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Abstract 

Integers represent a growing and underestimated source of vulnerabilities in C and C++ programs. 

This report presents the as-if infinitely ranged (AIR) integer model that provides a largely auto-

mated mechanism for eliminating integer overflow and truncation and other integral exceptional 

conditions. The AIR integer model either produces a value equivalent to that obtained using infi-

nitely ranged integers or results in a runtime-constraint violation. Instrumented fuzz testing of 

libraries that have been compiled using a prototype AIR integer compiler has been effective in 

discovering vulnerabilities in software with low false positive and false negative rates.  Further-

more, the runtime overhead of the AIR integer model is low enough for typical applications to 

enable it in deployed systems for additional runtime protection. 
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1 Integral Security 

The majority of software vulnerabilities result from coding errors. For example, 64% of the vulne-

rabilities in the National Vulnerability Database in 2004 resulted from programming errors [Heff-

ley 2004]. The C and C++ languages are particularly prone to vulnerabilities because of the lack 

of type safety in these languages [Seacord 2005]. 

In 2007, MITRE reported that buffer overflows remain the number one issue as reported in oper-

ating system (OS) vendor advisories. It also reported that integer overflow, barely in the top 10 

overall in the years preceding the report, was number two in OS vendor advisories [Christy 2007].  

Integer errors and vulnerabilities occur when programmers reason about infinitely ranged mathe-

matical integers, while implementing their designs with the finite precision, integral data types 

supported by hardware and language implementations. 

Integer values that originate from untrusted sources and are used in the following ways can easily 

result in vulnerabilities:  

 as an array index in pointer arithmetic 

 as a length or size of an object 

 as the bound of an array (e.g., a loop counter) 

 as an argument to a memory-allocation function 

The following sections describe integer behaviors that have resulted in real-world vulnerabilities.  

1.1 Signed Integer Overflow 

Signed integer overflow is undefined behavior in C, allowing implementations to silently wrap 

(the most common behavior), trap, or both. Because signed integer overflow produces a silent 

wraparound in most existing C and C++ implementations, some programmers assume that this is a 

well-defined behavior.   

Conforming C and C++ compilers can deal with undefined behavior in many ways, such as ignor-

ing the situation completely (with unpredictable results), translating or executing the program in a 

documented manner characteristic of the environment (with or without the issuance of a diagnos-

tic message), or terminating a translation or execution (with the issuance of a diagnostic message).  

Because compilers are not obligated to generate code for undefined behaviors, those behaviors are 

candidates for optimization. By assuming that undefined behaviors will not occur, compilers can 

generate code with better performance characteristics. For example, GCC Version 4.1.1 optimizes 

out integer expressions that depend on undefined behavior for all optimization levels. 

Signed integer overflow is frequently not considered to be a problem for hardware that detects it, 

because overflow is undefined behavior. 
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1.2 Unsigned Integer Wrapping 

Although unsigned integer wrapping is well defined by the C standard as having modulo beha-

vior, unexpected wrapping has led to numerous software vulnerabilities. A real-world example of 

vulnerabilities resulting from unsigned integer wrapping occurs in memory allocation. Wrapping 

can occur in calloc() and other memory allocation functions when the size of a memory re-

gion is being computed.
1
 As a result, the buffer returned is smaller than the requested size, and 

that can lead to a subsequent buffer overflow.  

For example, the following code fragments may lead to wrapping vulnerabilities, where count is 

an unsigned integer: 

C: p = calloc(sizeof(element_t), count); 

C++: p = new ElementType[count]; 

The wrapping of calculations internal to these functions may result in too little storage being  

allocated and subsequent buffer overflows. However, the draft standard titled Programming Lan-

guages—C++, Final Committee Draft requires that a new expression throw an instance of 

std::bad_array_new_length on integer overflow [ISO 2010]. 

Another well-known vulnerability resulting from unsigned integer wrapping occurred in the han-

dling of the comment field in JPEG files [Solar Designer 2000]. 

1.3 Conversion Errors 

Integer conversions, both implicit and explicit (using a cast), must be guaranteed not to result in 

lost or misinterpreted data [Seacord 2008]. 

The only integer type conversions that are guaranteed to be safe for all data values and all possible 

conforming implementations are conversions of an integral value to a wider type of the same   

signedness. Conversion of an integer to a smaller type results in truncation of the high-order bits. 

Consequently, conversions from an integer with greater precision to an integer type with lesser 

precision can result in truncation, if the resulting value cannot be represented in the smaller type.  

Conversions to an integer of the same precision but different signedness can lead to misinter-

preted data. 

 
1  http://www.securityfocus.com/bid/5398  

http://www.securityfocus.com/bid/5398
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2 AIR Integer Model 

The purpose of the AIR integer model is to produce either a value that is equivalent to that ob-

tained using infinitely ranged integers or a runtime-constraint violation.  The model applies to 

both signed and unsigned integers, although either may be enabled or disabled per compilation 

unit using compiler options.   

Implementations must declare that they are implementing the AIR integer model with a predefine, 

__STDC_ANALYZABLE__.  The term analyzable is used here to indicate that the resulting sys-

tem is easier to analyze because undefined behaviors have been defined and because the analyzer 

(either a tool or human) can safely assume that integer operations will result in an as-if infinitely 

ranged value or trap.   

Traps are implemented using the existing hardware traps (such as divide-by-zero) or by invoking 

a runtime-constraint handler.  Whether a program traps for given inputs depends on the exact op-

timizations carried out by a particular compiler version. If required, a programmer can implement 

a custom runtime-constraint handler to set a flag and continue (using the indeterminate value that 

was produced).  In the future, an implementation that also supports C++ might throw an exception 

or invoke terminate(), rather than invoke a runtime-constraint handler. Alternatively, the run-

time-constraint handler can throw an exception. We have not attempted to evaluate these, or other, 

alternatives for C++. 

A trap representation is a set of bits that, when interpreted as a value of a specific type, causes 

undefined behavior. Trap representations are most commonly seen on floating point and pointer 

values. However, in theory, almost any type could have trap representations.   

An observation point occurs at an output, including a volatile object access. AIR integers do not 

require a trap for every integer overflow or truncation error.  In the AIR integer model, it is ac-

ceptable to delay catching an incorrectly represented value until an observation point is reached or 

just before it causes a critical undefined behavior [Jones 2009].  The trap may occur any time be-

tween the overflow or truncation and the output or critical undefined behavior.  This model im-

proves the ability of compilers to optimize, without sacrificing safety and security. 

Critical undefined behavior is a means of differentiating between behaviors that can perform an 

out-of-bounds store and those that cannot.  An out-of-bounds store is defined in the C1X draft 

standard titled  Programming Languages—C, Committee Draft as an (attempted) access that, at 

runtime and for a given computational state, would modify (or, for an object declared volatile, 

fetch) one or more bytes that lie outside the bounds permitted by the C1X draft standard [Jones 

2009]. 

The critical undefined behaviors (with references to the section in the C1X draft in which they are 

defined) are shown in Table 1. 
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Table 1: Critical Undefined Behavior 

C1X Section Critical Undefined Behavior 

6.2.4 An object is referred to outside of its lifetime.  

6.3.2.1  An lvalue does not designate an object when evaluated. 

6.3.2.3 A pointer is used to call a function whose type is not compatible with the pointed-to type. 

6.5.3.2 The operand of the unary * operator has an invalid value. 

6.5.6 Addition or subtraction of a pointer into, or just beyond, an array object and an integer type pro-

duces a result that points just beyond the array object and is used as the operand of a unary * 

operator that is evaluated. 

7.1.4 An argument to a library function has an invalid value or a type not expected by a function with a 

variable number of arguments. 

7.21.3 The value of a pointer that refers to space deallocated by a call to the free or realloc function 

is used. 

7.22.1, 7.27.4 A string or wide-string utility function is instructed to access an array beyond the end of an object. 

In the AIR integer model, when an observation point is reached and before any critical undefined 

behavior occurs, any integer value in the output is correctly represented (“as-if infinitely ranged”) 

provided that traps have not been disabled and no traps have been raised.  Optimizations are en-

couraged, provided the model is not violated. 

2.1 Implementation Methods 

The AIR integer method permits a wide range of implementation methods, some of which might 

apply to different environments and implementations: 

 Overflow or truncation can set a flag that compiler-generated code will test later. 

 Overflow or truncation can immediately invoke a runtime-constraint handler. 

 The testing of flags can be performed at an early point (such as within the same full expres-

sion) or delayed (subject to some restrictions). 

For example, in the following code 

  i = k + 1; 

  j = i * 3; 

  if (m < 0) 

    a[i] = . . .; 

the variable j does not need to be checked within this code fragment (but may need to be checked 

later). The variable i does not need to be checked unless and until the a[i] expression is eva-

luated. 
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Compilers may choose a single, cumulative integer exception flag in some cases and one flag per 

variable in others, depending on what is most efficient in terms of speed and storage for the par-

ticular expressions involved.  For example, in the following code 

  x++; 

  y++; 

  z++; 

  printf("%d", x); 

the call to printf() is an observation point for the variable x. Any of the operations x++, y++, 

or z++ can result in an overflow.   Consequently, it is necessary to test the value of the exception 

flag prior to the observation point (the call to printf()) and invoke the runtime-constraint 

handler if the exception flag is set:  

// compiler clears integer exception flags 

  x++; 

  y++; 

  z++; 

  if (/* integer exception flags are set */)  

    runtime_constraint_handler(); 

  printf("%d", x); 

If only a single exception flag is used, one or more of the variables may contain an incorrectly 

represented value, but we cannot know which one.  Consequently, the runtime-constraint handler 

will be invoked if any of the increment operations resulted in an overflow.  In that case, it may be 

preferable for the compiler to generate a separate exception flag for x so that the runtime-

constraint handler need only be invoked if x++ overflows. 

Portably, if the code reaches an observation point without invoking a runtime-constraint handler, a 

programmer can only assume that all observable integer values are represented correctly.  If a run-

time-constraint error occurs, all integer values that have been modified since the last observation 

point contain indeterminate values.  In cases where the programmer wants to rerun the calculation 

using a higher or arbitrary-precision integer, the programmer would need to recalculate the values 

for all indeterminate values. 

Ideally, while we would like to eliminate implementation-defined behavior in the AIR integer 

model, sufficient latitude must be provided for compiler implementers to optimize the resulting 

executable. 

2.2 Undefined Behavior 

One of the goals of the AIR integer model is to eliminate previously undefined behaviors by pro-

viding optional predictable semantics for areas of C that are presently undefined (at some optimi-

zation cost).  Changes from the existing, unbounded, undefined behavior that pose serious imple-

mentation problems in practice were not adopted under the model. 

The following cases receive special handling in the AIR integer model. 
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2.2.1 Multiplicative Operators 

There is no defined infinite-precision result for division by zero.  Processors typically trap, but 

that may not be universal.  The AIR integer model requires trapping.   

When integers are divided, the result of the / operator is the algebraic quotient with any fractional 

part discarded.  If the quotient a/b is representable, the expression (a/b)*b + a%b is equal to 

a. Otherwise, the behavior of both a/b and a%b is undefined by C99, but processors commonly 

trap. For example, when using the IA-32 idiv instruction, dividing INT_MIN by -1 results in a 

division error and generates an interrupt on vector 0 because the signed result (quotient) is too 

large for the destination [Intel 2004].  The AIR integer model requires trapping if the quotient is 

not representable. 

The ISO/IEC JTC1/SC22/WG14 C standards committee discussed the behavior of INT_MIN % 

-1 on the WG14 reflector and at the April 2009 Markham meeting [Hedquist 2009].  The com-

mittee agreed that, mathematically, INT_MIN % -1 equals 0.  However, instead of producing 

the mathematically correct result, some architectures may trap.  For example, implementations 

targeting the IA-32 architecture use the idiv instruction to determine the remainder.  Conse-

quently, INT_MIN % -1 results in a division error and generates an interrupt on vector 0.     

At the same Markham meeting, some committee members argued that C99 requires a C program 

computing INT_MIN % -1 to produce 0 because 0 is representable. Others argued that C99 left 

the computation as undefined because INT_MIN / -1 is not representable.  The committee 

decided that requiring C programs to produce 0 would render some compilers noncompliant with 

the standard and that adding this corner case could add a significant overhead.  Consequently, the 

C1X draft standard [Jones 2009] has been amended to state explicitly that if a/b is not represent-

able, a%b is undefined.  

The AIR integer model requires that a % -1 equals 0 for all values of a or, alternatively, trap-

ping is performed. This violates the literal interpretation of “as-if infinite range” but reflects a 

concession to practical implementation issues. 

By comparison, in Java, an integer division or integer remainder operator throws an Arithme-

ticException if the value of the right-hand operand expression is zero [Gosling 2005].  The 

remainder operation for operands that are integers after binary numeric promotion produces a re-

sult value such that (a/b)*b+(a%b) is equal to a. This identity holds even when the dividend 

is the negative integer of the largest possible magnitude for its type and the divisor is -1 (the re-

mainder is 0). 

2.2.2 Shifts  

Shifting by a negative number of bits or by more bits than exist in the operand is undefined beha-

vior in C99 and, in almost every case, indicates a bug (logic error).  Signed left shifts of negative 

values or cases where the result of the operation is not representable in the type are undefined in 

C99 and implementation-defined in C90.  Processors may reduce the shift amount modulo some 

quantity larger than the width of the type.  For example, 32-bit shifts are implemented using the 

following instructions on IA-32: 

sa[rl]l   %cl, %eax 
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The sa[rl]l instructions take a bit mask of the least significant 5 bits from %cl to produce a 

value in the range [0, 31] and then shift %eax that many bits. 

64-bit shifts become 

sh[rl]dl  %eax, %edx 

sa[rl]l   %cl, %eax 

where %eax stores the least significant bits in the double word to be shifted and %edx stores the 

most significant bits.  

In the AIR integer model, shifts by negative amounts or amounts outside the width of the type 

trap because the results are not representable without overflow; consistent with rule INT34-C of 

the CERT C Secure Coding Standard: “Do not shift a negative number of bits or more bits than 

exist in the operand” [Seacord 2008]. 

In the AIR integer model, signed left shifts on negative values must not trap if the result is repre-

sentable without overflow.  If the value is not representable in the type, the implementation must 

trap.  For example, a << b == a * 2b if b >= 0 and a * 2b is representable without 

overflow in the type.  For right shifts, a >> b == a / 2
b
 if a >= 0, b >= 0, and 2b is repre-

sentable without overflow in the type.  If a < 0, b >= 0, and 2b is representable without 

overflow in the type, a >> b == -1 + (a + 1) / 2b. Unsigned left shifts never trap un-

der the AIR integer model because unsigned left shifts are generally perceived by programmers as 

losing data, and a large amount of existing code assumes modulo behavior.  For example, in the 

following code from the JasPer image processing library,
2
 Version 1.900.1, tmpval has 

uint_fast32_t type: 

while (--n >= 0) { 

  c = (tmpval >> 24) & 0xff; 

  if (jas_stream_putc(out, c) == EOF) { 

    return -1; 

  } 

  tmpval = (tmpval << 8) & 0xffffffff; 

} 

The modulo behavior of tmpval is assumed in the left shift operation. 

2.2.3 Fussy Overflows 

One problem with trapping is fussy overflows, which are overflows in intermediate computations 

that do not affect the resulting value.  For example, on two’s complement architectures, the fol-

lowing code 

int x = /* nondeterministic value */; 

x = x + 100 – 1000; 

overflows for values of x > INT_MAX - 100 but underflows during the subsequent subtrac-

tion, resulting in a correct as-if infinitely ranged integer value.   

 
2  http://www.ece.uvic.ca/~mdadams/jasper/  

http://www.ece.uvic.ca/~mdadams/jasper/
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In this case, most compilers will perform constant folding to simplify the above expression to x 

– 900, eliminating the possibility of a fussy overflow.  However, there are situations where this 

will not be possible, for example: 

int x = /* nondeterministic value */; 

int y = /* nondeterministic value */; 

x = x + 100 – y; 

Because this expression cannot be optimized, a fussy overflow may result in a trap, and a poten-

tially successful operation may be converted into an error condition. 

2.3 Enabling and Disabling Unsigned Integer Wrapping 

The default behavior under the AIR integer model is to trap unsigned integer wrapping. 

Unsigned integer semantics are problematic because unsigned integer wrapping poses a signifi-

cant security risk but is well defined by the C standard. Also, in legacy code, the wrapping beha-

vior can be critical to correct behavior. Consequently, it is necessary to provide mechanisms to 

enable and disable wrapping for unsigned integers.    

It is theoretically possible to introduce new identifiers, such as __wrap and __trap, to be used 

as named attributes to enable or disable wrapping for individual integer variables, both signed and 

unsigned.   They could be implemented as variable attributes in GCC or using __declspec or a 

similar mechanism in Microsoft Visual Studio.  Enabling or disabling wrapping and trapping per 

variable has implications for the type system: for example, what happens when you combine a 

wrapping variable with a trapping variable?  It also has implications for type safety: for example, 

what happens when you pass a trapping variable as an argument to a function that accepts a wrap-

ping parameter? 

Because of these added complications, the AIR integer model only supports enabling or disabling 

unsigned integer wrapping per compilation unit.   

Compiler options can be provided to enable or disable wrapping for all unsigned integer variables 

per compilation unit. Existing code that depends on modulo behavior for unsigned integers should 

be isolated in a separate compilation unit and compiled with wrapping disabled. 

When an unsigned integer defined in one compilation unit compiled with wrapping semantics is 

combined with another unsigned integer defined in a separate compilation unit with trapping se-

mantics, the resulting value has the default behavior of the compilation unit in which the opera-

tion occurs. 

Because a large number of exploitable software vulnerabilities result from unsigned integer wrap-

ping, we strongly recommend that the trap behavior be the default for all new code and, for as 

much legacy code as possible, consistent with adequate testing and code review. 

2.4 Integer Promotions and the Usual Arithmetic Conversions 

In cases where a compilation unit is compiled with wrapping disabled for unsigned integers, it is 

possible that operations can take place between signed integers with trapping semantics and un-

signed integers with wrapping semantics.  In these cases, the semantics of the resulting variable 
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(trapping or wrapping) depends on the integer promotions and the usual arithmetic conversions 

defined by C99.  In cases where the resulting variable is a signed integer type, trapping semantics 

apply; in cases where the resulting value is an unsigned integer type, wrapping semantics are 

used. 

2.5 Integer Constants 

In C99, it is a constraint violation if the value of a constant is outside the range of representable 

values for its type.  A C99-conforming implementation must produce at least one diagnostic mes-

sage (identified in an implementation-defined manner) if a preprocessing translation unit or other 

translation unit contains a violation of any constraint.  

For constant expressions, the AIR integer model requires that the compiler must use arbitrary-

precision signed arithmetic to evaluate an integer constant expression (even an unsigned one) and 

then issue a fatal diagnostic if the final result does not fit the appropriate type. 

For example, the expression 

((unsigned)0 - 1) 

produces a constraint violation and should result in a fatal diagnostic if compiled. 

2.6 Expressions Involving Integer Variables and Constants 

Because of macro expansion, another common case in C programs involve expressions that in-

clude some number of variables and some number of constant values such as 

V1 + 1u + V2 - 2u 

In this case, the compiler can reorder the expressions and reduce to a single constant value, for 

example 

V1 + V2 - 1u  

regardless of whether it is compiled with trapping enabled or disabled for unsigned integer values.   

2.7 Runtime-Constraint Handling 

Most functions defined by ISO/IEC TR 24731-1 [ISO 2006] and by the  bounds-checking inter-

faces annex of the C1X draft standard [Jones 2009] include as part of their specification a list of 

runtime constraints, violations of which can be consistently handled at runtime.  Library imple-

mentations must verify that the runtime constraints for a function are not violated by the program. 

If a runtime constraint is violated, the runtime-constraint handler currently registered with 

set_constraint_handler_s() is called. 

Implementations are free to detect any case of undefined behavior and treat it as a runtime-

constraint violation by calling the runtime-constraint handler.  This license comes directly from 

the definition of undefined behavior. Consequently, the AIR implementation uses the runtime-

constraint mechanisms defined by ISO/IEC TR 24731-1 and by the C1X draft standard for han-

dling integer exceptional conditions. 
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2.8 Optimizations 

An important consideration in adopting a new integer model is the effect on compiler optimiza-

tion and vice versa. C-language experts are accustomed to evaluating the CPU cost of various 

proposals. A typical approach is to compare the CPU cost of solving the problem in the compiler 

versus the (zero) cost of not doing so. We submit that, for the AIR integer model, it would also be 

useful to consider the CPU cost of analyzable generated code versus the CPU cost of the pro-

grammer’s extra program logic added to the intrinsic CPU cost of the optimized construct. This 

comparison justifies putting a greater burden on the compiler when compiling otherwise insecure 

constructs in analyzable mode. However, our current work uses the traditional approach to dem-

onstrate that solving the problem does not introduce a large amount of overhead. 

Regardless, performance is always an issue when evaluating new models, and it is important to 

preserve existing optimizations while discovering new ones. Consequently, the AIR integer model 

does not prohibit any optimizations that are permitted by the C standard but does require a diag-

nostic any time the compiler performs an optimization based on 

 signed overflow wrapping 

 unsigned wrapping 

 signed overflow not occurring (although value-range analysis cannot guarantee it will not) 

 unsigned wrapping not occurring (although value-range analysis cannot guarantee it will not) 

For example, AIR integers allow optimizations based on algebraic simplification without a diag-

nostic:  

    (signed) (a * 10) / 10 

This expression can be optimized to a.  There is no need to preserve the possibility of trapping a 

* 10. 

The expression 

    (a - 10) + (b - 10)  

can be optimized to  

    (a + b) - 20 

While there is a possibility that (a + b) will produce a trap, there is also a possibility that either 

(a - 10) or (b - 10) will result in a trap in the original expression. Provided that the appli-

cation can be sure that each output is represented correctly, knowing whether a trap might have 

occurred by a different strategy does not really matter. 

Optimizations that assume that integer overflow does not trap require a diagnostic because that 

assumption is inconsistent with the integer model. For example, certain optimizations operate on 

the basis that a loop must terminate by exactly reaching the limit n, and therefore the number of 

iterations can be determined by an exact division with no remainder such as 

for (i = 0; i != n; i += 3) 
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This loop can be optimized to iterate for some number of terms determined by a code sequence 

that is only valid for exact division and not if n/3 leaves a remainder.  This loop should also be 

diagnosed because it violates rule MSC21-C of the CERT C Secure Coding Standard: “Use in-

equality to terminate a loop whose counter changes by more than one” [Seacord 2008]. 

Diagnostics are also required for optimizations on pointer arithmetic that assume wrapping cannot 

occur. 

2.9 The rsize_t Type 

The rsize_t type, defined as part of bounds-checked library functions [ISO 2006], can be used 

in a complementary fashion to AIR integers and is consequently subsumed as part of the overall 

solution.  Functions that accept parameters of type rsize_t diagnose a constraint violation if 

the values of those parameters are greater than RSIZE_MAX. Extremely large object sizes are 

frequently a sign that an object’s size was calculated incorrectly. For example, negative numbers 

appear as very large positive numbers when converted to an unsigned type like size_t. For 

those reasons, it is sometimes beneficial to restrict the range of object sizes to detect errors. For 

machines with large address spaces, ISO/IEC TR 24731-1 recommends that RSIZE_MAX be de-

fined as the smaller of these two, even if this limit is smaller than the size of some legitimate, but 

very large, objects:  

 the size of the largest object supported  

 SIZE_MAX >> 1) 

The CERT C Secure Coding Standard recommends using rsize_t or size_t for all integer 

values representing the size of an object (rule INT01-C) [Seacord 2008]. 

2.10 Pointer Arithmetic 

Pointer arithmetic is not part of the AIR integer model but can be checked by safe secure C/C++ 

(SSCC) methods [Plum 2005].   
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3  Related Work 

This section describes existing and contemplated alternative approaches to the problem of integral 

security in C and explains why they don’t adequately address the issues. 

3.1 The GCC –ftrapv Flag 

GCC provides an -ftrapv compiler option that provides limited support for detecting integer 

overflows at runtime.  The GCC runtime system generates traps for signed overflow on addition, 

subtraction, and multiplication operations for programs compiled with the -ftrapv flag. This 

trapping is accomplished by invoking existing, portable library functions that test an operation’s 

post-conditions and call the C library abort() function when results indicate that an integer 

error has occurred [Seacord 2005]. For example, the following function from the GCC runtime 

system is used to detect overflows resulting from the addition of signed 16-bit integers: 

Wtype __addvsi3(Wtype a, Wtype b) { 

   const Wtype w = a + b; 

   if (b >= 0 ? w < a : w > a) 

     abort (); 

   return w; 

} 

The two operands are added, and the result is compared to the operands to determine whether an 

overflow condition has occurred. For __addvsi3(), if b is non-negative and w < a, an over-

flow has occurred and abort() is called. Similarly, abort() is called if b is negative and  

w > a. 

The –ftrapv option is known to have substantial problems. The __addvsi3() function re-

quires a function call and conditional branching, which can be expensive on modern hardware. An 

alternative implementation tests the processor overflow condition code, but it requires assembly 

code and is non-portable. Furthermore, the GCC –ftrapv flag only works for a limited subset of 

signed operations and always results in an abort() when a runtime overflow is detected. Dis-

cussions for how to trap signed integer overflows in a reliable and maintainable manner are ongo-

ing within the GCC community.  

3.2 Precondition Testing 

Another approach to eliminating integer exceptional conditions is to test the values of the ope-

rands before an operation to prevent overflow and wrapping from occurring.  This testing is espe-

cially important for signed integer overflow, which is undefined behavior and may result in a trap 

on some architectures (e.g., a division error on IA-32).  The complexity of these tests varies sig-

nificantly.  
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A precondition test for wrapping when adding two unsigned integers is relatively simple: 

unsigned int ui1, ui2, usum; 

 

/* Initialize ui1 and ui2 */ 

 

if (UINT_MAX - ui1 < ui2) { 

  /* handle error condition */ 

} 

else { 

  usum = ui1 + ui2; 

} 

A strictly conforming test to ensure that a signed multiplication operation does not result in an 

overflow is significantly more involved: 

signed int si1, si2, result; 

 

/* Initialize si1 and si2 */ 

 

if (si1 > 0){ 

  if (si2 > 0) { 

    if (si1 > (INT_MAX / si2)) { 

      /* handle error condition */ 

    } 

  } 

  else {  

    if (si2 < (INT_MIN / si1)) { 

        /* handle error condition */ 

    } 

  } 

}  

else { 

  if (si2 > 0) {  

    if (si1 < (INT_MIN / si2)) { 

      /* handle error condition */ 

    } 

  } 

  else {  

    if ((si1!=0) && (si2<(INT_MAX/si1))) { 

      /* handle error condition */ 

    } 

  } 

}  

 

result = si1 * si2; 

Similar examples of precondition testing are shown in the CERT C Secure Coding Standard [Sea-

cord 2008]:  

 INT30-C. Ensure that unsigned integer operations do not wrap 

 INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data 

 INT32-C. Ensure that operations on signed integers do not result in overflow 
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Detecting an overflow in this manner can be relatively expensive, especially if the code is strictly 

conforming.  Frequently, these checks must be in place before suspect system calls that may or 

may not perform similar checks prior to performing integral operations. Redundant testing by the 

caller and by the called is a style of defensive programming that has been largely discredited with-

in the C and C++ community. The usual discipline in C and C++ is to require validation only on 

one side of each interface.  

Furthermore, branches can be expensive on modern hardware, so programmers and implementers 

work hard to keep branches out of inner loops.  This expense argues against requiring the applica-

tion programmer to pretest all arithmetic values to prevent rare occurrences such as overflow. 

Preventing runtime overflow by program logic is sometimes easy, sometimes complicated, and 

sometimes extremely difficult. Clearly, some overflow occurrences can be diagnosed in advance 

by static-analysis methods. But no matter how good this analysis is, some code sequences still 

cannot be detected before runtime. In most cases, the resulting code is much less efficient than 

what a compiler could generate to detect overflow.  

The underlying process of code generation may be immensely complicated. However, in general, 

it is best to avoid complexity in the code that end-user programmers are required to write.  

3.3 Saturation Semantics 

Verifiably in-range operations are often preferable to treating out-of-range values as an error con-

dition because the handling of these errors has been shown to cause denial-of-service problems in 

actual applications (e.g., when a program aborts). The quintessential example of this incorrect 

handling is the failure of the Ariane 5 launcher, which resulted from an improperly handled con-

version error that caused the processor to be shut down [Lions 1996]. 

A program that detects an imminent integer overflow may either trap or produce an integer result 

that is within the range of representable integers on that system.  Some applications, particularly 

in embedded systems, are better handled by producing a verifiably in-range result because it al-

lows the computation to proceed, thereby avoiding a denial-of-service attack. However, when 

continuing to produce an integer result in the face of overflow, the question of what integer result 

to return to the user must be considered. 

The saturation and modwrap algorithms and the technique of restricted-range usage produce in-

teger results that are always within a defined range. This range is between the integer values MIN 

and MAX (inclusive), where MIN and MAX are two representable integers with MIN < MAX. 

For saturation semantics, assume that the mathematical result of the computation is result. The 

value actually returned to the user is shown in Table 2. 

 

Table 2:  Saturation Semantics 

Range of mathematical result  Result returned  

MAX < result  MAX  

MIN <= result <= MAX  result  

result < MIN  MIN 
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In the C standard, signed integer overflow produces undefined behavior, meaning that any beha-

vior is permitted. Consequently, producing a saturated MAX or MIN result is permissible.  Provid-

ing saturation semantics for unsigned integers would require a change in the standard.  For both 

signed and unsigned integers, there is currently no way of requiring a saturated result. If C1X de-

fined a new standard pragma such as _Pragma(STDC SAT), saturation semantics could be 

provided without impacting existing code.  

Although saturation semantics may be suitable for some applications, it is not always appropriate 

in security-critical code where abnormal integer values may indicate an attack. 

3.4 Overflow Detection 

C99 provides the <fenv.h> header to support the floating-point exception status flags and di-

rected-rounding control modes required by IEC 60559 and other similar floating-point state in-

formation.  This support includes the ability to determine which floating-point exception flags are 

set. 

It is ironic that floating point has a set of fully developed methods for monitoring and reporting 

exceptional conditions, even though the population using those methods is orders of magnitude 

smaller than the population that needs correctly represented integers. On the other hand, perhaps 

C’s long gestation period for addressing the correct-representation problem will lead to a system 

that is superior to the other languages that tackled the problem decades ago (such as Pascal and 

Ada). 

A potential solution to handling integer exceptions in C is to provide an inquiry function (just as C 

provides for floating point) that interrogates status flags that are being maintained by the (compi-

ler-specific) assembler code that performs the various integer operations. If the inquiry function is 

called after an integral operation and returns a “no overflow” status, the value is reliably 

represented correctly.  

At the level of assembler code, the cost of detecting overflow is zero or nearly zero. Many archi-

tectures do not even have an instruction for “add two numbers but do NOT set the overflow or 

carry bit;”
3
 the detection occurs for free whether it is desired or not. But it is only the specific 

compiler code generator that knows what to do with those status flags.  

These inquiry functions may be defined, for example, by translating the <fenv.h> header into 

an equivalent <ienv.h> header that provides access to the integer exception environment. This 

header would support the integer exception status flags and other similar integer exception state 

information.  

However, anything that can be performed by an <ienv.h> interface could be performed better 

by the compiler.  For example, the compiler may choose a single, cumulative integer exception 

flag in some cases and one flag per variable in others, depending on what is most efficient in 

terms of speed and storage for the particular expressions involved.   Additionally, the concept of a 

runtime-constraint handler did not exist until the publication of ISO/IEC TR 24731-1 [ISO 2006]. 

 
3  However, the load effective address (LEA) instruction in Intel architectures is commonly used for integer addition and does 

not set status flags. 
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Consequently, when designing <fenv.h>, the C standards committee defined an interface that 

put the entire burden on the programmer.   

Floating-point code is different from integer code in that it includes concepts such as rounding 

mode, which need not be considered for integers. Additionally, floating point has a specific value, 

NaN (Not a Number), which indicates that an unrepresentable value was generated by an expres-

sion.  Sometimes floating-point programmers want to terminate a computation when a NaN is 

generated; at other times, they want to print out the NaN because its existence conveys valuable 

information (and there might be one NaN in the middle of an array being printed out, with the rest 

of the values being valid results).  Because of the combination of NaNs and the lack of runtime-

constraint handlers, the programmer needed to be given more control. 

In general, there is no NaI (Not an Integer) value, so there is no requirement to preserve such a 

value to allow it to be printed out.  Therefore, the programmer does not need fine control over 

whether an integer runtime-constraint handler gets called after each operation.  Without this re-

quirement, it is preferable to keep the code simple and let the compiler do the work, which it can 

generally do more reliably and efficiently than individual application programmers. 

3.5 Runtime Integer Checking (RICH) 

Brumley and colleagues have developed a static program transformation tool, called RICH, that 

takes as input any C program and outputs object code that monitors its own execution to detect 

integer overflows and other bugs [Brumley 2007]. Despite the ubiquity of integer operations, the 

runtime performance penalty of RICH is low, averaging less than 5%. RICH implements the 

checks in two phases. At compile time, RICH instruments the target program with runtime checks 

of all unsafe integer operations. At runtime, the inserted instrumentation checks each integer op-

eration. When a check detects an integer error, it generates a warning and optionally terminates 

the program. 

3.6 Clang Implementation  

David Chisnall implemented the AIR integer model for Clang using the LLVM overflow-checked 

operations.
4
 The current implementation checks the integer overflow flag after each +, - or * in-

teger operation and calls a handler function on overflow. 

In the overflow handler, the operation arguments are promoted to the long long type via sign 

extension; the op indicates whether it was signed/unsigned addition, subtraction, or multiplication; 

and the width indicates the expected width of the result.  GCC’s -ftrapv can be replicated by 

having it unconditionally call abort(). Alternatively, overflow can be handled by calling a reg-

istered handler function from a stack or by promoting it to some kind of boxed value.  If this func-

tion returns, its return value is truncated and used in place of the operation’s result. 

The Clang implementation simply checks the flag immediately after any signed integer operation 

and jumps to a handler function if overflow occurred.  Conditional jumps on overflow are cheap 

because the branch predictor will almost always guess correctly.  By allowing a custom handler 

 
4  http://article.gmane.org/gmane.comp.compilers.clang.devel/4469  

http://article.gmane.org/gmane.comp.compilers.clang.devel/4469
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function, rather than aborting, Clang allows for calling longjmp() or some unwind library 

functions in cases where overflow occurred.  This works well with the optimizer, which can elim-

inate the test for cases where the value can be proven to be in-range.   

3.7 GCC no-undefined-overflow 

Richard Guenther has proposed a new no-undefined-overflow branch for GCC. Its goal is to make 

overflow behavior explicit per operation and to eliminate all constructs in the GIMPLE interme-

diate language (IL) that invoke undefined behavior. To support languages that have undefined 

semantics on overflowing operations such as C and C++, new unary and binary operators that 

implicitly encode value-range information about their operands are added to the middle-end, not-

ing that the operation does not overflow.  These does-not-overflow operators transform the unde-

fined behavior into a valid assumption making the GIMPLE IL fully defined. Consequently, the 

front-end and value-range analysis must determine if operations overflow and generate the appro-

priate IL. Instructions such as NEGATE_EXPR, PLUS_EXPR, MINUS_EXPR, MULT_EXPR, and 

POINTER_PLUS_EXPR would have wrapping, no-overflow, and trapping variants. 

The trapping variants are indicated by a V for overflow (e.g., PLUSV_EXPR is the trapping va-

riant for PLUS_EXPR) and by NV for no overflow (e.g., PLUSNV_EXPR). The no-overflow va-

riant also wraps if it overflows so that existing code continues to function. 

The GCC no-undefined-overflow branch, when implemented, should greatly facilitate the imple-

mentation of the AIR integer model within GCC. 

3.8 Testing Methods 

The majority of vulnerabilities resulting from integer exceptions manifest themselves as buffer 

overflows while manipulating null-terminated byte strings in C and C++.  Yu, Bultan, and Ibarra 

proposed an automata-based composite, symbolic verification technique that combines string 

analysis with size analysis that focuses on statically identifying all possible lengths of a string 

expression at a program point to eliminate buffer overflow errors [Yu 2009].  This technique ob-

viates the need for runtime checks, which is an advantage if the time to perform the checking can 

be favorably amortized over the expected number of runtime invocations. Runtime property 

checking (as implemented by AIR integers) checks whether a program execution satisfies a prop-

erty. Active property checking extends runtime checking by determining if the property is satis-

fied by all program executions that follow the same program path [Godefroid 2008]. 
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4 Performance & Efficacy Study 

A proof-of-concept modification to the GCC compiler Version 4.5.0 was developed for IA-32 

processors to study the performance and efficacy of the AIR integer model.
5
  The AIR integer 

model is enabled by the –fanalyzable compile-time option.  Generated executables automati-

cally invoke a runtime-constraint handler when an integral operation fails to produce an as-if infi-

nitely ranged value.   

To diagnose integer overflow on an IA-32 processor, we must know whether the arguments are 

signed or unsigned so that the appropriate flag (carry or overflow) can be checked. The overflow 

flag indicates that overflow has occurred for signed operations, while the carry flag can be safely 

ignored.  For unsigned computations, the opposite is true. Unfortunately, GCC’s last internal re-

presentation, the register transfer language (RTL), has no way of storing the signedness of argu-

ments to operations. Doing so requires inserting a flag into the RTL data structure, the rtx, 

which carries signedness information to the GCC back end, where translation to assembly code is 

performed. Upon translation, the proper signedness information is available to produce the correct 

RTL pattern. 

Conditional jumps are added to RTL patterns containing arithmetic operations to invoke a run-

time-constraint handler in the event that signed overflow or unsigned wrapping occurred, as 

shown in the following example: 

   // arithmetic 

jn[co] .LANALYZEXXX  

   call constraint_handler 

    

.LANALYZEXXX 

   // code after arithmetic 

Overflow checks were not added following signed division because these operations result in a 

division error on IA-32 and generate an interrupt on vector 0.   

4.1 Performance Study 

The performance of the prototype was assessed using the industry standard SPECCPU2006 

benchmarks, which provide a meaningful and unbiased metric. Because the goal of this project is 

analyzable integer behavior, we only ran the SPECINT2006 portion of the benchmark. We com-

piled SPECINT2006 using a reference (unmodified) GCC compiler and a GCC compiler modified 

to implement branch insertion.  Then we ran the two binaries and used the ratio of their runtime to 

a known baseline to compute a performance ratio. 

Higher numbers for the control and analyzable rations in Table 3 indicate better performance. 

 
5  The prototype is available for download at http://www.cert.org/secure-coding/integralsecurity.html.  

http://www.cert.org/secure-coding/integralsecurity.html
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Table 3: SPECINT2006 Macro-Benchmark Runs 

Optimization 

Level 

Control 

Ratio 

Analyzable 

Ratio 

%  

Slowdown 

-O0 4.92 4.60 6.96 

-O1 7.21 6.77 6.50 

-O2 7.38 6.99 5.58 

Because the benchmarks used in SPECINT2006 are not designed for analyzable code, the proto-

type was modified slightly so that the analysis is performed but programs do not abort in the case 

of an overflow. The new snippet has a nop instruction instead of a call to a runtime-constraint 

handler: 

   jn[co] .LANALYZEXXX 

   nop 

.LANALYZEXXX 

This modification prevents runtime-constraint handlers from being invoked in the case of over-

flow and wrapping behavior in the benchmarks.
6
  

Code insertions occur after all optimizations are performed by GCC, so the observed slowdown is 

not caused by disrupted optimizations. Instead, the slowdown is due entirely to the cost of the 

conditional tests after each arithmetic operation. 

Runtime performance could be further improved by eliminating unnecessary tests in cases where 

value-range analysis can prove that overflow or wrapping is not possible.  This technique can be 

implemented as analyzer advice, where a front-end analyzer provides advice to a back-end compi-

ler.  For each input source file, our prototype accepts an analyzer advice file containing either a 

white list of operations that do not require testing or a black list of operations that do require it.  

We did not make use of this capability when generating our results because we wanted to estab-

lish a baseline prior to introducing any optimizations. 

4.2 Efficacy Study 

For our efficacy study, the JasPer image processing library and the FFmpeg audio/video 

processing library were instrumented using our prototype and fuzz tested using zzuf.
7
  

JasPer includes a software-based implementation of the codec specified in the JPEG-2000 Part-1 

standard ISO/IEC 15444-1 and is written in the C programming language [Adams 2006]. The 

JasPer software has been included in the JPEG-2000 Part-5 standard ISO/IEC 15444-5 as an offi-

cial reference implementation of the JPEG-2000 Part-1 codec. This software has also been incor-

porated into numerous other software projects (some commercial and some non-commercial). 

Some projects known to use JasPer include K Desktop Environment (as of Version 3.2), Kopete, 

Ghostscript, ImageMagick, Netpbm (as of Release 10.12), and Checkmark. 

 
6  Ideally, a call instruction would be used because the nop instruction is shorter, resulting in better code density. 

7  http://caca.zoy.org/wiki/zzuf 

http://www.kde.org/
http://kopete.kde.org/
http://www.ghostscript.com/
http://www.imagemagick.org/
http://sourceforge.net/projects/netpbm/
http://watermarking.unige.ch/Checkmark/
http://caca.zoy.org/wiki/zzuf
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FFmpeg is a multimedia library that supports encoding and decoding a wide range of video and 

audio formats that are supported by a range of container formats.
8
 FFmpeg has been included in a 

variety of software projects including MPlayer, VLC, Google Chrome, HandBrake, and xine.
9
 

These libraries have been included in many commercial and non-commercial applications that 

have been widely deployed and used. As a result, any vulnerabilities in these libraries are quite 

severe because they can lead to widespread compromises. 

The zzuf tool mangles input to an application while observing the application’s behavior.  The 

traditional purpose for fuzz testing is to find test cases that cause an application to crash.  Howev-

er, we used fuzzing to exercise the target application’s code paths.  Because the applications were 

instrumented using AIR integers, we were able to observe integer constraint violations as they 

happened. 

Fuzzing with zzuf starts with a seed file and randomly mutating bits of the file within a specified 

percentage range.  For our test, we used the range of 0.001% to 1%.  Each iteration of the fuzzing 

run opens the modified seed file, while logging stderr output to capture AIR constraint viola-

tions. JasPer was fuzzed for 17.5 hours, resulting in execution of the application 1,802,614 times. 

FFmpeg was fuzzed for 18.2 hours, resulting in execution of the application 978,060 times. 

 

Figure 1: JasPer Defects 

The JPEG-2000 decoding capabilities of JasPer were targeted in the fuzzing run.  Code coverage 

details were obtained by using GCC gcov.
10

  74.4% of the code in jpc_dec.c , which contains 

code for decoding JPEG-2000 streams, has been executed through the use of fuzzing. 

 
8  http://ffmpeg.org/general.html#SEC3 

9  http://ffmpeg.org/projects.html 

10  http://gcc.gnu.org/onlinedocs/gcc/Gcov.html 
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Figure 2: FFmpeg Defects 

For the FFmpeg fuzzing run, we targeted Ogg Theora video decoding. Because of the large num-

ber of formats supported by FFmpeg, only 7.3% of the entire FFmpeg codebase was covered dur-

ing the fuzzing run. However, 93.7% of the code in vp3.c, which is used for decoding Theora 

video, has been executed. 

 

Figure 3: Combined Defects 

Figures 1, 2, and 3 show the defects discovered in JasPer and FFmpeg organized by severity and 

by the CERT Secure Coding Standard rule that was violated.   

Violations of the following CERT C Secure Coding Standard rules were discovered: 

 INT30-C. Ensure that unsigned integer operations do not wrap 

 INT31-C. Ensure that integer conversions do not result in lost or misinterpreted data 

 INT32-C. Ensure that operations on signed integers do not result in overflow 

 INT34-C. Do not shift a negative number of bits or more bits than exist in the operand 

 INT35-C. Evaluate integer expressions in a larger size before comparing or assigning to that 

size 

Each runtime constraint was classified as exploitable, crashable, incorrect, or a false positive. 
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Exploitable defects are those that are believed likely to result in an attacker being able to execute 

arbitrary code. 

Crashable defects are those that result in a program crash but whose overall security impact oth-

erwise appears limited to a denial-of-service condition. 

Incorrect defects result in incorrect program output or data corruption, but there is no possibility 

of crashing or exploiting the program. 

False positives are traps for overflows or truncations that are not errors because they are harmless 

for that particular implementation.  Technically, these are still defects and may represent unde-

fined behavior or rely on non-portable behaviors.  For example, a left shift may be used to extract 

ASCII character data packed into an int or long. While this is undefined behavior and a viola-

tion of rule INT13-C: “Use bitwise operators only on unsigned operands” in the CERT C Secure 

Coding Standard [Seacord 2008], it may not constitute a defect for a given implementation. 

Instrumented fuzz testing discovered 10 of a known 12 vulnerabilities in JasPer and had no code 

coverage for the other 2. For comparison, the Splint
11

 static analysis tool identified those 2. Of the 

10 vulnerabilities discovered through fuzzing, Splint missed 4 and identified 6 but not for the rea-

sons they are actually vulnerable. This is not surprising given that Splint issued 468 warnings for 

2000 lines of code. 

Another significant difference between the static analysis and AIR runtime strategies lies in the 

aspect of code coverage. With static tools, the entire codebase is available for analysis.  However, 

with the AIR library, constraint violations are only reported if a code path is taken during program 

execution and the input data caused a constraint violation to occur.  For example, 83 runtime-

constraint violations were reported in the jpc_dec.c file, while 0 violations were reported in 

jpc_enc.c.  That was because the fuzzing run did not perform any JPEG-2000 code stream 

encoding, and therefore the code in jpc_enc.c was never executed. 

An example of an exploitable vulnerability by fuzz testing the AIR-integer-instrumented JasPer 

library occurs in jas_image_cmpt_create() where size can easily overflow: 

303: long size;  

321: size = cmpt->width_ * cmpt->height_ * cmpt->cps_; 

322: cmpt->stream_ = (inmem) ?   

       jas_stream_memopen(0, size) :  

       cmpt->jas_stream_tmpfile(); 

  

 
11  http://www.splint.org/  

http://www.splint.org/
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In jas_stream_memopen(), a bufsize less than or equal to 0 is meaningful and indi-

cates that a buffer has been allocated internally and is growable: 

171: jas_stream_t *jas_stream_memopen(char *buf, int bufsize) 

 

205:   if (bufsize <= 0) { 

206:     obj->bufsize_ = 1024 

207:     obj->growable_ = 1; 

208:   } else { 

209:     obj->bufsize_ = bufsize; 

210:     obj->growable_ = 0; 

211:   } 

When size overflows in jas_image_cmpt_create(), it becomes negative, tricking 

jas_stream_memopen() into thinking it should be allocated internally and be growable. 

This problem is diagnosed as follows, identifying both signed integer overflows on line 321 in 

violation of INT32-C: 

jas_image_cmpt_create 

src/libjasper/base/jas_image.c:321 

0x804c8d3 Signed integer overflow in multiplication 

0x804c8e3 Signed integer overflow in multiplication 

An exploitable vulnerability discovered by fuzz testing the AIR-integer-instrumented FFmpeg 

libraries occurs in vorbis_residue_decode_internal() where the variable 

n_to_read can easily overflow: 

1216: uint_fast16_t n_to_read=vr->end-vr->begin; 

1217: uint_fast16_t pnts_to_read=n_to_read/vr->partition_size; 

1218: uint_fast8_t classifs[pnts_to_read*vc->audio_channels]; 

The classifs array is allocated as a very large array and filled with data that will not be valid: 

1253: for(i=0;i<c_p_c;++i) { 

1254:   uint_fast_t temp2; 

1255: 

1256:   temp2=(((uint_fast64_t)temp) * inverse_class)>>32; 

1257:   if (partition_count+c_p_c-1-i < ptns_to_read) { 

1258:     classifs[j_times_ptns_to_read+partition_count+c_p_c-1-i]= 

                  temp-temp2*vr->classifications; 

1259:   } 

1260:   temp=temp2; 

1261: } 

The data from this classifs is then used as an array index later in the function. This array in-

dex could be out of bounds: 

1271: uint_fast8_t vqclass=classifs[j_times_ptns_to_read+partition_count]; 

1272: int_fast16_t vqbook=vr->books[vqclass][pass]; 
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This problem is diagnosed as follows, identifying the unsigned wrapping that occurs on line 1216 

in violation of rule INT30-C: 

vorbis_residue_decode_internal 

libavcodec/vorbis_dec.c:1216 

0x8745f5c Unsigned integer overflow in subtraction 

Two false positives in JasPer both involved signed left shift. The first false positive occurs in 

src/libjasper/bmp/bmp_dec.c:443 in function bmp_getint32(): 

434: static int bmp_getint32(jas_stream_t *in, int_fast32_t *val)  

435: { 

436:   int n; 

437:   uint_fast32_t v; 

438:   int c; 

439:   for (n = 4, v = 0;;) { 

440:     if ((c = jas_stream_getc(in)) == EOF) { 

441:       return -1; 

442:     } 

443:     v |= (c << 24); 

444:     if (--n <= 0) { 

445:       break; 

446:     } 

447:     v >>= 8; 

448:   } 

449:   if (val) { 

450:     *val = v; 

451:   } 

452:   return 0; 

453: } 

The jas_stream_getc() function has similar semantics to getc(), meaning it returns 

EOF or an unsigned char cast to an int. Consequently, the left shift 24 of c is safe, pro-

vided the platform is non-trapping, although it causes a signed overflow and undefined behavior. 

The false positive can be eliminated by casting c to an unsigned integer type as follows: 

v |= ((unsigned int)c << 24); 

While this is a false positive for vulnerability, it is undefined behavior and is also a violation of 

rule INT13-C: “Use bitwise operators only on unsigned operands” in the CERT C Secure Coding 

Standard” [Seacord 2008]. 
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In FFmpeg, harmless unsigned wrapping caused a false positive in  

libavformat/utils.c:2322 in the av_close_input_stream()function: 

2322: for(i=s->nb_programs-1; i>=0; i--) { 

2323: #if LIBAVFORMAT_VERSION_INT < (53<<16) 

2324:   av_freep(&s->programs[i]->provider_name); 

2325:   av_freep(&s->programs[i]->name); 

2326: #endif 

2327:   av_metadata_free(&s->programs[i]->metadata); 

2328:   av_freep(&s->programs[i]->stream_index); 

2329:   av_freep(&s->programs[i]); 

2330: } 

The false positive occurs when s->nb_programs == 0 because s->nb_programs is 

defined as an unsigned int. Because i is declared as an int, this unsigned wrapping is 

perfectly safe. 

If desired, the false positive can be eliminated by avoiding the loop when s->nb_programs 

== 0 as follows: 

if (s->nb_programs > 0) { 

  for(i=s->nb_programs-1; i>=0; i--) { 

    /* ... */ 

  } 

} 

While this is a false positive for vulnerability, it is a violation of rule INT30-C. “Ensure that un-

signed integer operations do not wrap” in the CERT C Secure Coding Standard [Seacord 2008]. 
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5 Conclusions 

The AIR integer model produces either a value that is equivalent to a value that would have been 

obtained using infinitely ranged integers or a runtime-constraint violation. AIR integers can be 

used for dynamic analysis or as a runtime protection scheme. At the -02 optimization level, our 

compiler prototype showed only a 5.58% slowdown when running the SPECINT2006 macro-

benchmark. Although that percentage represents the worst-case performance for AIR integers (be-

cause no optimizations were performed), it is still low enough for typical applications to enable 

this feature in deployed systems. AIR integers have also been proven effective in discovering vul-

nerabilities, crashes, and other defects in the JasPer image processing library and the FFmpeg au-

dio/video processing library during testing with dumb (mutation) fuzzing.  
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