing that the target size is M = 1. We can
then conclude that given x misses, M > 1. Therefore, when these conditions are met, we increment
our target size guess M' = M + 1, then repeat the calculations of Section 2.1 to find a new Disc-
Chance and iterate.

When we reach a state where M = NewHD (i.e., we conclude with confidence C that the target is
at least M bits, and we have found a NewFile at that Hamming Distance), we end the search and
declare NewFile to be the minimized version of the FuzzedFile.

Pseudocode for the minimization algorithm is shown in Algorithm 2.

Algorithm 2: Main Minimization Algorithm

MinDistFound ← HD(SeedFile, FuzzedFile)
CurrentFile ← FuzzedFile
MissCount ← 0
TargSzGuess ← 1
MinFound ← False
while MinFound ≠ True do

DiscChance ← GetDiscChance() (see 1) AllowedMisses ← GetAllowedMisses() [see (17)]
while MissCount < AllowedMisses do

Generate a NewFile by replacing bits in the FuzzedFile with bits from the SeedFile with probability Disc-
Chance
if CrashID(NewFile) =
CrashID(FuzzedFile) then

MinDistFound
HD(SeedFile, NewFile)
CurrentFile ← NewFile
reset DiscChance and AllowedMisses based on the new MinDistFound
MissCount ← 0
if MinDistFound = TargSzGuess then

MinFound ← True
end if
break inner loop

else
increment MissCount

end if
end while

if MinFound ≠ True then
TargSzGuess ← TargSzGuess +1

end if
end while

CMU/SEI-2012-TN-012 | 6

3 Results and Discussion

We have been using this minimization technique in fuzzing environments for some time now, and
it has helped us distill crashing test cases to their minimum difference from a non-crashing test
case.

Figure 1 shows the performance of the minimization algorithm on a crashing test case that started
with a Hamming Distance of 1383 bits. Using the confidence level C = 0.999, it took 1248 tries to
minimize the crash to a Hamming Distance of 49 bits. In this instance, the algorithm found its first
hit after 133 attempts with a target size guess of 11 bits.

Figure 1: Test Case Minimization Example

CMU/SEI-2012-TN-012 | 7

From that point on, the algorithm continued to find smaller and smaller minima following an ap-
proximately exponential curve up to the point where the target size guess and minimum found are
nearly equal (around iteration 800). From there, the minimization progress slows as the algorithm
completes its convergence.

To evaluate the performance of the minimization algorithm, we compared the number of itera-
tions required for the algorithm to terminate to the final Hamming Distance of the minimized test
case. Data was taken from a series of fuzzing campaigns against multiple applications and with
multiple seed files.

As shown in

Figure 2, general algorithm performance appears to be approximately linear relative to the Ham-
ming Distance of the minimized test case. When multiple test cases minimized to the same Ham-
ming Distance, Figure 2 shows the average number of iterations for that distance.

The linear fit is

y = 18.4x + 179.7 (18)

with R2 = 0.89.

The power law fit is

y = 32.6x0.92 (19)

with R2 = 0.96.

CMU/SEI-2012-TN-012 | 8

Figure 2: Algorithm Performance

3.1 Limitations and Future Work

The minimization algorithm presented here assumes that both the original seed file and the fuzzed
test case to be minimized are of the same length, thereby allowing the use of the Hamming Dis-
tance as the metric to be minimized. We believe it should be possible to generalize the algorithm
to use Levenshtein Edit Distance to enable the application of this method to fuzzing techniques
that alter the input file length.

Furthermore, it is possible that the same software bug could cause different crash signatures using
the uniqueness determination described in Section 1.1. In particular, applications that implement
Just-In-Time (JIT) compilation tend to resist test case minimization since varying the input can
alter the JIT code that is executed, thus making it harder to recreate the same crash in the minimi-
zation process.

Although it is rare, we have seen in some cases that the exact same test case file can cause differ-
ent crash signatures to occur; so as a practical workaround, we conduct a quick check before we
begin the main minimization loop to determine if the crash signature is stable with multiple runs
of the test case.

Finally, the algorithm is, of course, at the mercy of the fuzzed files to which it is applied. Alt-
hough it is both effective and efficient at finding the minimal changes required to recreate a crash
given a particular fuzzed file, it is entirely possible that another fuzzed file for the same crash
could in fact minimize to a smaller Hamming Distance. In practice, this difference has not been an
issue, since most crashing test cases minimize down to a relatively small Hamming Distance
(around 5-20 bits is typical).

CMU/SEI-2012-TN-012 | 9

4 Conclusion

Fuzzing in general—and dumb fuzzing in particular—has been shown to be an effective technique
for discovering vulnerabilities in software. However, many of the bitwise changes in fuzzed input
files are not relevant to the actual software crashes found.

In this report, we described an algorithm that efficiently reverts those non-essential bits from the
fuzzed file to those found in the original seed file. This algorithm reduces the complexity of ana-
lyzing a crashing test case by eliminating bitwise changes that are not essential to the crash being
evaluated.

We have found this technique to be very useful to our vulnerability analysts in their ongoing ef-
forts to discover, analyze, and coordinate vulnerabilities with software vendors.

An implementation of the minimization algorithm described here is available in the CERT Basic
Fuzzing Framework (BFF) for Linux and Mac OS X, and the CERT Failure Observation Engine
(FOE) for Windows, which are released under open source licenses. CERT BFF can be down-
loaded at http://www.cert.org/vuls/discovery/bff.html while CERT FOE is available from
http://www.cert.org/vuls/discovery/foe.html.

http://www.cert.org/vuls/discovery/bff.html
http://www.cert.org/vuls/discovery/foe.html

CMU/SEI-2012-TN-012 | 10

Bibliography

[1] S. Hocevar. (2011, May 12). zzuf—multi-purpose fuzzer. [Online]. Available:
http://caca.zoy.org/wiki/zzuf

[2] E. T. Jaynes and G. L. Bretthorst, Probability Theory: The Logic of Science. Cambridge
University Press, 2003.

[3] C. Miller. (2007, August 3). How Smart Is Intelligent Fuzzing-or-How Stupid Is Dumb
Fuzzing. [Online]. Available: http://www.defcon.org/images/defcon-15/dc15-
presentations/dc-15-miller.pdf

[4] David Molnar, Xue Cong Li, and David A. Wagner, “Dynamic Test Generation to Find
Integer Bugs in x86 Binary Linux Programs,” in Proceedings of the 18th conference on
USENIX security symposium, SSYM’09, Berkeley, CA, 2009, pages 67–82.

[5] Dan Rosenberg. (2010) FuzzDiff. [Online]. Available: http://code.google.com/p/fuzzdiff/

[6] A. Takanen, J. DeMott, and C. Miller, Fuzzing for Software Security Testing and Quality
Assurance. Artech House Publishers, 2008.

http://caca.zoy.org/wiki/zzuf
http://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-miller.pdf
http://www.defcon.org/images/defcon-15/dc15-presentations/dc-15-miller.pdf
http://code.google.com/p/fuzzdiff/

CMU/SEI-2012-TN-012 | 11

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2012

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Well There’s Your Problem: Isolating the Crash-Inducing Bits in a Fuzzed File

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Allen D. Householder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2012-TN-012

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFLCMC/PZE/Hanscom
Enterprise Acquisition Division
20 Schilling Circle
Building 1305
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Mutational input testing (fuzzing, and in particular dumb fuzzing) is an effective technique for discovering vulnerabilities in software.
However, many of the bitwise changes in fuzzed input files are not relevant to the actual software crashes found.

In this report, we describe an algorithm that efficiently reverts bits from the fuzzed file to those found in the original seed file, keeping on-
ly the minimal bits required to recreate the crash under investigation. This technique reduces the complexity of analyzing a crashing test
case by eliminating the changes to the seed file that are not essential to the crash being evaluated.

14. SUBJECT TERMS

fuzzing, fuzz testing, automated debugging, software testing, adaptive testing

15. NUMBER OF PAGES

19

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Abstract
	1 Introduction
	2 Rationale
	3 Results and Discussion
	4 Conclusion
	Bibliography

