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Abstract 

Mutational input testing (fuzzing, and in particular dumb fuzzing) is an effective technique for 
discovering vulnerabilities in software. However, many of the bitwise changes in fuzzed input 
files are not relevant to the actual software crashes found. 

This report describes an algorithm that efficiently reverts bits from the fuzzed file to those found 
in the original seed file, keeping only the minimal bits required to recreate the crash under inves-
tigation. This technique reduces the complexity of analyzing a crashing test case by eliminating 
the changes to the seed file that are not essential to the crash being evaluated. 
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1 Introduction 

Dumb fuzzing begins with an original, non-crashing seed file and produces mutated (i.e., fuzzed) 
files that cause crashes. A fuzzed file may cause different code paths to be executed than the seed 
file, but many of these differences are irrelevant to the eventual crash the fuzzed file induces in 
the software. Therefore, to facilitate crash analysis, we need to reduce the differences between the 
seed file and the fuzzed file while still retaining a test case that can induce the crash that was ini-
tially detected. In this report, we describe an algorithm that efficiently reverts bits from the fuzzed 
file to those found in the original seed file, keeping only the minimal bits required to recreate the 
crash under investigation. 

1.1 Determining Crash Uniqueness 

The technique described here depends on the ability to identify unique crashes. We will briefly 
explain how this technique can be used for doing so, but the results of the paper are not dependent 
on the specific method of crash-uniqueness determination. 

It is not sufficient to merely detect that a candidate file causes a crash, as there may be many pos-
sible crashes caused by a mix of input data. Thus we use a fuzzy hashing technique based on dy-
namic test generation for uniquely identifying crashes on Linux systems using the Gnu Debugger 
(GDB) [4]. For each crashing fuzzed file found, we gather GDB output and parse the last few 
lines of backtrace to determine the crash characteristics. If the backtrace contains a string that 
identifies a specific line in the source code (e.g., at foo.c:37) indicating that debugging symbols 
are present, we use the source line information. Otherwise, we take the address of each backtrace 
line. We currently use five lines of backtrace for the uniqueness determination. 

1.2 Prior Work 

This work was inspired by Dan Rosenberg’s FuzzDiff tool, which takes a heuristics-based ap-
proach to the problem of test case minimization [5]. 
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2 Rationale 

Consider the problem space: there are two files, a SeedFile that does not cause a crash, and a 
FuzzedFile that induces a crash. The FuzzedFile was derived from the SeedFile by probabilistical-
ly flipping bits.1 Because both files are the same size, we can use the Hamming Distance HD() as 
the metric we seek to minimize. 

We do not know how many bits are minimally needed to induce the crash, but we know that it 
must be in the range 1 ≤ min ≤ HD(SeedFile, FuzzedFile). 

When attempting to iteratively minimize the Hamming Distance between the SeedFile and the 
FuzzedFile, there are two key questions to answer: 

1. How many bits should we attempt to revert back to the SeedFile and the FuzzedFile value in 
this iteration? 

2. Have we reached a minimum? 

We tackle these questions in Sections 2.1 and 2.2. 

2.1 Optimizing the Number of Bits to Revert 

Deciding how many bits to revert in any given iteration is critical to finding an optimal solution. 
Calculate the probability of success in a given iteration as well as the reduction in the Hamming 
Distance (i.e., the number of bits restored from the SeedFile) when the iteration is successful. 
Multiply these two values to determine an expected reduction for each possible set of parameters. 
Then simply select the parameters with the maximum expected reduction. 

2.1.1 Expected Hamming Distance Reduction 

Calculating the reduction in Hamming Distance is straightforward. Simply iterate through the 
FuzzedFile and restore a bit from the SeedFile with the probability p to produce a NewFile such 
that 

NewHD = HD(SeedFile, NewFile) (1) 

and 

0 < NewH D < HD (SeedFile, FuzzedFile) (2) 

Thus the reduction in distance will be 

BitReduction = p × HD (SeedFile, FuzzedFile) (3) 

Note that this is equivalent to saying that 

NewHD = (1 − p) × HD (SeedFile, FuzzedFile) (4) 

2.1.2 Probability of Success in a Given Iteration 

Once we know the potential NewHD, we can recast the problem as one of drawing marbles from 
an urn and apply the hypergeometric distribution. Consider the following example taken from 

 
1 In our fuzzing environment, we currently use zzuf [1] but any randomized file fuzzing technique would work. 
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E.T. Jaynes’ Probability Theory [2]: An urn contains N marbles, M of which are red, the remain-
der white. If we draw n marbles from the jar, the probability of drawing r red marbles is 

,ܯ,ܰ|ݎ)ܲ ݊) = 	 ቀݎܯ ቁ ቀܰ ݊ܯ− − ݎ ቁቀܰ݊ቁ  
(5) 

In this case, we let N = HD (SeedFile, FuzzedFile), M = the minimum number of bits to induce 
the same crash (unknown), and n = NewHD from equation (4). Furthermore, for our trial to be a 
success, we would have to draw all the red marbles at once. So we can set r = M . Thus equation 
(5) becomes 

,ܯ,ܰ|ܯ)ܲ ݊) = 	 ቀܰ − ݊ܯ ቁቀܰ݊ቁܯ−  
(6) 

Which further reduces2  to 

,ܯ,ܰ|ܯ)ܲ ݊) = 	݊! (ܰ	 − !ܰ!(ܯ (݊ !(ܯ−  (7) 

We still do not know what M	is. However, we can begin by hypothesizing that M = 1	and then 
refine our hypothesis as we go (see Section 2.2). 

Given that we know 

N = HD(SeedFile, FuzzedFile) (8) 

and we hypothesize M = 1, using equation (4) we can calculate 

ni = (1 − pi )N  (9) 

and thus P (M |N, M, ni ) for each pi where 

pi = i/N (10) 

and i is an integer in the range 1 ≤ i< N . 

We can then multiply the resulting P (M |N, M, ni ) values by the  

BitReduction = (N − ni )  (11) 

and choose a 

DiscChance = pmax (12) 

that satisfies 

pmax = p : max(P (M |N, M, ni ) × (N − ni ))  (13) 

with 1 ≤ i < N . 

 
2 N, M, and n	can be in the thousands or even millions at the start of a minimization. Thus, when implementing 

this algorithm in code, we found it convenient to transform equation (7) using the log gamma function lnΓ() in 
lieu of factorials to avoid extremely large integers. 
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With this series of calculations we have now determined an answer to Question 1 in Section 2: 
How many bits should we attempt to revert back to the SeedFile value in this iteration? The an-
swer is DiscChance × HD(SeedFile, FuzzedFile) bits. 

Pseudocode for this algorithm is in Algorithm 1. 

Algorithm 1: Setting the Discard Chance 

for 1 ≤ i ≤CurrHD do 
 CDChance[i] ← i/CurrHD 
end for 
for all CDChance[i] do 
 Calculate Phit [i] [see (7)] 

 BitReduction[i] ← CurrHD × CDChance[i] 
 ExpectedReduction[i] ← Phit [i] × 

 BitReduction[i] 
end for 
DiscChance ← max(ExpectedReductions) 
return DiscChance 

2.2 Iterative Hypothesis Testing 

Next we address Section 3, Question 2: How do we know whether we have reached a minimum? 
There are three ways to determine whether we have reached a minimum: 

1. We find a NewFile that induces the same crash as the FuzzedFile with NewHD = 1. 

2. We have exhaustively searched all files with a Hamming Distance smaller than NewHD and 
found that none of them induces the same crash as the FuzzedFile. 

3. We have tried at least x times and failed to find a file with a Hamming Distance smaller than 
NewHD that induces the same crash as the FuzzedFile. We define this as a hit. 

Of these three ways, both one and two are just convenient shortcuts. The “meat” of the problem 
lies in deciding what x should be in three. 

Our approach is to iteratively test the hypothesis until there is at least one hit left to be found in 
the search space. Here we use the identity that phit = 1 —  pmiss (14) 

and observe that the chance of getting at least one hit in x tries is 

P (≥ 1_hit_in_ x_ tries) = 1 – px
miss =1 − (1 − phit)x (15) 

Another way to interpret equation (15) is that if we try x times and failed to find a hit, then P (≥ 1 
hit_in_x_tries) is equal to our confidence that phit is incorrect. So we can choose our desired con-

fidence value C (e.g., C = 0.999) such that  

C = 1 − (1 − phit)x  (16) 

and then solve for x 
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ݔ = ln	(1 − (1	ln(ܥ − ௛௜௧) (17)݌

where	phit	= P(M | N, M, n) from equation (7). 

If we reach a point where we have x consecutive misses with a given set of parameters, we have 
confidence C that phit  must be wrong. For phit  to be wrong, one of its input variables must be 

wrong. However, in equation (7) N is measured, and n was chosen based on the calculations in 
Section 2.1, which in turn are based on M . So this leaves M as the variable we should update. 

Recall from Section 2.1.2 that we started by hypothesizing that the target size is M = 1. We can 
then conclude that given x misses, M > 1. Therefore, when these conditions are met, we increment 
our target size guess M' = M + 1, then repeat the calculations of Section 2.1 to find a new Disc-
Chance and iterate. 

When we reach a state where M = NewHD (i.e., we conclude with confidence C that the target is 
at least M bits, and we have found a NewFile at that Hamming Distance), we end the search and 
declare NewFile to be the minimized version of the FuzzedFile.  

Pseudocode for the minimization algorithm is shown in Algorithm 2. 

Algorithm 2: Main Minimization Algorithm 

MinDistFound ← HD(SeedFile, FuzzedFile) 
CurrentFile ← FuzzedFile 
MissCount ← 0 
TargSzGuess ← 1 
MinFound ← False 
while MinFound ≠ True do 

DiscChance ← GetDiscChance() (see 1) AllowedMisses ← GetAllowedMisses() [see (17)] 
while MissCount < AllowedMisses do 

Generate a NewFile by replacing bits in the FuzzedFile with bits from the SeedFile with probability Disc-
Chance 
if CrashID(NewFile) = 
CrashID(FuzzedFile) then 

MinDistFound 
HD(SeedFile, NewFile) 
CurrentFile ← NewFile 
reset DiscChance and AllowedMisses based on the new MinDistFound 
MissCount ← 0 
if MinDistFound = TargSzGuess then 

MinFound ← True 
end if 
break inner loop 

else 
increment MissCount 

end if 
end while 

if MinFound  ≠ True then 
TargSzGuess ← TargSzGuess +1 

end if 
end while 
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3 Results and Discussion 

We have been using this minimization technique in fuzzing environments for some time now, and 
it has helped us distill crashing test cases to their minimum difference from a non-crashing test 
case. 

 

Figure 1 shows the performance of the minimization algorithm on a crashing test case that started 
with a Hamming Distance of 1383 bits. Using the confidence level C = 0.999, it took 1248 tries to 
minimize the crash to a Hamming Distance of 49 bits. In this instance, the algorithm found its first 
hit after 133 attempts with a target size guess of 11 bits. 

 
Figure 1: Test Case Minimization Example 
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From that point on, the algorithm continued to find smaller and smaller minima following an ap-
proximately exponential curve up to the point where the target size guess and minimum found are 
nearly equal (around iteration 800). From there, the minimization progress slows as the algorithm 
completes its convergence. 

To evaluate the performance of the minimization algorithm, we compared the number of itera-
tions required for the algorithm to terminate to the final Hamming Distance of the minimized test 
case. Data was taken from a series of fuzzing campaigns against multiple applications and with 
multiple seed files. 

As shown in 

 

Figure 2, general algorithm performance appears to be approximately linear relative to the Ham-
ming Distance of the minimized test case. When multiple test cases minimized to the same Ham-
ming Distance, Figure 2 shows the average number of iterations for that distance. 

The linear fit is 

y = 18.4x + 179.7 (18) 

with R2 = 0.89. 

 

The power law fit is 

y = 32.6x0.92 (19) 

with R2 = 0.96. 
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Figure 2: Algorithm Performance 

3.1 Limitations and Future Work 

The minimization algorithm presented here assumes that both the original seed file and the fuzzed 
test case to be minimized are of the same length, thereby allowing the use of the Hamming Dis-
tance as the metric to be minimized. We believe it should be possible to generalize the algorithm 
to use Levenshtein Edit Distance to enable the application of this method to fuzzing techniques 
that alter the input file length. 

Furthermore, it is possible that the same software bug could cause different crash signatures using 
the uniqueness determination described in Section 1.1. In particular, applications that implement 
Just-In-Time (JIT) compilation tend to resist test case minimization since varying the input can 
alter the JIT code that is executed, thus making it harder to recreate the same crash in the minimi-
zation process. 

Although it is rare, we have seen in some cases that the exact same test case file can cause differ-
ent crash signatures to occur; so as a practical workaround, we conduct a quick check before we 
begin the main minimization loop to determine if the crash signature is stable with multiple runs 
of the test case. 

Finally, the algorithm is, of course, at the mercy of the fuzzed files to which it is applied. Alt-
hough it is both effective and efficient at finding the minimal changes required to recreate a crash 
given a particular fuzzed file, it is entirely possible that another fuzzed file for the same crash 
could in fact minimize to a smaller Hamming Distance. In practice, this difference has not been an 
issue, since most crashing test cases minimize down to a relatively small Hamming Distance 
(around 5-20 bits is typical). 
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4 Conclusion 

Fuzzing in general—and dumb fuzzing in particular—has been shown to be an effective technique 
for discovering vulnerabilities in software. However, many of the bitwise changes in fuzzed input 
files are not relevant to the actual software crashes found. 

In this report, we described an algorithm that efficiently reverts those non-essential bits from the 
fuzzed file to those found in the original seed file. This algorithm reduces the complexity of ana-
lyzing a crashing test case by eliminating bitwise changes that are not essential to the crash being 
evaluated. 

We have found this technique to be very useful to our vulnerability analysts in their ongoing ef-
forts to discover, analyze, and coordinate vulnerabilities with software vendors. 

An implementation of the minimization algorithm described here is available in the CERT Basic 
Fuzzing Framework (BFF) for Linux and Mac OS X, and the CERT Failure Observation Engine 
(FOE) for Windows, which are released under open source licenses. CERT BFF can be down-
loaded at http://www.cert.org/vuls/discovery/bff.html while CERT FOE is available from 
http://www.cert.org/vuls/discovery/foe.html. 

http://www.cert.org/vuls/discovery/bff.html
http://www.cert.org/vuls/discovery/foe.html
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