
1

From Subroutines to Subsystems: Component-
Based Software Development 1

Paul C. Clements
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pennsylvania 15213 USA

Subroutines and Software Engineering

In the early days of programming, when machines were hard-wired and every byte of
storage was precious, subroutines were invented to conserve memory. Their function
was to allow programmers to execute code segments more than once, and under dif-
ferent (parameterized) circumstances, without having to duplicate that code in each
physical location where it was needed. Software reuse was born. However, this was a
different breed of reuse than we know today: This was reuse to serve the machine, to
conserve mechanical resources. Reuse to save human resources was yet to come.

Soon, programmers observed that they could insert subroutines extracted from their
previous programs, or even written by other programmers, and take advantage of the
functionality without having to concern themselves with the details of coding. Gener-
ally-useful subroutines were collected into libraries, and soon very few people would
ever again have to worry about how to implement, for example, a numerically-well-be-
haved double-precision cosine routine.

This phenomenon represented a powerful and fundamental paradigm shift in how we
regarded software. Invoking a subroutine from a library became indistinguishable from
writing any other statement that was built in to the programming language being used.
Conceptually, this was a great unburdening. We viewed the subroutine as an atomic
statement -- a component -- and could be blissfully unconcerned with its implementa-
tion, its development history, its storage management, and so forth.

Over the last few decades, most of what we now think of as software engineering blos-
somed into existence as a direct result of this phenomenon. In 1968, Edsger Dijkstra
pointed out that how a program was structured was as important as making it produce
the correct answer [Dijkstra 68]. Teaching the principle of separation of concerns, Dijk-

1. This work is sponsored by the U. S. Department of Defense.

From The American Programmer, vol. 8, no. 11, November 1995

2

stra showed that pieces of programs could be developed independently. Soon after,
David Parnas introduced the concept of information-hiding [Parnas 72] as the design
discipline by which to divide a system into parts such that the whole system was easily
changed by replacing any module with one satisfying the same interface. Design
methodologists taught us how to craft our components so that they could live up to
their promise. Prohibiting side effects, carefully specifying interfaces that guard imple-
mentation details, providing predictable behavior in the face of incorrect usage, and
other design rules all contributed to components that could be plugged into existing
systems. Object-oriented development was a direct, rather recent result of this trend.

Software engineering for components

Today, much of software engineering is still devoted to exploring and growing and ap-
plying this paradigm. Software reuse is about methods and techniques to enhance the
reusability of software, including the management of repositories of components. Do-
main engineering is about finding commonalities among systems to identify compo-
nents that can be applied to many systems, and to identify program families that are
positioned to take fullest advantage of those components. Software architecture stud-
ies ways to structure systems so that they can be built from reusable components,
evolved quickly, and analyzed reliably. Software architecture also concerns itself with
the ways in which components are interconnected, so that we can move beyond the
humble subroutine call as the primary mechanism for sending data to and initiating the
execution of a component. Mechanisms from the process world, such as event signal-
ling or time-based invocation, are examples. Some approaches can “wrap” stand-
alone systems in software to make them behave as components, or wrap components
to make them behave as stand-alone systems. The open systems community is work-
ing to produce and adopt standards so that components of a particular type (e.g., op-
erating systems developed by different vendors) can be seamlessly interchanged.
That community is also working on how to structure systems so they are positioned to
take advantage of open standards (e.g., eschewing non-standard operating system
features, which would make the system dependent on a single vendor’s product). The
emerging design patterns community is trying to codify solutions to recurring applica-
tion problems, a precursor for producing general components that implement those
solutions.

CBSD: Buy, Don’t Build

This paradigm has now been anointed with the name “Component-based software de-
velopment” (CBSD). CBSD is changing the way large software systems are devel-
oped. CBSD embodies the “buy, don’t build” philosophy espoused by Fred Brooks

3

[Brooks 87] and others. In the same way that early subroutines liberated the program-
mer from thinking about details, CBSD shifts the emphasis from programming soft-
ware to composing software systems. Implementation has given way to integration as
the focus. At its foundation is the assumption that there is sufficient commonality in
many large software systems to justify developing reusable components to exploit and
satisfy that commonality.

What’s New?

In some ways, there is little new about CBSD; it is just a re-iteration of decades-old
ideas coming to fruition. There are, however, some exciting new aspects.

Increasing component size and complexity. Today, available off-the-shelf compo-
nents occupy a wide range of functionality. They include operating systems, compil-
ers, network managers, database systems, CASE tools, and domain-specific varieties
such as aircraft navigation algorithms, or banking system transaction handlers. As
they grow in functionality, so does the challenge to make them generally useful across
a broad variety of systems. Math subroutines are conceptually simple; they produce a
result that is an easily-specified function of their inputs. Even databases, which can
have breathtakingly complex implementations, have conceptually simple functionality:
data goes in, and data comes out via any of several well-understood search or com-
position strategies. This conceptual simplicity leads to interface simplicity, making
such components easy to integrate with existing software. But what if the component
has many interfaces, with information flowing across each one that cannot be simply
described? What if, for example, the component is an avionics system for a warplane
that takes input from a myriad of sensors and manages the aircraft’s flight controls,
weapons systems, and navigation displays? From one point of view, this software is a
stand-alone system; however, from the point of view of, say, an air battle simulator,
the avionics software for each of the participating aircraft is just a component. The sim-
ulator must stimulate the avionics with simulated sensor readings, and absorb its flight
control and weapons commands in order to represent the behavior of the aircraft in the
overall simulation. Is it possible to make a plug-in component from such a complex en-
tity? The Department of Defense is working on standards for just such a purpose, to
make sure that simulators developed completely independently can interoperate with
each other in massive new distributed simulation programs, in which the individual ve-
hicle simulators are simply plug-in components.

Coordination among components. Classically, components are plugged into a skel-
etal software infrastructure that invokes each component appropriately and handles

4

communication and coordination among components. Recently, however, the coordi-
nation infrastructure itself is being acknowledged as a component that is potentially
available in pre-packaged form. David Garlan and Mary Shaw have laid the ground-
work for studying these infrastructures in their work that catalogues architectural styles
[Garlan 93]. An architectural style is determined by a set of component types (such as
a data repository or a component that computes a mathematical function), a topolog-
ical layout of these components indicating their interrelationships, and a set of interac-
tion mechanisms (e.g., subroutine call, event-subscriber blackboard) that determine
how they coordinate. The Common Object Request Broker Architecture (CORBA) is
an embodiment of one such style, complete with software that implements the coordi-
nation infrastructure, and standards that define what components can be plugged into
it.

Nontechnical issues. Organizations are discovering that more than technical issues
must be solved in order to make a CBSD approach work. While the right architecture
(roughly speaking, a system structure and allocation of functionality to components) is
critical, there are also organizational, process, and economic and marketing issues
that must be addressed before CBSD is a viable approach. Personnel issues include
deciding on the best training, and shifting the expertise in the work force from imple-
mentation to integration and domain knowledge. For organizations building reusable
components for sale, customer interaction is quite different than when building one-at-
a-time customized systems. It is to the organization’s advantage if the component that
the customer needs is most like the component the organization has on the shelf. This
suggests a different style of negotiation. Also, customers can form user groups to col-
lectively drive the organization to evolve their components in a particular direction, and
the organization must be able to deal effectively with and be responsive to such
groups. The organization must structure itself to efficiently produce the reusable com-
ponents, while still being able to offer variations to important customers. And the orga-
nization must stay productive while it is first developing the reusable components.
Finally, there are a host of legal issues that are beyond the scope of this paper and
beyond the imagination (let alone the expertise) of the author.

Buying or Selling?

Different organizations may view CBSD from different viewpoints. A single organiza-
tion might be a component supplier, a component consumer, or both. The combination
case arises when an organization consumes components in order to produce a prod-
uct that is but a component in some larger system.

5

Suppose an organization is producing a product line, which is a family of related sys-
tems positioned to take advantage of a market niche via reusable production assets.
In this case, one part of the organization might be producing components that are ge-
neric (generally useful) across all members of the product line; the organization may
be buying some of the components from outside vendors. Other parts of the organiza-
tion integrate the components into different products, adapting them if necessary to
meet the needs of specific customers. From a component vendor’s point of view, prod-
uct line development is often a viable approach to CBSD because it amortizes the cost
of the components (whether purchased or developed internally) across more than one
system.

Structuring a System to Accept Components

From a consumer’s perspective, CBSD requires a planned and disciplined approach
to the architecture of the system being built. Purchasing components at random will
result in a collection of mis-matched parts that will have no hope of working in unison.
Even a carefully-considered set of components may be unlikely to successfully oper-
ate with each other, as David Garlan has pointed out in his paper on architectural mis-
match [Garlan 95]. The reason is that designers of software components make as-
sumptions that are often subtle and undocumented about the ways in which the com-
ponents will interact with other components, or the expectations about services or
behaviors of those other components. These assumptions are embodied in the de-
signs. Specific and precise interface specifications can attack this problem, but are
hard to produce for complicated components. Still harder is achieving consensus on
an interface that applies across an entire set of components built by different suppliers.

An architectural approach to building systems that are positioned to take advantage of
the CBSD approach is the layered system. Software components are divided into
groups (layers) based on the separation of concerns principle. Some components that
are conceptually “close” to the underlying computing platform (i.e., would have to be
replaced if the computer were switched) form the lowest layer. However, these com-
ponents are required to be independent of the particular application. Conversely, com-
ponents that are application-sensitive (i.e., would have to be switched if the details of
the application requirements changed) constitute another layer. These components
are not allowed to be sensitive to the underlying computing or communications plat-
form. Other components occupy different layers depending on whether they are more
closely tied to the computing infrastructure or the details of the application. The unify-
ing principle of the layered approach is that a component at a particular layer is al-
lowed to make use only of components at the same or next lower layer. Thus,
components at each layer are insulated from change when components at distant lay-

6

ers are replaced or modified.

Figure 1 is an example of a layered scheme proposed by Patricia Oberndorf, an open
systems expert at the Software Engineering Institute. In this scheme, computer-spe-
cific software components compose the lowest layer and are independent of the ap-
plication domain. Above that lie components that would be generally useful across
most application domains. Above that are components belonging to domains related
to the application being built. Above that are components specific to the domain at
hand, and finally special-purpose components for the system being built.

For example, suppose the system being built is the avionics software for the F-22 fight-
er aircraft. The domain is avionics software. Related domains are real-time systems,
embedded systems, and human-in-the-loop systems. Figure 1 shows components
that might reside at each layer in the diagram.

Figure 1: A domain-sensitive layered software architecture

my
system

my
domain

ma ny related
domains

most domains

all domains
operating system, compilers,

network management system...

database management system

process scheduler,
navigation algorithms,

user interface management

ballistic equations for free-fall bombs

drivers for aircraft-specific displays

Example components:Layered architecture

7

The triangle reflects the relative abundance or scarcity of components at each level. A
system developer should not expect to find many components that exist that are spe-
cific to the system under construction. It will be easier to find and choose from compo-
nents that are less domain-specific. For mid-level components, adopting data format
and data interchange standards may aid in the search for components that can inter-
operate with each other.

Domain analysis techniques such as Feature-Oriented Domain Analysis (FODA)
[Kang 90] can be of assistance in identifying the domain of the system, identifying re-
lated domains, and understanding the commonality and variation among programs in
the domain of interest.

The Payoff and the Pitfalls

The potential advantages to successful CBSD are compelling. They include

• Reduced development time. It takes a lot less time to buy a component than
it does to design it, code it, test it,debug it, and document it -- assuming that
the search for a suitable component does not consume inordinate time.

• Increased reliability of systems. An off-the-shelf component will have been
used in many other systems, and should therefore have had more bugs
shaken out of it -- unless you happen to be an early customer, or the supplier
of the component has low quality standards.

• Increased flexibility. Positioning a system to accommodate off-the-shelf
components means that the system has been built to be immune from the
details of the implementation of those components. This in turn means that
any component satisfying the requirements will do the job, so there are more
components from which to choose, which means that competitive market
forces should drive the price down -- unless your system occupies a market
too small to attract the attention of competing suppliers, or there has been no
consensus reached on a common interface for those components.

Obviously, the road to CBSD success features a few deep potholes. Consider the
questions that a consumer must face when building a system from off-the-shelf com-
ponents:

• If the primary supplier goes out of business or stops making the component,
will others step in to fill the gap?

8

• What happens if the vendor stops supporting the current version of the
component, and the new versions are incompatible with the old?

• If the system demands high reliability or high availability, how can the
consumer be sure that the component will allow the satisfaction of those
requirements?

These and other concerns make CBSD a trap for the naive developer. It requires care-
ful preparation and planning to achieve success. Interface standards, open architec-
tures, market analysis, personnel issues, and organizational concerns all must be
addressed. However, the benefits of CBSD are real and are being demonstrated on
real projects of significant size. CBSD may be the most important paradigm shift in
software development in decades -- or at least since the invention of the subroutine.

References

Brooks 87 Brooks, F. P. Jr., “No Silver Bullet: Essence and Accidents of Soft-
ware Engineerig,” Computer, vol. 20, no. 4, pp. 10-19, April 1987.

Dijkstra 68 Dijkstra, E. W.; “The structure of the ‘T.H.E.’ multiprogramming sys-
tem,” CACM, vol. 11, no. 5, pp. 453-457, May 1968.

Garlan 93 Garlan, D., and Shaw, M.; “An introduction to software architecture,”
in Advances in Software Engineering and Knowledge Engineering,
vol. I, World Scientific Publishing Company,1993.

Garlan 95 Garlan, D., R. Allen, and J. Ockerbloom; “Architectural Mismatch
(Why its hard to build systems out of existing parts)”, Proceedings,
International Conference on Software Engineering, Seattle, April
1995.

Kang 90 K. Kang, S. Cohen, J. Hess, R. Novak, and S. Peterson; Feature-Ori-
ented Domain Analysis Feasibility Study: Interim Report; technical
report CMU/SEI-90-TR-21 ESD-90-TR-222, August 1990.

Parnas 72 Parnas, D.; “On the criteria for decomposing systems into modules,”
CACM, vol. 15, no. 12, pp. 1053-1058, December 1972.

