
Unlimited distribution subject to the copyright

Pittsburgh, PA 15213-3890

Securing Internet Sessions

With Sorbet

Fred Long
Scott Hissam
Robert C. Seacord
John Robert

July 1999

COTS-Based Systems Initiative

Technical Note
CMU/SEI-99-TN-002

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 1999 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

Please refer to http://www.sei.cmu.edu/publications/pubweb.html for information about ordering paper copies of SEI
reports.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or
administration of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act
of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or
executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion,
creed, ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the
judgment of the Carnegie Mellon Human Relations Commission, the Department of Defense policy of, “Don’t ask, don’t tell, don’t pursue,”
excludes openly gay, lesbian and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at
Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412)-268-2000.

CMU/SEI-99-TN-002 i

&RQWHQWV

Abstract vii

1 Introduction 1

2 Background 2
2.1 Confidentiality 2
2.2 Identification and Authentication 4
2.3 Data Integrity 4
2.4 Secure Sessions 4

3 Secure Sessions Using CORBA
Interceptors 6
3.1 Client Authentication and Session Initialization 6
3.2 Sorbet Secure Session 8
3.3 Separation of Security Policy From

Core Application 10

4 Comparison 11
4.1 Data Transfer Rate 11
4.2 Digital Signing and Verification Performance 12

5 Conclusions 13

References 14

ii CMU/SEI-99-TN-002

CMU/SEI-99-TN-002 iii

/LVW�RI�)LJXUHV

Figure 1. Secured Application Using Sorbet 7
Figure 2. Client Authentication 8
Figure 3. Secure Session Operation 9

iv CMU/SEI-99-TN-002

CMU/SEI-99-TN-002 v

/LVW�RI�7DEOHV

Table 1. Data Transfer Rate vs. IIOP Packet Size 11
Table 2. Signing Performance 12
Table 3. Verification Performance 12

vi CMU/SEI-99-TN-002

CMU/SEI-99-TN-002 vii

$EVWUDFW

More and more organizations are using intranets, and even the Internet, as the
communications media for important data. However, such communications media are
inherently insecure and subject to hijacking. To secure these connections, mechanisms must
be built on top of the underlying communications facilities. In this paper, we discuss one
such security mechanism and describe an implementation using common object request
broker architecture (CORBA) -based interceptors.

viii CMU/SEI-99-TN-002

CMU/SEI-99-TN-002 1

� ,QWURGXFWLRQ

There exist today a number of commercial off-the-shelf (COTS) products that can be used to
secure communication over an Intranet or the Internet. These products include
implementations of the Secure Socket Layer (SSL) as well as other security solutions.

Secure Sockets Layer is a protocol developed by Netscape for transmitting private
documents via the Internet. SSL is used by Netscape Communicator and Microsoft Internet
Explorer and supported in a wide variety of middleware products—including Object Request
Brokers from Inprise, Iona and JavaSoft. As a result, SSL is a strong candidate for securing
transactions between objects in a distributed object system. However, existing SSL
implementations have some limitations. The SSL Pack from Inprise, for example, is only
available through the Java Native Interface (JNI) as platform specific libraries. The use of
platform specific libraries limits deployment of the client as an application1 on platforms for
which SSL libraries are not available. Licenses must also be acquired in this case for each
client platform.

As a result of these and other limitations, the COTS-Based Systems Initiative at the Software
Engineering Institute developed a lightweight, pure Java-based security solution that could
be easily deployed as a Java orblet, application, or servlet. Secure ORB enterprise
transactions (Sorbet) was developed to provide

• secure sessions

• lightweight transactions for transferring large blobs of information

• client-side authentication

• comparable performance to SSL

Although initially developed for common object request broker architecture (CORBA),
different flavors of Sorbet could be easily developed to work with other distributed object
technologies such as JavaSoft’s remote method invocation (RMI) or Microsoft’s distributed
component object model (DCOM). The remainder of this paper describes an implementation
of Sorbet as well as providing a comparison with Inprise’s SSL Pack.

1 VisiBroker for Java SSL Pack uses HTTPS, a security mechanism built into Netscape and Microsoft
browsers. By using these facilities of the browser, an applet does not need any special understanding of
SSL, eliminating the need to pre-install classes or native libraries on the client.

2 CMU/SEI-99-TN-002

� %DFNJURXQG

Security can mean different things, depending on the type of system, the type of data, and
associated risks. This section provides background on some techniques for securing systems
and data including confidentiality; identification and authentication; data integrity; and
secure sessions.

2.1 Confidentiality

Confidentiality prevents third parties from viewing information sent between two
communicating parties. Perhaps the most widely used method of providing confidentiality
over an insecure medium is the use of cryptography. Cryptography involves the sender
transforming, or encrypting, the message in such a way that the message cannot be read en
route. The message is then reconstructed, or decrypted, into its original form by the receiver.
There are many modern cryptographic techniques [Schneider 95]. These are divided into
two classes, symmetric and asymmetric (also called public/private) key cryptography. The
basic ideas are described here and the two classes are explored more fully afterwards.

Cryptography is an algorithmic process of converting a plain-text (or clear-text) message to a
cipher (or cipher-text) message based on an algorithm that both the sender and receiver
know, so that the cipher-text message can be returned to its original, plain-text form. There
are a number of algorithms for performing this process, but there are comparatively few such
algorithms that, having stood the test of time, prevent the plain-text from being revealed by
someone other than intended reader. Most such algorithms require the use of a key. A key is
simply a parameter to the algorithm that permits the proper transformation. In symmetric key
cryptography, the same key is used for enciphering and deciphering. In asymmetric key
cryptography, one key is used for enciphering and another, mathematically related key, is
used for deciphering.

Symmetric Key Cryptography

Perhaps the most widely used symmetric key cryptographic method is the Data Encryption
Standard (DES) [DES 93]. Although published in 1977 by the National Bureau of Standards,
DES has not yet been replaced. The original publication is reprinted in [Beker 82]. DES
uses a fixed length, 56-bit key. Its advantage is that it is an efficient algorithm, and can be
processed extremely fast particularly if special hardware is used. By increasing the key size,
DES becomes even more secure. A variation of DES, called Triple-DES or DES-EDE
(encrypt-decrypt-encrypt), uses three applications of DES and two, independent DES keys to
produce an effective key length of 168 bits [ANSI 85].

CMU/SEI-99-TN-002 3

The International Data Encryption Algorithm (IDEA) was invented by James Massey and
Xuejia Lai of ETH Zurich, in Switzerland, in 1991 and is patented and registered by the
Swiss Ascom Tech AG, Solothurn [Lai 92]. IDEA uses a fixed length, 128-bit key, but it is
faster than Triple-DES. Also in the early 1990s, Don Rivest of RSA Data Security, Inc.,
invented the algorithms RC2 and RC4. These use variable length keys and are claimed to be
faster even than IDEA; however, implementations may be exported from the U.S. only if
they use key lengths of 40 bits or less.

Although symmetric key cryptography can be very secure, it has a fundamental problem—
key management. Since the same key is used for encryption and decryption, it must be kept
secure. If an adversary knows the key then the message can be decrypted. However, the key
must be available to the sender and the receiver and these two parties may be physically
separated. Symmetric key cryptography transforms the problem of transmitting messages
securely into that of transmitting keys securely. This is a step forward, because keys are
much smaller than messages, and the keys can be generated beforehand. Nevertheless, the
problem of ensuring that the sender and receiver are using the same key and that potential
adversaries do not know this key is a major stumbling block in the use of symmetric key
cryptography. This is referred to as the key management problem.

Public/Private Key Cryptography

Asymmetric key cryptography overcomes the key management problem because the
encryption and decryption keys are no longer the same. Algorithms are available for which
the key used for decryption cannot be determined with reasonable effort even when the key
used for encryption is known. Therefore, the encryption key can be made public, provided
the decryption key is kept private to the party wishing to receive encrypted messages (hence
the name public/private key cryptography). Now, anyone can use the public key to encrypt a
message to be sent to the recipient, but only the recipient can decrypt the message.

James Ellis, Malcolm Williamson, and Clifford Cocks first investigated public/private key
cryptography at the British Government Communications Headquarters (GCHQ) in the early
1970s. However, at the time they kept their findings secret. The papers have now been
published [Ellis 87]. The first public discussion of public/private key cryptography was by
Whitfield Diffie and Martin Hellman in 1976 [Diffie 76]. The Diffie-Hellman algorithm is
now used to establish the secret key for a symmetric key system, but it is not efficient enough
to be used for the encryption of large messages.

A widely used public/private key system is RSA, named after the initials of its inventors,
Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman [PKCS 91]. RSA depends on the
difficulty of factorizing the product of two very large prime numbers. Although used for
encrypting whole messages, RSA is much less efficient than symmetric key algorithms such
as DES. ElGamal is another public/private key algorithm [El Gamal 85]. It depends on an
arithmetic algorithm different from that of RSA, the so-called discrete logarithm problem.

4 CMU/SEI-99-TN-002

An extensive discussion of public/private key cryptography, including much of the
mathematical detail, can be found in the book, Public Key Cryptography [Salomaa 96].

2.2 Identification and Authentication

Although the keys used in public/private key cryptography are different, the keys are
mathematically related in that a message encrypted with either key can be decrypted with the
other. For confidentiality, messages must be encrypted with the public key so that only the
holder of the private key can decrypt them. However, there is an application for doing things
the other way round. If a message is encrypted with someone’s private key, that person’s
public key will decrypt it. Hence, recipients can be absolutely certain that the message
originated from the correct person because only they could have encrypted it. This leads to
the idea of authentication. A service wishing to be certain that it is communicating with who
it thinks it is can ask the communicating party to send a message encrypted with their private
key. If the message successfully decrypts with the communicating party’s public key then
the service can be sure that the other party is genuine.

This begs the question of the ownership of public keys. This problem is addressed through
the use of certificates. Certificates bind an identity to a public key by way of a third party
acting as a certificate authority. Confidence that the certificate actually represents an
identity is based on trust in the assurance mechanisms implemented by the certificate
authority.

2.3 Data Integrity

An extension of the idea of authentication enables us to ensure data integrity. For example,
the sender creates a secure digest of the original data (by using a secure hash function, such
as MD5 [Rivest 91] or SHA-1 [SHA 95]) and includes a copy of this digest, encrypted with
the sender’s private key, with the data. The recipient can then decrypt the digest using the
sender’s public key and check that the data still hashes to the same value. Nobody other than
the original sender can produce the encrypted digest because only the sender has access to
the private key. Hence, the integrity of the data is ensured.

Data integrity can also be achieved by means of encryption, as most decryption algorithms
would fail if the integrity of the data has been comprised. Using encryption to provide data
integrity is overkill, unless confidentiality is also a requirement.

2.4 Secure Sessions

Hijacking is a security threat where an adversary takes over an existing session without the
knowledge of one or both parties. This technique allows the hijacker to bypass the
authentication process but still access private data or perform restricted operations. One way
of preventing a client/server session from being hijacked is to use a session key and cookies.
The client authenticates itself with the security server, as described above. The security

CMU/SEI-99-TN-002 5

server then provides a session key that is used by the client to identify itself for the session.
This session key can be smaller than the full credentials used by the client to identify it
initially. With each client/server call, the client provides the session key and a cookie, the
cookie being unique for each call. The server checks that the session key and cookie match.

A straightforward means of implementing this session key and cookie approach is to use a
pseudo-random number generator (PRNG). Instances of the PRNG are started on both the
client and server sides, seeded by the session key. The cookie is the next random number
provided by the PRNG as each client call is being prepared. The server simply checks that
the cookie provided by the client and the next random number produced by the appropriate
PRNG, as identified by using the session key, is the same. Note that the server will have one
PRNG running for each client it is currently serving.

To be secure, the session key must be passed to the client encrypted, but this can be done
using a public/private key algorithm, since the security server has received the client’s public
key as part of the initial authorization process. The random number generator must also be
secure so that it is less subject to pattern matching and other attacks that can be made on
traditional random number generators. Cryptographically secure pseudo-random number
generators are available [ECS 94].

This session key and cookies technique is secure and reasonably “lightweight.” The session
key and cookies do not need to be very large. Even if an adversary were able to generate the
correct next random number and interpose itself in the client/server stream, the random
number sequence would immediately get out of step and the server could close the
connection. Hence, any compromise would be limited.

6 CMU/SEI-99-TN-002

� 6HFXUH�6HVVLRQV�8VLQJ�&25%$�,QWHUFHSWRUV

CORBA (Common Object Request Broker Architecture) [OMG 98] is a popular standard
used for developing distributed applications. With CORBA, developers can use interceptors
to remove much of the security code from the body of the implementation. Interceptors are
an optional extension to the ORB [Inter 98]. An interceptor is interposed in the invocation
and response paths between a client and its server object and can inspect and modify
messages as they travel between the client and server.

An experimental implementation of Sorbet was developed using the Inprise VisiBroker
CORBA implementation on the Java 2 platform. The VisiBroker implementation allows for
three types of interceptors to be installed: bind, client, and server. Bind interceptors are
aware of the messages generated when a client binds to a server. Client interceptors are
associated with a client object, and are aware of the messages generated when a client makes
a call to a server, and of the response to those messages from the server. Server interceptors
sit at the other end of the communications link, and are aware of the messages received by a
server, and of the server’s response to these messages. Sorbet uses client and server
interceptors.

A sample application was developed using Sorbet, consisting of a CORBA application
service, a security service and a simple client. Client interceptors authenticate the client to a
security service. The security service is a session object factory that creates session objects
for authenticated clients. After successfully authenticating the client, a session object is
returned to the client interceptor. This session object teams with the client and server
interceptors to monitor and enforce session security between the client and application
service. These operations are detailed in the following sections.

3.1 Client Authentication and Session Initialization

The sample Sorbet application consists of a client, application server, and security server as
shown in Figure 1.

At startup, the client and server each register interceptor factories. The client then makes an
initial call to the application server. This call causes the client interceptor factory to create a
client interceptor. The client interceptor initiates a series of steps to authenticate to the
security service and receive a valid session object, as shown in Figure 2 and described below.
Bracketed numbers correspond to numbered transactions in the figure.

CMU/SEI-99-TN-002 7

Client
Client

Interceptor
Application

Server

Security
Server

Server
Interceptor

Session
Object

Figure 1. Secured Application Using Sorbet

Initially, the client interceptor loads the credentials from a keystore2 located on the client
platform and then presents these to the security service [1]. The security service creates a
challenge consisting of a random stream of bytes and returns it to the client interceptor [2,3].
The client interceptor formulates a response to the challenge by signing the challenge with
the user’s private key [4]. The client interceptor calls the security service to retrieve the seed
(generated by a cryptographically secure PRNG) which is then held by the client.

The client interceptor passes the response to the security service to create a session [5]. The
security service uses the client’s public key to verify that the response received was in fact
the random data signed using the client’s private key [6]. If the response is verified, the
security service creates a session object using the negotiated seed [7]. An object reference to
the newly created session object is returned to the client interceptor [8]. The session is set as
the default principal on the ORB [9]. If the response sent to the security service fails the
verification test, no session is created and an exception is thrown on the client.

Assuming client authentication is successful, both the session object and the client now use
the same seed to start tandem PRNGs to provide a synchronous step operation. The session
object returns the first of a sequence of reproducible random numbers encrypted using the
client’s public key [10].

2 A database of private keys and their associated X.509 certificate chains.

8 CMU/SEI-99-TN-002

Client

C
lie

nt
-s

id
e

in
te

rc
ep

to
r

Security
Service

Ccred
�

SSchallenge
�

SSchallenge
�

Cresponse = SIGNCpriv(SSchallenge)
�Cresponse

�

VERIFY(Ccred, Cresponse)
�

Session
Object

Create
Session
Object � SSIOR

�

Set SSIOR as ORB Principal
�

��

ECpub(SSrandomseed)

Figure 2. Client Authentication

3.2 Sorbet Secure Session

Once the client interceptor is initialized, the client can begin making calls to the application
service. The first call to the application service causes the server interceptor factory to
create a sever interceptor. The server interceptor, client interceptor, and session object work
together to provide a secure session, as described in Figure 3.

For each call made by the client, the client interceptor steps the client’s PRNG and attaches
the random number obtained to the message [1]. The application server interceptor takes the
random number off the message and asks the session object (which it identifies from the
principal) if the random number is correct [2,3]. When it receives this request, the session
object steps its PRNG and compares the number produced with the number extracted from
the message [4]. The session object returns a result of true or false to the server interceptor,
based on this PRNG comparison. If the check passes, the server interceptor allows the
message (with the random number removed) through to the application server [5]. If the
check fails, the server interceptor throws an exception that is caught by the client. Further
action could be taken on the application server side to log the attempt, break the connection,
or whatever action is required by the security policy. The final result of the application
server call is returned to the client as a normal IIOP reply [6].

CMU/SEI-99-TN-002 9

Application
Service

Se
rv

er
-s

id
e

in
te

rc
ep

to
r

Client

C
lie

nt
-s

id
e

in
te

rc
ep

to
r

Security
Service

Session
Object
Session
Object
Session
Object

IIOP Header & data (w/ principal) + next random #
�

Extract random number & principal (a.k.a. IOR)
�

Verify correct next
random # w/
associated Session
Object

�

method
call � Return method results as normal IIOP Reply

�

�

Incr to next
random # &
compare

Figure 3. Secure Session Operation

Optimized Model

The Sorbet model is designed to support a distributed object system where distributed
objects can freely interact with other objects in the system. As a simplification of this
model, we have assumed that one of these objects is a client that may operate outside the
secure computing base, but that this client object may communicate with multiple back-end
servers to perform various system functions.

Recall from the previous section that Sorbet uses a synchronous step operation to ensure that
a secure session is maintained. The client steps the function for each remote invocation of a
server’s methods. In a pure client-server scenario, the client and the server are both capable
of keeping this step function synchronized. However, when multiple servers are used, each
server has no way of knowing when another server has been invoked. Invoking a second
server would instantly cause the step function to become unsynchronized, resulting in a
security violation.

To resolve this problem, a separate session object was to provide a single coordination point
for stepping the server-side function. However, this approach has the drawback of requiring
an additional remote invocation from the server interceptor to the session object for each
data packet. If, for example, the security comparison of the two PRNGs is performed in the
server interceptor and not the session object, the extra session object call would not be
required. Although we have not implemented this solution, we have experimented with the
performance that would result from eliminating this extra remote method invocation as our

10 CMU/SEI-99-TN-002

optimized model. The results of these experiments are discussed in the Comparison section
of this paper.

Distributed Object Systems

The greatest threat to information often comes from within an Intranet. The threat may come
from multiple vendors working at a single customer location, customers working at a vendor
location, or simply a disgruntled employee. In any case, system operations within an Intranet
may need to be protected as much as or more than Internet transactions.

One way to do this is to extend the security model to operate as a true distributed object
system. In this model, the notion of a client and or server process is eliminated. Instead,
each process may operate as both a server and a client to other processes in the system.

To secure this system, each process could be assigned a public/private key pair as a secure
means of identification. Each process could also maintain a list of registered processes,
represented by their digital certificates (containing public keys). Each session established
between servers would then be authenticated and secured using the session key and cookies
method used by Sorbet. This solution would build upon the optimized model described in
the previous section, where each process maintains a hash of current sessions along with a
corresponding session object (implemented as a class or data structure in the same process
space). The session key is used as a hash key to retrieve the session object, allowing the
correct PRNG to be stepped.

3.3 Separation of Security Policy From Core Application

It is important to separate the core client/server software from that involved in providing the
security, since both parts of the software might need to be updated or replaced independently
of the other. One advantage of Sorbet is that the application server is completely unaware of
the security mechanisms that are in place. The client must initialize the client interceptor by
passing a keystore alias, keystore password, and a reference to the ORB. Apart from this, the
client takes no part in the security mechanisms—the interceptors do all the work of the
security mechanism. However, implementation of interceptors is still vendor specific and
the CORBA interceptor specification may itself change. (An RFP for portable interceptors
has been issued [RFP 98].)

CMU/SEI-99-TN-002 11

� &RPSDULVRQ

This section compares five different security models: unsecured, full SSL, SSL without
encryption (SSL null), Sorbet, and a theoretical “optimal” model. The unsecured model
transfers data over IIOP without any form of security. The full SSL solution implements
secure sessions, client and server authentication, and encryption for confidentiality. SSL null
eliminates encryption (therefore, no confidentiality) but retains secure sessions and client
server authentication. The Sorbet implementation, explained in detail in the previous
section, supports secure sessions and client authentication, but not confidentiality. The
theoretical “optimal” model assumes that the Sorbet implementation can be implemented in
such a way as to avoid an extra remote invocation on the session object.

4.1 Data Transfer Rate

Performance was measured using the different security models by transmitting a 2Mb file
over IIOP in 0.5Kb, 1Kb, 10Kb and 100Kb fragments. Over 4000 transactions are required
to move the file using 0.5Kb fragments; 20 transactions are required using 100Kb fragments.

As illustrated in Table 1, each security model has unique performance characteristics.
Unsecured data transfer has the best performance, with measured data transfer rates of 159.9
bytes/second using 0.5K segments compared to 82.8 for full SSL with same packet size.
SSL performance degrades significantly as the size of the IIOP message increases. In fact,
CPU intensive encryption calculations for each packet result in performance limitations
imposed by CPU capacity.

-

100.0

200.0

300.0

400.0

500.0

600.0

0.5K 1K 10K 100K

Unsecured
SSL

Sorbet

SSLnull
Optimized

Table 1. Data Transfer Rate vs. IIOP Packet Size

12 CMU/SEI-99-TN-002

Sorbet has poorer performance than all other security models at 0.5k data packet sizes. This
is a result of the extra remote object method invocation on the session object. This indicates
that Sorbet, as implemented, is a poor choice for distributed object systems primarily
consisting of many small messages. At larger packet sizes, Sorbet competes closely with
SSL without encryption – showing that Sorbet is a viable alternative to SSL for the secure
transfer of large packets when confidentiality and data integrity are not requirements.

4.2 Digital Signing and Verification Performance

All measures for Sorbet taken in the previous section used Sun Java Cryptologic Extension
(JCE) technology for signing and verification. Signing and verification in Sorbet takes place
during initialization of a connection. For example, in a CORBA-based application this
initialization occurs during the bind() operation. The time it takes to sign and verify can
vary significantly (see Table 2 and Table 3) based on the product used to perform the
cryptologic functions and the platform.

Solaris
2.5.1 (first)

Solaris 2.6
(first)

WinNT
(first)

Solaris 2.5.1
(average)

Solaris 2.6
(average)

WinNT
(average)

Crypto-J 2.4 2.1 2.1 7.7 4.9 0.08
SunJCE 16.1 9.9 5.5 1.3 0.9 0.08

Table 2. Signing Performance

Both signing and verification measures were taken on three platforms (Solaris 2.5.1, Solaris
2.6 and WinNT). Data was collected for the first time the function was invoked and an
average of the subsequent four invocations. This was important in that, for some operations,
there was greater than a magnitude difference in performance between the first and
subsequent calls.

Solaris 2.5.1
(first)

Solaris 2.6
(first)

WinNT
(first)

Solaris 2.5.1
(average)

Solaris 2.6
(average)

WinNT
(average)

RSA 3.2 2.5 2.0 1.5 0.9 0.1
Sun 0.3 0.2 0.2 0. 0.1 0.1

Table 3. Verification Performance

The Crypto-J package had much better times than SunJCE for signing, but verification times
were better in SunJCE. If we replaced the use of SunJCE with Crypto-J in Sorbet, we would
expect to see an overall decrease in the time spent in initialization, which could improve
throughput in systems with many connections.

CMU/SEI-99-TN-002 13

� &RQFOXVLRQV

Commercial availability of distributed application infrastructures such as CORBA provides
application developers a framework to add services, such as security policies, independently
of the core client/server software. SSL provides a standard, commercial solution for
securing transactions between a client and server in an Intranet environment or over the
Internet. Current implementations of SSL have some limitations in that they often rely on
native libraries.

Sorbet does not require native libraries, providing a portable solution that can be easily
deployed with a broad range of client architectures. In addition, Sorbet provides application
developers more control over security policy. Table 1 shows that Sorbet can be just as cost
effective as an SSL solution providing similar functionality. Also, Sorbet allows the security
policy to be separated from the core application, which allows for flexibility when the
software is being maintained or updated.

In most cases, SSL is a better choice than a custom security model such as Sorbet because
SSL is a standard solution that can be more readily approved for use in large organizations.
Custom solutions such as Sorbet may be used as a last resort when COTS solutions prove
inadequate due to performance, functionality, or other failures.

14 CMU/SEI-99-TN-002

5HIHUHQFHV

ANSI 85 ANSI X9.17-1985, American National Standard, Financial
Institution Key Management (Wholesale), American Bankers
Association, Section 7.2. New York: American National Standards
Institute, 1985.

Beker 82 Beker, H. & Piper, F. Cipher Systems. London: Northwood Books,
1982.

DES 93 Data Encryption Standard (DES) (FIPS PUB 46-2). Gaithersburg,
Md.: National Institute of Standards and Technology, January,
1993. Available WWW:
<URL: http://www.nist.gov/itl/div897/pubs/fip46-2.htm>.

Diffie 76 Diffie, W. & Hellman, M.E. “New Directions in Cryptography.”
IEEE Transactions on Information Theory, IT-22, Vol. 6, pp. 644–
654, 1976.

ECS 94 Eastlake, D., Crocker, S. & Schiller, J. “Randomness
Recommendations for Security.” RFC 1750, Network Working
Group, IETF, December, 1994.

El Gamal 85 El Gamal, T. “A Public Key Cryptosystem and Signature Scheme
Based on Discrete Logarithms.” IEEE Transactions on Information
Theory, IT-31, pp. 469–473, 1985.

Ellis 87 Ellis, J.H. “The Story of Non-Secret Encryption.” Cheltenham, UK:
Communications Electronics Security Group, 1987. Available
WWW: <URL: http://www.cesg.gov.uk/about/nsecret/ellis.htm>.

Inter 98 Object Management Group. Ch. 18, “Interceptors.” CORBA 2.2
Specification (OMG 98-07-01). Framingham, Ma.: Object
Management Group, 1998. Available WWW:
<URL: ftp://www.omg.org/pub/docs/formal/98-02-23.pdf>.

CMU/SEI-99-TN-002 15

Lai 92 Lai, X. ETH Series on Information Processing (J.L. Massey, ed.).
Vol. 1, On the Design and Security of Block Ciphers. Konstanz,
Switzerland: Hartung-Gorre Verlag, 1992.

OMG 98 Object Management Group. CORBA 2.2 Specification (OMG 98-
07-01). Framingham, Ma.: Object Management Group, 1998.
Available WWW:
<URL: http://www.omg.org/library/c2indx.html>.

PKCS 91 PKCS #1: RSA Encryption Standard, Version 1.4. San Mateo, Ca.:
RSA Data Security, Inc., 1991.

RFP 98 Object Management Group. Portable Interceptors RFP, Draft 6
(orbos/98-09-05). Framingham, Ma.: Object Mangement Group,
1998. Available WWW:
<URL: http://www.omg.org/docs/orbos/98-09-05.pdf>.

Rivest 91 Rivest, R. The MD5 Message Digest Algorithm. Cambridge, Ma.:
MIT Laboratory for Computer Science, 1991.

Seacord 98 Seacord, R. C. & Hissam, S. “Browsers for Distributed Systems:
Universal Paradigm or Siren’s Song?” World Wide Web Journal 1,
4, Baltzer Science Publishers BV, 1998.

SHA 95 Secure Hash Standard (FIPS 180-1). Gaithersburg, Md.: National
Institute of Standards and Technology, April 1995.
Available WWW:
<URL: http://www.nist.gov/itl/div897/pubs/fip180-1.htm>.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

July 1999

3. REPORT TYPE AND DATES

COVERED

Final
4. TITLE AND SUBTITLE

Securing Internet Sessions With Sorbet

5. FUNDING NUMBERS

C — F19628-95-C-0003

6. AUTHOR(S)

Fred Long, Scott Hissam, Robert C. Seacord, John Robert

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-99-TN-002

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

More and more organizations are using intranets, and even the Internet, as the communications media for
important data. However, such communications media are inherently insecure and subject to hijacking. To
secure these connections, mechanisms must be built on top of the underlying communications facilities. In this
paper, we discuss one such security mechanism and describe an implementation using common object request
broker architecture (CORBA) -based interceptors.

15. NUMBER OF PAGES

15 pp.

14. SUBJECT TERMS

common object request broker architecture (CORBA), secure socket layer
(SSL), sorbet

16. PRICE CODE

17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION

OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION

OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

	Contents
	List of Figures
	List of Tables
	Abstract
	1 Introduction
	2 Background
	3 Secure Sessions Using CORBA Interceptors
	4 Comparison
	5 Conclusions
	References

