
ABSTRACT
The needs of software architectural design and analysis have led to
a desire to create CASE tools to support the processes. Such a tool
should help: to document an architecture; to reuse architectural
artifacts; to aid in exploring architectural alternatives; and to
support architectural metrics. This position paper first presents a set
of requirements that an ideal tool for architectural design and
analysis, and then presents a tool—called SAAMtool—that meets
most, but not all, of these requirements. SAAMtool embodies both
SAAM (Software Architecture Analysis Method) and an
architectural description framework which describes architectural
elements according to their static and temporal features. The tool
serves several purposes. It supports and documents the results of
architectural design and analysis efforts at varying degrees of
resolution, it acts as a repository of both designs and design
rationales in the form of scenarios, it applies metrics to
architectures, and it visualizes architectures with respect to
architectural metrics.

Keywords
Software Architecture Analysis; Visualization; Metrics

INTRODUCTION
Software architecture is important as a discipline because software
systems are becoming too complicated to be completely design,
specified, and understood by an individual. One of the aspects of
software architecture which is heavily discussed as a motivation for
the field, but lightly supported by tools and research in the field thus
far, is the human aspect. Architecture, if supported properly, can
have the following “people” benefits:

• focussing design inspections and design activity where they are
needed most

• enhancing high-level communications within a development
team

• encouraging reuse of designs

• enhancing communications between developers and managers
or customers of software

• aiding high-level comparisons of competing designs

Architecture is a way of representing complex systems simply—at
a high level of abstraction. As appealing as this may seem, on the
surface, the messy details—implementation details—do need to be
attended to at some point, otherwise the only thing that gets built is
designs.

It is my contention that we need tool support for architectural
design. However, tool support does not end at the design stage. A
tool can also help ensure that the system that system that gets built
conforms with its architecture, and can automate architectural
analysis. This position paper will delineate the requirements for an
architectural support tool, and will introduce such a tool, called
SAAMtool., that meets some but not all of these requirements.

REQUIREMENTS FOR AN ARCHITECTURAL
ANALYSIS TOOL
The process of collecting, maintaining, and validating architectural
information is tedious and error-prone. Tasks that are tedious and
error prone are ideal candidates for tool support. Revision control,
debugging, dependency analysis, test coverage analysis are a few
examples of tools that successfully automate repetitive
development tasks.

An architectural analysis and design tool has to be able to meet a
number of requirements for it to be useful:

1. The tool must be able to describe any architecture. Ideally it
should support the graphical specification of architectures, as
this models what people do already: they sketch architectures
as an aid to design, exploration, and communication. To sup-
port this requirement best, the tool needs to use the components
and connectors that people are already using, rather than a pre-
determined, statically defined set. Commercial design tools,
such as Software through Pictures or Rational Rose, only par-
tially meet this requirement. Commercial tools typically as-
sume a fixed set of components and connectors, such as objects
as components and method calls as connectors.

2. A tool for software architecture should be able to aggregate ar-
chitectural elements recursively and be able to associate mean-
ingful semantics with elements at any level of abstraction. This
requirement is, again, only partially met by existing tools.
Meeting this requirement is crucial to supporting the iterative
refinement and analysis of architectures, where the analysis is
meaningful at any level of refinement. For example, I should be
able to sketch a node in the architecture and call it “database”,
and be able to ask meaningful design questions, or run perfor-
mance analyses, without further decomposing the database. By
meeting this requirement, a tool should support architectural
design and analysis at any degree of design “resolution”. Of
course, the better the resolution, the better the answers to ques-
tions comparing design alternatives or asking about the feasi-
bility of a design.

3. Such a tool should be able to determine conformance to inter-
faces, both within the architecture being designed and with any
external systems. The tool should also be able to determine© ACM, 1996

Tool Support for Architecture Analysis and Design

Rick Kazman
Department of Computer Science

University of Waterloo
Waterloo, Ontario Canada N2L 3G1

+519 888-4567 x4870
rnkazman@cgl.uwaterloo.ca



conformance of the as-built architecture with the as-designed
architecture [2.]. The second part of this requirement implies a
substantial reverse engineering capability.

4. The tool should be able to analyze architectures with respect to
metrics. Currently, few such metrics exist at the level of archi-
tecture (but some do exist, e.g. [2.], [3.]).

5. The tool should aid in design as a creative activity, and design
as an analysis activity (walk-throughs for example). To do this
it must support the appropriate processes for these activities.
For example, Rational Rose supports both OMT and Booch de-
sign methods, and the processes that these methods imply. Re-
lated to this is the next requirement.

6. The tool should be a repository for: designs, design chunks, de-
sign rationales, and requirements/scenarios. As a repository, it
should support searching an architecture, the extraction of
meaningful subsets of the architecture, and of course updating
the architecture. Many design tools support the first part of this
requirement—they can store and retrieve designs—but few
support the creation, storage, and retrieval of design rationales
as first-class entities.

7. The tool should also provide for the generation of code tem-
plates, to simplify the transition from design to code, and to
help ensure consistency between the two. It should also provide
data and control flow modeling, including performance model-
ing.

SAAMTOOL
In this section I will describe SAAMtool, a tool that was first created
to support the Software Architecture Analysis Method (SAAM) of
reviewing architectural designs, as described in [4.]. Since its
inception, however, SAAMtool has been extended to meet some,
but not all, of the requirements listed above. In particular,
SAAMtool does not currently support requirements 3 and 7.

The semantic portion of the tool—the database, graph
manipulation, and architectural element definition—is written in C
and C++. The user interface written in Tcl/Tk. A design analysis
portion has been recently added, and it is written in Lisp.

SAAMtool has three modes in which it operates: build mode, for
designing architectures and architectural patterns; scenario mode,
for creating scenarios and associating them with portions of the
architectures; and view mode, which allows a user to switch
between the various views of an architecture, and to visualize the
architecture according to metrics.

Describing an Architecture

Semantic Foundations
SAAMtool represents architectures as multi-graphs of architectural
elements. Architectural elements are not simply components and
connectors—such as pipe, filter, object, process, socket, etc.—but
are represented more abstractly, as untyped elements which have a
set of descriptive properties [5.]. These properties refer to the way
the element stores and transmits data and control, the element’s
temporal characteristics (e.g. when can it accept and relinquish
control and data), and the element’s binding relationships (e.g.
when does it bind; how many other elements can this element bind
to; its signature, etc.). Because we do not name specific elements,
but rather describe the properties of elements, our classification has
no inherent scale. We can just as easily describe a file, an object, a
process, or a sub-system. SAAMtool can describe single elements,
clusters of elements, or entire systems in this notation. Furthermore,
we can describe “near matches” among elements and patterns of

elements. We can do this because we hierarchically nest elements,
and recursively define the properties of a “parent” node as the
composition of the properties of its children.

Hierarchical Nesting
In SAAMtool, any collection of connected nodes can be coalesced
into a single node. Because of the semantic foundations described
above, any coalesced node can be treated exactly as though it were
an atomic element. Typically, coalesced nodes represent systems,
sub-systems, or major functional components of an architecture.
SAAMtool ensures that the connectivity constraints of the
individual nodes are met by the coalesced “parent’ node. It also
ensures that the semantics of the collection of nodes are accurately
represented by the parent.

Scenarios
Scenarios, as with all requirements, are difficult to elicit and
validate. It is therefore useful to maintain existing scenarios in a
database, as a reusable asset: as a means of determining scenario
coverage (i.e. whether a given product, as designed, meets the
requirements expressed in the scenarios), for scenario regression
testing, or for creating scenarios for new products within the same
product family. In addition, scenarios have relationships not only
with the architecture, but with other scenarios. SAAMtool allows
for the creation and management of arbitrary graphs of scenarios, as
a hypertext database.

Supporting Multiple Views
It is clear that software is created, transformed, and managed in
multiple ways, and so must be viewed in multiple ways [7.]: as
code, as executing elements (also known as the “dynamic” view),
through its allocation to hardware, etc. Each view in SAAMtool is
maintained as a distinct multi-graph, and any node within any view
can have links to nodes in one or more of the other views. Currently
the tool supports a dynamic model, a code view, and a functional
decomposition. Using these views one could see, for example, not
just a code view of a product, but could select elements from this
code view and use the set of selected elements to limit what parts of
the dynamic view are viewed. This sort of flexibility is of prime
importance to architectural mining and understanding: being able to
flexibly constrain the view of the architecture based upon user-
specified criteria.

Scenarios are maintained as a set of arbitrary graphs. That is, any
scenario can be related to any number of other scenarios. Scenarios
are also related to portions of an architectural view. Currently we
only support the relationship between scenarios and the dynamic
view of an architecture.

Because scenarios are maintained as a distinct data structure, they
can be used to specify (primarily, to limit) the scope of one of the
other views of the architecture. This is of use when trying to
understand an architecture. We often want to constrain our current
view of the software through some other view. For example, we
might want to know what source modules would be affected if we
moved an executing element from one hardware or software
platform to another. Or, we might want to know what executing
elements would be affected if we change some source module. We
have extended this notion to include scenarios. We can see the
effects of a scenario mapped onto one of the other views. This
manifests itself in two ways. For direct scenarios (those that
describe some execution of the system) we can use the scenario to
walk through a trace of the execution. For indirect scenarios (those
that describe some desired or anticipated change to the system), we
can use the scenario to describe and visualize the set of
architectural elements that will be affected.



Visualization of Architectures
Related to the notion of supporting multiple views of an
architecture, we would like to be able to visualize information
about a software architecture in the same tool that we create and
maintain the architecture. Architectures for complex systems need
to be visualized for the same reasons that any complex information
set needs to be visualized: because humans are better pattern
recognizers than symbolic information processors. Visualization is
a powerful tool for guiding the designer to potential trouble spots in
the architecture. For example, Figure 1 shows the architecture for a
Windows-based revision control system, visualized with respect to
change analysis (larger rectangles indicate elements which are more
heavily affected by the set of proposed changes). This visualization
vividly draws a designer’s attention to the visdiff module, for
example, as being a potential “hot spot” in the architecture.

Visualization is also useful in describing the complexity of an
architecture, as measured by the uniformity—or what Brooks calls
“conceptual integrity” [1.] of the architecture. We measure this as
the number of different primitive patterns that the architecture
employs [6.]. This is another way of gauging the system’s
adherence to a coherent architectural style. We visualize the results
of this metric by mapping patterns onto an architecture in unique
colors. The number of colors required to “cover” an architecture,
and the percentage of the architecture colored vividly demonstrates
the conceptual integrity, or complexity, of the architecture.

An example of this kind of visualization is given in Figure 2 where
a single pattern is mapped onto an architecture of about 100

elements. A single pattern covers 13% of this architecture. Covered
elements are shown with a red border. The current pattern being
viewed is highlighted.

Analyzing Architectures
SAAMtool supports the process of architectural analyses and walk-
throughs as described in [4.]. It does this by recording and
classifying scenarios, associating scenarios with architectural
elements, and allowing the entire architecture, or subsets of it to be
visualized with respect to architectural metrics, such as structural
complexity, change analysis, coupling, and architectural pattern
matching.

It aids the analyst by keeping track of the relationships between
views, and in particular, the relationships between direct and
indirect scenarios and the various views of the system’s software.

NEXT STEPS
It has been my experience, in performing architectural analyses
with large software development organizations such as Nortel,
MKS, and Tektronix, that the overhead of collecting, managing,
and presenting the information relevant to architectural design and
analysis is a substantial impediment to organizations wanting to
adopt a more mature attitude to their software architectural practice.
Providing tool support for this practice is a first step in aiding its
widespread adoption in industry.

Future work with SAAMtool lies in two area. I would like to
develop and integrate other architectural metrics, particularly those

Figure 1: A Fish-eye View of an Architecture in SAAMtool



that help a human comprehend the complexity of a design. Just as
important, however, is the continued exploration of new
visualization techniques, since these help to make analytical
information interpretable by the designer. Finally, it is crucial to
integration such a tool with performance analysis tools, and with
reverse engineering tools. These last two areas remain outstanding
challenges.

ACKNOWLEDGMENTS
I would like to thank Gavin Peters and Marcus Burth for all of their
dedicated work on SAAMtool.

REFERENCES
1. Brooks, F. Jr., The Mythical Man-Month: Essays on Software

Engineering, Addison-Wesley, 1982.

2. Henry, S., Kafura, D. “Software Structure Metrics Based on
Information Flow”, IEEE Transactions on Software Engineer-
ing, SE-7(5), Sept. 1981.

3. Heyliger, G., “Coupling”, Encyclopedia of Software Engineer-
ing, J. Marciniak (ed.), 220-228.

4. Kazman, R., Abowd, G., Bass, L., Clements, P., “Scenario-
Based Analysis of Software Architecture”, IEEE Software,
November 1996.

5. Kazman, R., Clements, P., Abowd, G., Bass, L., “Classifying
Architectural Elements as a Foundation for Mechanism Match-
ing”, http://www.cgl.uwaterloo.ca/~rnkazman/Foundat.ps,
1996.

6. Kazman, R., Burth, M., “Assessing Architectural Complexity”,
http://www.cgl.uwaterloo.ca/~rnkazman/assessing.ps, 1996.

7. Kruchten, P. “The 4+1 View Model of Architecture.” IEEE
Software 12, 6, Nov. 1995, 42-50.

8. Murphy, G., Notkin, D., Sullivan, K., “Software Reflexion
Models: Bridging the Gap Between Source and High-Level
Models”, Proceedings of the FSE '95, Oct. 1995.

Figure 2: An Example of Architectural Pattern Matching in SAAMtool


