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Abstract 

The development of trusted systems is a long-standing, elusive, and ill-defined objective in many 
domains. This paper gives substance and explicit meaning to the terms trust and trustworthy as 
they relate to automated systems and to embedded systems in particular. Principles of trust are 
identified. Some of their implications for software engineering practice and for the design of 
hardware-based trusted computing platforms are also discussed.  
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1 Background 

Trusted computing is a common goal in many automated domains. Those involved in current 
efforts to achieve trusted computing typically believe that, regardless of what is meant by trusted, 
their efforts will require a secure infrastructure and development of correct application codes that 
extend security to enable trusted applications. A trusted computing platform is a computing 
infrastructure that provides a variety of hardware-supported security functions. Although trust, 
trusted, and trustworthiness are never defined, it is hoped that trusted computing platforms and 
resulting improvements in the security in computing infrastructure and applications will enable 
trustworthy applications and systems. 

Hardware-based trusted computing platforms include security chips, such as the Trusted Platform 
Module (TPM). The TPM is an inexpensive passive hardware chip that can perform hashing, 
generate random numbers and asymmetric cryptographic keys, store keys with confidentiality and 
integrity, confirm its own identity, and perform asymmetric signing, encryption, and decryption 
on small blocks of storage [TCG 2007]. TPMs provide these primitive security functions without 
the vulnerabilities inherent in purely software solutions. In theory, they can be extended to almost 
any well-understood security function, except perhaps availability, through a multilevel chain-of-
trust bootstrapping process [Arbaugh 1997].  

Effective use of trusted computing platforms requires provably correct code at every level of 
implementation, from bios startup and boot load to the end applications. It requires strict and 
careful maintenance of chains of trust. It is a brittle process in which a mistake at any level voids 
the results at all subsequent levels. Success is impractical in all but the simplest systems. In 
certain situations, dynamic roots of trust [McCune 2008] can be used to reduce the number of 
levels. Even then, security is assured only if 

•  the application does not depend on external components 

• one assumes that implementation bugs do not create exploitable vulnerabilities 

• neither hardware nor software supply chains have been compromised 

• the system cannot be compromised by physical attacks  

Trusted computing has become a recognized domain of computing with several annual 
conferences and workshops [TCI 2010, Trust 2010]. Hardware-based trusted computing platforms 
have been widely deployed, if not fully utilized. The focus, however, remains on security, 
specifically infrastructure security that leaves issues of trust to software engineering at the 
application level. Software engineering, unfortunately, has either ignored issues of trust or 
interpreted them simply as fulfilling application requirements rather than a driver in determining 
appropriate requirements.  

The work in this report follows from previous examinations of the capabilities and limitations of 
trusted computing platforms [Fisher 2011] and of business models and implications for trusted 



 

CMU/SEI-2012-TN-007 | 2 

platforms.1 In this paper I attempt to give more substance to trusted, trust, and trustworthy in the 
context of automated systems. I identify principles of trust and discuss the implications of the 
principles for both trusted computing platforms and software engineering.  

Although some of the findings may also apply to other domains, this report focuses on embedded 
systems applications. An embedded system is any automated system that involves the use of 
sensors, control devices, and network connections; provides dedicated special-purpose capabilities 
that are complex and adaptive; and has power, weight, or other constraints that limit CPU 
performance, memory capacity, and communications bandwidth. Because embedded systems 
must interact with the physical world in real time, time is an omnipresent aspect of embedded 
systems and must be a primary consideration in user expectations and development decisions 
[Duranton 2006]. 

Embedded systems not only include mission requirements that are noncomputational in character, 
but these requirements typically operate under safety-critical conditions in adversarial 
environments. Embedded systems may have physical and cyber security requirements and must 
perform within real-time constraints but in some ways are simpler than general-purpose systems 
because they involve thousands rather than millions of lines of code. Their complexity and 
adaptability require software-intensive solutions running on general-purpose processors, while 
constraints on their computational resources may preclude high-performance processors and the 
use of general-purpose operating systems. Examples include avionics systems, all but the simplest 
automated medical devices, embedded automotive systems, and complex supervisory control and 
data acquisition (SCADA) devices. Unmanned aerial vehicles (UAVs) and other autonomous and 
remotely controlled vehicles provide especially good examples and serve as the focus of this work 
[Stansbury 2008, DoD 2010]. 

A trustworthy system is one that fulfills the expectations of its owners and users [Grawrock 2009]. 
Thus, our research in trusted embedded systems is focused on the design and implementation of 
embedded systems that can be trusted to fulfill the expectations of their owners and users. It seeks 
methods that clarify expectations under normal and adverse circumstances, provide dynamic 
evidence of success or failure, and implement appropriate runtime failure semantics. It recognizes 
the differences between trust and security and that secure infrastructure is critical to trusted 
systems whether or not the trusted systems have application-level security requirements.  

 
1  Andrews, A. D.; Fisher, D. A.; & McCune, J. M. Gaining Traction for Trusted Computing. Software Engineering 

Institute, Carnegie Mellon University, (forthcoming). 
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2 Introduction 

Trustworthiness is the degree to which a system satisfies its owners’ and users’ expectations. 
Thus, trustworthiness is system- and mission-specific. Cost-effective trustworthy systems require 
application- or mission-specific solutions built on special-purpose platforms that recognize the 
limitations and constraints of differing domains. This means that one-size-fits-all solutions are not 
optimal and are unlikely to be successful. It also means that trustworthy solutions are impossible 
without realistic expectations.  

Embedded systems operate in the presence of inherent uncertainty, context dependencies, and 
adversarial certainty. Physical damage, weather conditions, and component maintenance impose 
uncertainty that is inherent in embedded systems but seldom seen in general-purpose computing 
systems. In the physical world of embedded systems, all operational environments are adversarial, 
whether by accident or intent, whether by users, developers, or others, and whether by intelligent 
or natural adversaries or some combination of these. Systems, or at least their developers, may 
have to distinguish among a variety of influences including expectations, observations, assertions, 
assumptions, constraints, and optimization criteria to determine the appropriate actions of an 
embedded system in response to expected and unanticipated situations.  

Trust is the confidence or reliance one has in the integrity, strength, ability, surety, etc. of a 
product, service, person, or other thing. The degree of trust can vary from one part or aspect of a 
system to another. Trust can be a function of time and circumstances. For example, my cell phone 
provides good service except at times when too many others are using the service or I am in a 
dead zone. Trust depends not only on circumstances but also on our expectations. A computer that 
is too slow for some may be more than adequate for others who have lesser expectations.  

A trusted system or application is one in which our confidence or reliance is justified. That is, a 
trusted system is one that we believe will satisfy our expectations and in which that belief is 
backed by adequate evidence. It is all too easy to make invalid trust decisions in the presence of 
contrary evidence. Even though my bus arrives 20 minutes late on most days, I continue to treat 
that evidence as an anomaly and believe it will be on schedule today. We want to believe that the 
systems and services that we use are trustworthy.  

There is an often confusing relationship between security and trust. Although security deals with 
issues of confidentiality, integrity, and availability of information and services, while trust 
addresses the confidence one has that a product or service will perform as expected, the terms 
security and trust are sometimes equated. The trustworthiness of a product or service can be 
undermined from below by an adversary exploiting security vulnerabilities in the underlying 
infrastructure on which it depends. The trustworthiness of an otherwise trustworthy banker might 
be undermined by taking his family hostage. The trustworthiness of an otherwise trustworthy 
application might be compromised by exploiting security vulnerabilities in the operating system 
on which it runs.  
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In an automated system, an application may or may not have application-level security 
requirements. From a trust perspective, security is like any other application-level quality 
attribute. The location of a UAV, for example, is not sensitive when flying in civilian air space 
but may be classified when in a war zone. Automated systems, however, typically depend on 
certain infrastructure and contextual security assumptions including those that arise from 
computer system hardware, operating systems, and support libraries. If the integrity of this 
infrastructure is compromised, the trustworthiness of the application or mission also may be 
ruined.  

The TPM and other hardware-based trusted computing platforms are intended to provide a secure 
infrastructure on which to run applications and to enable the development of trusted applications. 
Trusted computing platforms address issues of confidentiality, code integrity, and identity through 
secure storage of encryption keys and measured code. They do not address issues of trust beyond 
security. They enable application-level security, but only in the presence of correct security-aware 
software.  

Developers should consider issues additional to security when developing trustworthy 
applications. Developers need to identify and prioritize the critical functional and quality needs of 
the system or application. They need to implement software engineering methods and practices 
that exploit those priorities to maximize the likelihood of the system or application’s mission 
being fulfilled. Developers also need to assess whether those needs and expectations are being 
met, determine and collect what constitutes adequate evidence for that assessment, and identify 
the intended failure semantics when normal expectations cannot be satisfied. Failure semantics 
are the meaning or intent of the actions taken when failures occur [Hoare 1983].  
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3 Principles of Trust 

Certain principles of trust follow from the previous considerations. Principles of trust provide a 
context and framework for reasoning about issues of trust and trustworthiness. They can guide 
decisions about how trustworthiness can be measured, managed, and mitigated. They can help in 
selecting and prioritizing needs, determining what evidence is adequate, and deciding what 
circumstances constitute failures and what failure semantics are appropriate.  

P1. Trust is essential. Our inability to observe and correctly interpret everything that might 
affect us guarantees that some essential influences or aspects will be unknown in any given 
situation. Furthermore, we live in a dynamic world in which what we know today may not be 
true tomorrow. No amount of care, concern, or validation can guarantee trustworthiness. 
Useful operation of anything depends on trust in its design, implementation, and use. 
Without some degree of trust, nothing can be accomplished and nothing is useful. 

P2. Trust must be evidence-based and never absolute. Justified confidence is impossible 
without evidence. Evidence can take many forms but ultimately depends on observations of 
past performance or quality of outcomes for designers, implementers, and users of the 
products or services we wish to trust. Testing, validation, and certification are processes that 
can provide evidence of trustworthiness, as can test use in circumstances similar to those of 
expected operational use. Evidence of functionality or quality should be given greater 
credibility than claims by the provider, but rejection of provider claims should not 
necessarily preclude use of the product. Trust is a measure of confidence relative to the 
user’s, rather than the provider’s, expectations. No amount of evidence, however, can 
guarantee absolute trustworthiness in any given situation. Nothing should be trusted 
completely, not even ourselves. Any system can fail due to errors in design, implementation, 
or use, or because of physical damage, incorrect data, misunderstanding, or omissions.  

 

 0% .)______________________(. 100% 

degree of trust 

Figure 1: The Open Interval of Trust 

 

P3.  Trust should be partitioned by function and context. Trust can vary within a system 
depending on the specific function considered or on the time, context, and dynamically 
changing circumstances of its use. It is unnecessary to completely trust anything. Only the 
specific functionality, quality, and services needed for the current mission must be trusted. I 
don’t have to trust the doctor’s surgical skill to have her as a golf partner. That John gives 
honest answers to Mary does not necessary mean he will be so forthcoming with others. That 
the experiment worked in the laboratory does not mean that it will work in the field. That 
students are punctual on Wednesdays may say little about their tardiness on Fridays. 
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Evidence of trust is only needed for those functions, qualities, circumstances, and conditions 
that are expected for the current mission. Confidence of trustworthiness is needed only for 
that functionality and those qualities of a product or service that are essential to the success 
of a system or mission. Failure to fulfill other claimed functionality or services may be 
irrelevant.  

P4. Trust must be dynamically confirmed. Because we live in a dynamic world, the context 
and conditions of an actual mission are guaranteed to differ from those in which the evidence 
of trustworthiness was generated. Only dynamic confirmation of expectations can ensure that 
our trust was justified. Dynamic confirmation also provides an opportunity to take mitigating 
actions when our expectations are not satisfied. Dynamic evidence through feedback among 
the constituents of a system is essential where the constituents include all active elements of 
the system, whether they be human, computational, or mechanical. Otherwise the system is 
blind to its own state and context and has no way to determine whether failures have 
occurred and failure semantics should be employed. 

P5. Trust should be proportional to the amount, quality, and relevance of evidence. The 
more independent evidence that supports our expectations, the more confidence we can have, 
especially in the absence of conflicting evidence. The degree of trust should, however, be 
moderated by the quality and trustworthiness of the evidence. It is often very easy to 
generate large quantities of evidence of trustworthiness for functionality, quality of service, 
and circumstances that have little relevance to the current mission, quality needs, and 
context. Such evidence must be identified and should have minimal influence on our degree 
of trust. Evidence of intentionally false claims in any area, however, may correlate with 
untrustworthiness in other areas.  

P6. Trust should be inversely proportional to impact, complexity, and interdependencies of 
the evidence. There is little risk in trusting something whose failure would make little 
difference. For example, I seldom expend energy determining whether the money I receive 
in change is counterfeit. As the complexity of a product or service increases, so does the 
likelihood that it will be untrustworthy and the greater the amount of evidence that is needed 
to generate trust. The complexity of a product or service is sometimes invisible to its users 
but can be indicated by multiple services in the same product, large numbers of options, 
incomplete functional or quality specifications, large numbers of visible state variables, or 
backdoor interfaces to other services. From the user perspective, lack of interdependencies 
among products, services, or functions, coupled with obvious and understandable interfaces, 
makes those products, services, and functions seem simple and reduces the amount and kinds 
of evidence required to provide confidence of their trustworthiness.  

P7. Trust does not inherently require security mechanisms. Confidentiality is seldom an 
application-level requirement in embedded systems. Some degree of availability and 
integrity of information and services are always necessary for trust, but security mechanisms 
provide only limited support for availability and integrity. Secure contexts and platforms can 
boost confidence in security but are neither necessary nor sufficient for the availability and 
integrity of trusted systems. Methods beyond those traditionally used in information security 
are needed to support expectations for availability and integrity, to provide adequate 
evidence of their satisfaction, and to enable appropriate responses to failures.  
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P8. Trustworthiness is an emergent property that can be composed from untrustworthy 
components. Emergent properties arise from the actions and interaction among the 
constituents of a system and are independent of many of the constituents’ details [Fisher 
2006]. Confidence in aspects of trust such as availability and integrity can be enhanced 
through trust mechanisms in which the consumers confirm availability of information or 
services to provider constituents and providers validate integrity through feedback from 
consumers. These aspects of trusted systems can be produced from untrustworthy 
constituents. Trust is thus more analogous to reliability, where reliable systems can be built 
from unreliable components, than to performance, where high-performance systems require 
high-performance components. It also means that these aspects of security may be 
achievable without secure infrastructure.  

P9. Over-specification can weaken or destroy trustworthiness. The more constraints and 
requirements imposed on a system, the fewer the number of feasible solutions. If any of 
those constraints or requirements are not essential to the system’s purpose or mission, they 
likely will reduce cost effectiveness, eliminate the most trustworthy solutions, and may 
preclude all adequate solutions. Trustworthy systems demand that needs and requirements be 
limited to those that are essential. Furthermore, emergent effects, in which system-wide 
properties that are not present in the system’s constituents arise from the interactions among 
the constituents, are possible only in systems where there is significant interaction among the 
constituents but the constraints remain loosely coupled.  

Readers are challenged to test the principles set forth here, to validate or refute them from their 
knowledge and experience, and to propose modifications where appropriate. Assuming that the 
principles are sound, the following two sections give a glimpse of some of the implications for 
software engineering and hardware-based trusted platform infrastructure.  
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4 Implications for Software Engineering 

 

Trust is about satisfying owner and user expectations. From a software engineering perspective, 
there are two sides to this equation: having realistic expectations and ensuring that expectations 
are actually met. Given that little can be guaranteed, the appropriate level of expectations is that 
likely to be achieved within the available resources. Trust is not only about functionality and 
quality but also about managing expectations.  

Expectations can be satisfied only if they are known, documented, and realistic. They can be 
realistic only if we know what is feasible and affordable. Owners’ and users’ expectations for a 
system must be captured and agreed upon. Equally important is agreement on what evidence is 
required to demonstrate success or failure in meeting those expectations. Lack of evidence of 
failure does not necessarily imply success. In general, there are three cases to consider depending 
on whether the expectations are met, not met, or undetermined. The intended responses in each 
case represent expectations for the system.  

Requirements for trusted systems should be composed from only four elements: (1) realistic 
expectations for normal operations, (2) the evidence required to confirm failure or success, (3) the 
failure semantics when expectations cannot be satisfied, and (4) the practical constraints of the 
system implementation. The fourth element might include the cost, performance, and capacity of 
available resources, as well as real-time constraints. The need to document evidentiary 
requirements and intended failure semantics may be new.  

The value in omitting nonessential desires and specific implementation mechanisms from 
requirements has long been argued but has had little impact on practice. For trusted systems, it is 
critical and may explain why so many systems fail to satisfy their owners’ and users’ 
expectations. Removing extraneous requirements can improve cost performance, but runtime 
collection of evidence to confirm trustworthiness may reduce cost performance. A formal 
specification language for trusted systems could encourage appropriate requirements specification 
and provide the necessary input for analysis and synthesis tools.  

The need for simplicity in trusted systems imposes a need for application architectures that divide 
the functionality into independent constituents at each level of implementation. These 
independent constituents can then easily be composed to provide the functionality and quality 
required at the next level. Each constituent should have restricted access to the state of other 
constituents on a need-to-know basis. Ideally, each constituent would provide a single 
functionality with access to other constituents only through parameter-passing mechanisms.  

Mitigation strategies in case of failure to meet expectations should seldom be reduced forms of 
normal requirements. While fail-soft and fail-safe mechanisms may be adequate for some general-
purpose systems, they are seldom appropriate for embedded and real-time applications. In safety-
critical systems, “do no harm to the user or others” may be the overriding concern. In unmanned 
military vehicles, self destruction may be an appropriate mitigation in some situations. In 
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automated medical control systems, mitigations might focus on keeping patient parameters within 
safe ranges and sounding an alarm for human intervention. Conflicting evidence as to the state of 
a system or its context must be addressed in safe and effective ways. Most important is that the 
mitigating actions in case of failure reflect expectations of owners and users for the specifics of 
the situation in light of the available evidence. Mitigating strategies, like other needs and 
requirements, must be mission- and situation-specific. 

Trust requires practical rather than formal correctness. Trustworthy systems must be able to react 
creditably to unexpected and unanticipated situations, operate in the presence of uncertainty, and 
deal with failures in provably correct code. Formal correctness can mitigate certain forms of logic 
and implementation errors but cannot address errors, such as externally imposed state changes, 
that are not observable within the code. Neither should optimization necessarily remove runtime 
checks that are redundant or unnecessary from a model checking or proof-of-correctness 
perspective.  
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5 Implications for Platform Infrastructure  

Hardware-based trusted computing platforms provide a level of secure infrastructure that cannot 
be achieved in software implementations alone. They also can reduce the concern for otherwise 
trustworthy applications being undermined through their platform infrastructure.  

Existing trusted platforms such as the Trusted Platform Module (TPM), which provide simple 
security isolation functions that cannot be compromised by software, may be needed to satisfy 
confidentiality, integrity, and identity confirmation requirements in trusted applications. These 
platforms are generally affordable in terms of weight and power requirements in embedded 
systems. Their practical value may be greater in embedded systems and especially in systems built 
from a trusted systems perspective because application simplicity and reduced distance between 
platform and application reduce the practical problems of producing correct chains of trust. The 
use of separate chips for security, however, imposes vulnerabilities that would be absent if the 
hardware security functions were on the same chip as the central processing unit (CPU). In 
commodity applications, they also can add prohibitively to system costs. Use of trusted computing 
platforms and improvements in CPU architectures could facilitate trusted computing solutions.  

CPU architectures could eliminate some of the current security vulnerabilities inherent in direct 
memory access (DMA) devices that have  

• unrestricted access to memory 

• privileged hardware modes that are exempt from normal isolation boundaries 

• access to uninitialized memory that may contain information without a need to know 

• information leaks through processor registers during task switches 

• buffer overflows that are enabled by the absence of affordable bounds checking  

More important from a trust perspective, hardware and software infrastructure could provide 
mechanisms for runtime support of trustworthy applications. Parallel hardware could allow 
evidence checks to be performed concurrently with normal operation to maximize performance 
[Bratus 2008]. Exception processing could be initiated without entering privilege mode. And, 
isolation of constituents could be provided through always-present, functionally-based, fine-
grained access mechanisms [Organick 1972, Levin 1975]. Together these approaches may be able 
to eliminate privileged mode entirely in favor of fine-grained access mechanisms everywhere. The 
referenced papers provide a baseline of ideas for development of more effective trusted systems 
technology. 
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6 Summary and Conclusions  

A trusted system is one that, in operational use, satisfies the expectations of its owners and users. 
This report includes principles that can guide development decisions for trusted systems. Trusted 
systems require simple, understandable designs and implementations without extraneous 
requirements. They require evidence-based runtime decisions that consider not only normal 
execution but intended failure semantics for abnormal situations.  

The focus in this report is on embedded applications that  

• must operate with computer hardware that is more limited in speed, capacity, and bandwidth 
than general-purpose systems 

• involve sensors, control devices, and communications 

• have application-specific requirements that often include safety, real-time performance, and 
weight and power constraints 

• operate in adversarial environments 

• unlike general-purpose systems, do not have to deal with multiple applications of unknown 
character 

Fulfilling the vision of trusted embedded systems will require software engineering practices that 
focus on trust and trustworthiness, not only in implementation, but in requirements generation and 
software architecture. Embedded systems offer an ideal context for trustworthy systems because 
they lack the inherent complexity of general-purpose systems and have greater access to sensor 
and control devices that can provide needed feedback as evidence of success and failure.  

Certain modifications and enhancements to CPUs and operating systems of trusted computing 
platforms could also reduce the cost, improve the performance, and reduce the security risks in 
trusted systems. These include direct support for common trust mechanisms and elimination of 
certain avoidable security vulnerabilities.  
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