

Managing Variation in Services in a

Software Product Line Context

Sholom Cohen

Robert Krut

May 2010

TECHNICAL NOTE

CMU/SEI-2010-TN-007

Research, Technology, and System Solutions (RTSS) Program

Unlimited distribution subject to the copyright.

http://www.sei.cmu.edu

http://www.sei.cmu.edu

This report was prepared for the

SEI Administrative Agent

ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2100

The ideas and findings in this report should not be construed as an official DoD position. It is published in the

interest of scientific and technical information exchange.

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a federally

funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2010 Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS

FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF

ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED

TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE

ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR

COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for inter-

nal use is granted, provided the copyright and "No Warranty" statements are included with all reproductions and

derivative works.

External use. This document may be reproduced in its entirety, without modification, and freely distributed in

written or electronic form without requesting formal permission. Permission is required for any other external

and/or commercial use. Requests for permission should be directed to the Software Engineering Institute at per-

mission@sei.cmu.edu.

This work was created in the performance of Federal Government Contract Number FA8721-05-C-0003 with

Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research

and development center. The Government of the United States has a royalty-free government-purpose license to

use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,

for government purposes pursuant to the copyright license under the clause at 252.227-7013.

mailto:permission@sei.cmu.edu
mailto:permission@sei.cmu.edu

i | CMU/SEI-2010-TN-007

Table of Contents

Acknowledgments vii

Abstract ix

1 Introduction 1

2 The Basics of Software Product Lines and Service-Oriented Architectures 3
2.1 Software Product Lines 3
2.2 Service-Oriented Architecture 4

3 Combining SPL and SOA Approaches 5

4 Variation Management for Services Under an SPL Approach 7
4.1 Recognize Commonality and Variants 9
4.2 Leverage Recognized Commonality 10
4.3 Address Enterprise Integration Needs 12
4.4 Address End User Needs for Variation 12

5 Future Work 14
5.1 Establishing Production Plans to Encompass SOA 14
5.2 Support for Dynamic Service Execution 15
5.3 Addressing Quality Attributes Through SOA and Product Line Approaches 15

6 Conclusions 17

References 19

ii | CMU/SEI-2010-TN-007

iii | CMU/SEI-2010-TN-007

List of Figures

Figure 1: Product Line Capabilities in a Health Information Exchange 8

iv | CMU/SEI-2010-TN-007

v | CMU/SEI-2010-TN-007

List of Tables

Table 1: Contrasting Aspects of SOA and Product Line Definitions 5

vi | CMU/SEI-2010-TN-007

vii | CMU/SEI-2010-TN-007

Acknowledgments

The authors would like to thank the participants of the 2007 and 2008 Workshops on Service-

Oriented Architectures and Software Product Lines [SOAPL 2007, SOAPL 2008] held during the

2007 and 2008 Software Product Line Conferences. The work of these participants helped formu-

late the ideas presented in this report.

We would also like to thank Jörg Bartholdt, Bernd Franke, Christa Schwanninger, and Michael

Stal for the example we used in Section 4 to illustrate our SOA concepts in a product line context:

the health information exchange systems example.

viii | CMU/SEI-2010-TN-007

ix | CMU/SEI-2010-TN-007

Abstract

Software product line (SPL) and service-oriented architecture (SOA) approaches both enable an

organization to reuse existing assets and capabilities rather than repeatedly redeveloping them for

new systems. Organizations can capitalize on such reuse in software-reliant systems to achieve

business goals such as productivity gains, decreased development costs, improved time to market,

increased reliability, increased agility, and competitive advantage. Both approaches accommodate

variation in the software that is being reused or the way in which it is employed. Meeting busi-

ness goals through a product line or a set of service-oriented systems requires managing the varia-

tion of assets, including services. This report examines combining existing SOA and software

product line approaches for variation management. This examination has two objectives: 1) for

service-oriented systems development, to present an approach for managing variation by identify-

ing and designing services explicitly targeted to multiple service-oriented systems, 2) for SPL

systems, to present an approach for managing variation where services are a mechanism for varia-

tion within a product line or for expanding the product line scope.

x | CMU/SEI-2010-TN-007

1 | CMU/SEI-2010-TN-007

1 Introduction

Software product line (SPL) and service-oriented architecture (SOA) approaches to software de-

velopment share a common goal. They both enable an organization to reuse existing assets and

capabilities rather than repeatedly redeveloping them for new systems. By adopting these ap-

proaches, organizations can capitalize on reuse in software-reliant systems to achieve business

goals such as productivity gains, decreased development costs, improved time to market, greater

agility, higher reliability, and competitive advantage [Cohen 2008].

We define systems that are built using these approaches as follows:

An SPL is a set of software-intensive systems that share a common, managed set of features
1

that satisfy the specific needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way [Clements 2001].

―SOA is a way of designing systems composed of services that are invoked in a standard way‖

[Lewis 2008b]. It is an architectural style or design paradigm that guides the composition and

orchestration of services to implement business processes.

This report highlights the mutual benefits of combining systematic reuse approaches from product

line development with flexible approaches for implementing business processes in an SOA. Un-

der a combined SOA-SPL approach, developers build core assets, including services, and con-

struct systems through the systematic reuse of these core assets in a predefined way. Product line

approaches exploit the commonality across the products applying planned variation among their

core assets. SOA provides a flexible mechanism for dealing with variation through services that

are not bound to a specific product. In addition, a product line may be composed of service-

oriented systems, if services are a basic element of composition and provide support for variation

among members of the product family. Developers of service-oriented systems can apply product

line approaches to extract service core assets from legacy systems and develop the architecture for

new systems within the enterprise.

This report satisfies two objectives in examining the combining of existing SOA and SPL ap-

proaches:

1. for service-oriented systems development, to present an approach for managing variation to

identify and design services targeted to multiple service-oriented systems

2. for SPL systems, to present an approach for managing variation where services are a me-

chanism for variation within a product line or for expanding the product line scope

The need for variation may be driven by market conditions, market opportunities, new technolo-

gies, and other business-related factors. This need may be stated in the form of business goals set

by organizations that develop SPL or service-oriented systems. While goals are similar in both

types of development organizations, they lead to different variation needs. For example, in ser-

vice-oriented systems, the need generally includes reuse of a service across enterprise systems.

1
 A feature is a prominent or distinctive user-visible aspect, quality, or characteristic of a software system or sys-

tems [Kang 1990].

2 | CMU/SEI-2010-TN-007

For SPL systems, the need includes systematic reuse across a product line. At the same time, both

types of systems must meet quality attributes that may vary across the breadth of SPL or service-

oriented systems.

The next section of this report defines the contexts for variation management: SPL and service-

oriented systems. Section 3 describes how SPL and SOA approaches can be combined for reuse.

Section 4 discusses variation management in an SPL through use of services and the application

of product line approaches to support SOA design decisions. Section 5 examines future work in

this area.

3 | CMU/SEI-2010-TN-007

2 The Basics of Software Product Lines and Service-

Oriented Architectures

2.1 Software Product Lines

Software product line practice is the systematic use of core assets to assemble, instantiate, or gen-

erate the multiple products that constitute a software product line [Northrop 2009]. An organiza-

tion’s success in building a software product line lies in the ability of the organization to identify a

group of like systems, the common and variant features of the systems, the assets used to develop

the systems in the product line, and a plan for building the systems.

Product line scope and product line analysis define the boundaries and requirements of the soft-

ware product line, based on the business goals of the organization [Chastek 2001]. The scope

identifies the characteristics of the defined systems as being inside or outside the boundaries of

the software product line. The scope also helps identify the common aspects of the systems, as

well as expected ways in which they may vary.

Product line analysis applies established modeling techniques to engineer the common and vary-

ing requirements for a product line, based on input from stakeholders. Feature modeling within

product line analysis captures the functional and nonfunctional requirements of the products in the

product line and the decisions about common and variant capabilities and behaviors across the

product line [Chastek 2001].

Composition elements of product line products are the product line core assets artifacts or re-

sources used in the production of products in an SPL. A core asset may be the architecture, a

software component, a process model, a plan, a document, or any other artifact useful in building

a system. Each core asset has an attached process that describes how the core asset is used in

product production, including variant information. For example, the product line architecture must

include mechanisms to support the explicitly allowed variations in the products within the product

line scope; the attached process defines how that variation mechanism is used to generate the ar-

chitecture for a specific product variant.

A production plan prescribes how the products are produced from the core assets and incorporates

their attached processes. It includes the process to be used for building products (the production

process) and the overall implementation approach (the production method) [Northrop 2009]. The

production process is influenced by such contextual factors as product constraints
2
 and produc-

tion constraints
3
 and the production strategy.

4

2
 Product constraints are common and variant features and behavioral attributes associated with the products in

the product line scope.

3
 Production constraints are any restriction on the timing, development environment, processes, or developer

skills associated with the creation of products in a product line.

4
 The production strategy is the overall approach for realizing both the core assets and the products. It specifies

the “prescribed manner” of development called for in the definition of a software product line.

4 | CMU/SEI-2010-TN-007

2.2 Service-Oriented Architecture

A service-oriented architecture (SOA) provides a way to design, develop, deploy, and man-

age systems characterized by coarse-grained services that represent reusable business func-

tionality and service consumers that compose applications or systems using the functionality

provided by these services through standard interfaces [Lewis 2008a].

Two important principles of an SOA are the identification of services aligned with business driv-

ers and the ability to address multiple execution environments by separating the service descrip-

tion (i.e., interface) from its implementation. Systems that employ an SOA architectural style are

called service-oriented systems.

The major elements of service-oriented systems are services, service consumers, and an SOA in-

frastructure. The basic compositional elements of a service-oriented system are services units of

work that are applied to implement a business process to achieve a desired end result for a service

consumer. They are self-contained, reusable components, configured to separate the standardized,

well-defined service interfaces from the service’s implementation. Service providers expose the

capabilities of the service through the interface. Services are usually coarse-grained business func-

tionality (such as customer lookup) rather than fine-grained functionality (such as customer ad-

dress lookup). They can be globally distributed across organizations and reconfigured to support

new business processes. A service registry is usually employed to enable service consumers to

discover available services [Lewis 2008a].

Service consumers are clients for the functionality provided by the services. They query the regi-

stry for services with desired characteristics and compose or orchestrate applications using a ser-

vice or composition of services. Some examples of service consumers are end-user applications,

portals, intra-organizational enterprise systems and systems external to the organization, or even

other services in the context of composite services [Lewis 2008a].

The SOA infrastructure is what connects service consumers to services. It usually implements a

loosely coupled, synchronous or asynchronous, message-based communication model. The infra-

structure often contains elements to support service discovery, security, data transformation, and

other operations. One common SOA infrastructure is an enterprise service bus (ESB) to support

SOA environments [Lewis 2008a].

5 | CMU/SEI-2010-TN-007

3 Combining SPL and SOA Approaches

Meeting business goals through a product line or a set of service-oriented systems requires varia-

tion management of assets, including services. Variation management ―comprises all activities to

explicitly model, manage, and document those parts, which vary among the products of a product

line‖ [John 2009]. Variation management applies to services in both the service-oriented and

product line contexts. In both types of systems, variation points may be implemented either in a

single service (where a service interface may offer parameterization or some other variation me-

chanism) or through similar services to address variation. To support variation mechanisms, SOA

defines the infrastructure that selects and invokes the appropriate service and service variation for

use in a specific system.

Examining the SOA and SPL approaches more closely—starting with the definitions provided in

Sections 1 and 2—can help organizations identify and exploit the characteristics of each approach

and combine them successfully for variation management. Those definitions deal with aspects of

scope, the design approach, the source of variation, the application target, composition elements,

and the technical approach. These aspects were the focus of discussion at the 2008 Workshop on

Service-Oriented Architectures and Software Product Lines [SOAPL 2008]. The two definitions

are decomposed in Table 1.

Table 1: Contrasting Aspects of SOA and Product Line Definitions

Aspects Definition of an SOA Definition of an SPL

Scope * A set of software-intensive systems

Design approach A way of designing systems **

Source of variation * that share a common, managed set of

features

Application target to implement business processes satisfying the specific needs of a

particular market segment or mission

Compositional elements composed of services and that are developed from a com-

mon set of core assets

Technical approach invoked in a standard way in a prescribed way

* not explicit in the definition

** not explicit in the definition but captured in the technical approach

SOA and SPLs address most of these aspects, and both define design approaches. SOA defines

the composition and orchestration of services as an explicit design approach. An SPL defines the

design approach in terms of the software architecture for that product line. SPLs also define a

comprehensive set of core assets, including but not limited to a product line architecture, compo-

nents, test cases, and so forth. In terms of targets, software product lines address a market segment

or mission, while an SOA is intended to implement business processes within an enterprise. Final-

ly, SOA prescribes a standard for service invocation, and software product lines require a pre-

scribed way for constructing each product in the product line.
5

5
 These differences are highlighted only to contrast the different emphasis within each definition. They are not

meant to imply anything about the superiority of one over the other.

6 | CMU/SEI-2010-TN-007

Further, significant distinctions between service-oriented and product line approaches emerge

because of how scope and variation are utilized. A product line is built within an initial scope that

usually evolves over time within a market segment due to technological or market changes and

business decisions. Organizations may also identify ways in which to apply part or all of a core

asset base to products in a new market. In an SOA approach, services are applied to address inte-

gration across systems in the enterprise and to capitalize on legacy investment [Butler 2006]. In

an SOA approach, the scope grows or contracts to address user needs, and scoping, as practiced in

software product lines, is generally not done.

While variation and variation management are key to an SPL approach, they are not highlights of

an SOA approach. Yet, an SOA approach can be employed as a variation mechanism when core

assets and products are developed in a product line. In an SPL approach, developers of software

core assets would package desired capability as a service. That service may have built-in variation

points that are accessible through parameterized service calls, or the service registry may identify

variations among related service components that may include both the newly packaged capabili-

ties and existing services from the enterprise. The SOA infrastructure provides an invocation me-

chanism to the needed service core asset for product development. Variation management in this

context allows the tailored use of services to provide the exact, desired capability for a specific

product. The dynamic nature of service invocation may support adaptation and more dynamic

growth of a product line’s scope. SOA may also support a more opportunistic response to chang-

ing market conditions with product line adaptation or new product lines.

For service-oriented systems, product line approaches could expand on the migration of legacy

software to services, if multiple applications were seen as the targets for the newly exposed ser-

vices. Variation management in this context helps identify the need for variation in services across

a range of potential service-oriented systems. Similarly, the service registry could support the dis-

covery of alternative services that may address variations among the applications that require

those services. For service consumers, variation management helps identify a specific service that

addresses an end-user need. This latter approach supports software product lines as well and pro-

vides software core assets with variation points for a specific product line product.

7 | CMU/SEI-2010-TN-007

4 Variation Management for Services Under an SPL

Approach

This section discusses variation management for services when an SPL approach is used and how

the approach can be used to support SOA design decisions. An SPL approach can help organiza-

tions

 achieve specific SOA business goals—such as increased reuse and market responsiveness—

through variation management of services. For example, developers of a comprehensive

product line of medical information management systems can design a common patient au-

thentication service with built-in variation points to support the management of healthcare,

delivery of insurance coverage, retrieval of needed records, or scheduling of appointments.

 employ SOA service invocation as a variation mechanism. For example, the product line for a

medical information management system may have different offerings for different users,

such as hospitals, specialized clinics, medical offices, and individuals. The authentication ser-

vice invocation protocol will support the variation needed for each type of offering to make

the appropriate information available when requested and restrict unauthorized access.

To integrate SPL and SOA approaches, product line development organizations must apply varia-

tion management within SOA approaches, and service-oriented system developers must apply the

approaches that product line developers use. This integration must provide variation management

of services (e.g., variation points generated by the needs of different types of users of the medical

information management system mentioned above) and must address services as a variation me-

chanism (e.g., the service invocation protocol that selects from among those variations).

The next four sections describe four principles of variation management in product line or ser-

vice-oriented systems. To illustrate these principles, we use the example of health information

exchange (HIE) systems. Bartholdt offers a meaningful example of SOA concepts in a product

line context applied to HIE systems [Bartholdt 2008]. These systems provide distributed man-

agement of patient-related data for hospital chains, regions, or even whole nations. The case study

illustrates the integration of SOA-based HIE implementations within a product line based on

known product variation. Figure 1 [RTI 2007] illustrates some of the services obtained by the in-

stitutions supported by an HIE. Though not depicted here, an HIE may also obtain services from

external sources.

8 | CMU/SEI-2010-TN-007

Figure 1: Product Line Capabilities in a Health Information Exchange

The four principles are listed below. Each principle is accompanied by an HIE system capability

that can result from applying the principle.

1. Recognize the commonality and variants across the scope of a product line or across some

group of service-oriented systems within the enterprise. Product variation to support com-

partmentalized access to patient data depending on the user

2. Leverage the recognized commonality by building core assets, including services, across the

variants with established points of variation. Core asset variation to support different health

systems, clinics, hospitals, and labs

3. Address the enterprise integration needs that service-oriented systems must offer. Integration

with external services

4. Address end-user needs for variation within service-oriented systems. User variation to ac-

commodate unique work flow or user interface needs

Section 5.1 discusses a final principle:

5. Establish production plans that use appropriate variation mechanisms to build product line or

service-oriented systems based on these principles.

 along with other future work for merging SPL and SOA practices.

Health Information

Exchange

9 | CMU/SEI-2010-TN-007

Each of the following sections will also include a discussion of methods from the SOA-PL litera-

ture as they apply to one of the above four principles. The literature discussion will highlight po-

tential contributions or areas for further investigation of methods to support the SOA-PL connec-

tion. The section will also discuss shortcomings in the SOA methods when applied directly to

product line development. The HIE product line will illustrate how SOA methods can be en-

hanced to address product line needs in each of the four areas.

4.1 Recognize Commonality and Variants

Product line scoping identifies which potential products are in or out of the product line. Scoping

supports this decision process by identifying what is common or varying among products in the

product line. Product line members will share common features, while unique or alternative fea-

tures documented in the product line scope will be a determinant in including or excluding a po-

tential member. An understanding of commonality and bounding variation lets an organization

determine whether a product can be built within the product line. The level of variation manage-

ment across the product line is captured in the definition as a ―common, managed set of features‖

and is essential to product line systems.

Methods that address reuse for service-oriented systems generally do not consider product varia-

tion among systems that will use or reuse those services. Developing service-oriented systems

traditionally involves identifying services for a specified target but not defining a scope for a set

of SOA-based systems implemented with those services. Some methods seek to identify services

that legacy systems can expose, but with a specific application target for the service. The Carnegie

Mellon

Software Engineering Institute developed such a method—the Service Migration and

Reuse Technique (SMART) [Lewis 2008b]. SMART refers to the service identification as

reuse—reuse of a legacy component or capability in the form of a service [Lewis 2008b]. New

applications may also become a target for the service, and that would also be reuse. However,

SMART does not address the need for a service (with some degree of variation) across a range of

applications or a method for building in variation to accommodate multiple system targets.

Other methods also lack consideration of scope for application of a set of services. Balaji de-

scribes ―services in an SOA … as reusable assets.‖ Service assets in Balaji’s method help leve-

rage previous investments and may influence future investment with all the benefits of systematic

reuse. Service assets support the quick construction of ―new [business support] processes as a

choreographed set of existing services‖ [Balaji 2007a]. The method includes the following

among its listed SOA assets: business process models, reference architectures, and design pat-

terns. However, Balaji’s method does not define an initial scope for applying a service.

In applying product line techniques to SOA, users of the Component Based Development and

Integration (CBDI) method look at both a suite of applications (CBDI concept of enterprise) and

an application family (CBDI concept of product line) [Butler 2006]. Either may be the focus of

the reuse of service assets. However, the CBDI method cautions users against trying to analyze

how all the systems interact in a suite and doesn’t address reuse across the family. Engineering

services for systematic reuse would require this analysis as part of the scoping process.

 Carnegie Mellon is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

10 | CMU/SEI-2010-TN-007

The HIE product line spans classes of customers across a diverse market. The product line must

also accommodate data exchange standards. In Bartholdt’s study, understanding product variation

and scoping for HIE systems required the

 addressing of customer specifics or integration with existing third parties

 ability to quickly deploy a partial system or deploy an existing system to new platforms

 extensibility to address the emerging national data exchange standard

The scoping of product variation led to some specific variation points realized in service assets.

The application of an SOA approach for the product line supported exposing master patient index

(MPI) services to find duplicate patient data (Bartholdt 2008). However, this service is optional

within the product line; some systems in the product line may use outside implementations for this

service. In another example, workflow engine approaches within the product line applied chains

of services to accomplish site-specific business processes.

As part of engineering services from legacy components or capability, the service migration can

include a scoping process to identify existing or potential applications that could use the service.

If these applications require slight variations in the service, the target scoping process can use

product line approaches to

 identify service features that are common among the targets

 engineer variations or variant services to accommodate the target-unique features

For example, the patient authentication service must permit the retrieval of electronic data records

for authorized users of a set of applications but will differ in terms of the kinds of information—

diagnosis, billing, and prescribed treatments—that may be delivered for each class of user. The

service may also vary by the types of identification data that must be entered to permit access—

identification numbers, personal identifying questions, or biometrics. Engineering a common ser-

vice could include provisions for these variations or offer multiple services to accommodate the

needed variation.

4.2 Leverage Recognized Commonality

Product line scope identifies the need for variation across products. Software product line devel-

opers achieve variation across products by applying core assets with built-in variation points. To

determine the coverage of assets within and across products, core asset development applies what

has been termed reuse scope, that is, ―which features [within product line scope] are to be devel-

oped for reuse, which for individual products without reuse‖ [Schmid 2005]. The intent of the

reuse scope is similar to that of service migration from legacy within SMART—identifying which

legacy capabilities should be exposed for reuse. The identified features may be implemented as

requirements, within the architecture, or in other software-related core assets. Similarly, variations

within features must be addressed within the appropriate core assets: requirements, architecture,

components, test cases, or non-software core assets such as a configuration management plan.

Capturing variation is the responsibility of a core asset developer [Bachmann 2005]. In this con-

text, the developer may be performing a requirements, architecture, testing, or technical manage-

ment activity, depending on the core asset. Variation in the use of a core asset may be addressed

by variation points, spelling out different uses of a core asset that include options and alternatives.

Two other factors involved in the use of variation are variation mechanisms and the core asset

11 | CMU/SEI-2010-TN-007

attached process. A variation mechanism defines the implementation approach that supports the

application of a specific variation. For an architecture-level variation, a mechanism might include

object-oriented extension through adding new attribute/method features. For a non-software core

asset such as a document, an XML file may be interpreted to select alternative text paragraphs,

graphics, or styling. The attached process gives the core asset user explicit guidance in using the

core asset and its variation points and mechanisms.

The SOA approach may contribute to product line variation by supporting services as software

core assets. In linking product line and service variation, a layered approach to service implemen-

tation demonstrates variation management within an SOA [Ludwig 2007]. This approach identi-

fies customizable services at an atomic layer (e.g., purchasing service, human resources service).

Service fulfillment (i.e., implementation) permits customization through the specifics of a request

to an atomic service. The specific request ―enables variability management by allowing the defini-

tion of variants of steps in the service fulfillment flow as alternative implementation flows.‖ The

layered service infrastructure provides the variation mechanisms for selection among service op-

tions and alternatives. For example, the service flow of a routine purchase request does not invoke

the approval or multiple bid steps of a major purchase.

Other methods capture the goal of identifying variations within services for use across related sys-

tems or, potentially, in unforeseen ways. Feature analysis has been applied to service-oriented

reengineering [Chen 2005] to support identifying services as core assets for application beyond

the single target. Applying asset-based development approaches to services is also a focus of Ba-

laji’s work emphasizing tooling, life cycle, and governance [Balaji 2007a]. These three elements

are also part of managing variability through the service registry [Balaji 2007b].
6
 The use of an

SOA for multiple applications may help identify variations that will lead to a change in product

line scope or that can respond to new or changing market conditions. Using services to manage

variability may lead to dynamic product line scope—where scope easily adapts to changing

needs—or to the identification of totally new product lines based on parts of an existing core asset

base.

The HIE system provides examples of both core asset variation and the use of service invocation

as a variation mechanism. Service design can incorporate variation points [Bartholdt 2008]. Var-

iations among in-scope HIE applications may lead to alternate service implementations, differen-

tiations in workflows, or variability in customer environments (e.g., hospitals, clinics, or labs). To

reduce the costs of managing multiple variation points, this approach has developed pre-

configurations as a variation mechanism. The pre-configurations link workflow services or tasks

for a particular class of user or situational need [Brandt 2003]. Use of pre-configurations ad-

dresses testability by reducing the number of service combinations.

6
 The service registry identifies web services available for discovery and invocation. The registry supports all

variation management through interface descriptions such as the Web Service Description Language (WSDL)

to match service providers to service users.

file:///C:/Documents%20and%20Settings/rk/Desktop/SOA%20Work/Service%20Variability/WO

12 | CMU/SEI-2010-TN-007

4.3 Address Enterprise Integration Needs

An SOA strategy addresses business goals such as the following that support enterprise integra-

tion [Lewis 2008a]:

 Integrate business partners (potentially across multiple computing platforms).

 Improve internal business processes through accessing legacy systems.

 Increase information to customers through customizable portals and information selection.

These goals apply across boundaries of existing product lines and require variations in product

context to an extent not addressed in the traditional product line scope. In addition, the enterprise

requires many different sets of systems, potentially product lines in their own right. Such integra-

tion variation—a context in which product line members must operate or interoperate—is outward

focused. Traditional scope is more inward focused: What will the products in the product line do?

An SOA that provides integration mechanisms supports the sharing of services across divergent

systems in a context-independent fashion and leads again to dynamic product line scope.

How can product line and SOA concepts be applied in the enterprise context? An SOA may mi-

grate to levels of increasing scope from project to line of business (LOB) to enterprise and beyond

[Arsanjani 2005]. This work defines a Service Integration Maturity Model that is incremental and

addresses key business goals such as quicker time to production, lower costs, and competitive

differentiation. Initial states in service integration are ad hoc, with little reuse across service-

oriented systems. As this service integration technology is adopted, an SOA may move through

increasing levels of maturity. The first level is project focused, moving to LOB or product line

focused, with a few common services. Still more common services depict the enterprise level,

while value net adoption is characterized by common services and customizations. The value net

level may achieve ―dynamically reconfigurable services,‖ which are context-aware, domain-

specific services that operate by forming actively executable configurations on demand [Arsanjani

2006].

In the HIE environment, use of services as a variation mechanism supports enterprise integration.

The varying needs across HIE systems are met by exchanging implementations with different va-

riants or with implementations of external providers. The HIE uses this approach in MPI services

to identify and track an individual patient and in a Document Registry/Document Repository.

These capabilities may be implemented using internally developed or externally offered services

from third parties. The SOA and product line connection has reduced integration time for connect-

ing parts of the system to each other and to external systems.

4.4 Address End User Needs for Variation

Organizations building either product line or service-oriented systems may want those systems to

offer end users the ability to perform their own customizations. That goal may be achieved

through parameterization as a variation mechanism in product lines with static and varying parts

under end-user control. Cummins engines and other automotive product lines apply end-of-line

programming for users, such as engine idle speed [Clements 2001] or limiters for engine speed or

revolutions per minute. Service-oriented systems often include customized portal interfaces that

allow the user to choose the services and use them to make customizations.

13 | CMU/SEI-2010-TN-007

Intelligence planning, collection, and analysis systems illustrate user variation within an SOA-

based implementation of a product line [Jensen 2007]. Systems in the product line use a core asset

base of services (called the VIPER Solution Framework) for situational awareness based on

known product variation across the product scope. A single application may define user roles with

individual systems tailored to specific user tasks. Variation mechanisms for this customization

include both component selection and data behavior within the user interface. Individual users

may perform their own customizations. Ease in training can be a business goal for the product

line, through single-user interfaces for tasks involving integrated legacy components. For exam-

ple, a user may customize one property editor for all integrated components instead of a different

one for each component. This same property editor may be used for new components added to the

system in the future.

In Batholdt’s study, the use of product line approaches in HIE systems helped to identify features

and an implementation of variability at the end-user level [Bartholdt 2008]. The focus on visible

features from a business and domain perspective linked product development teams and the cus-

tomer. Merging product line and SOA approaches supported flexibility in a dynamic business

environment, enabling users to define unique workflow execution. In the HIE product line, each

customer has a specific work environment and unique work processes. By exposing product line

functionality as services, administrators at each customer site can perform workflow-engine-based

composition of services using a variation mechanism to accommodate site-specific requirements.

To support end-user variations, product line and SOA approaches have merged in creating core

assets. The merged approach is not practiced widely within product lines, however. Service-

oriented systems strive to achieve end-user variation and meet customization needs. Core asset

development practices could achieve these goals by addressing variation management for end-

user customization as part of a product line.

14 | CMU/SEI-2010-TN-007

5 Future Work

We recommend focusing future work in three areas:

1. establishing production plans that use appropriate variation mechanisms to build product line

or service-oriented systems. (This area was introduced initially in Section 4 as the last prin-

ciple for successful application of variation management in services and their variation me-

chanisms.)

2. looking at SOA and SPL support for dynamic execution and dynamic variation mechanisms

3. investigating quality attributes as they relate to services and integrated service-oriented,

product line applications

5.1 Establishing Production Plans to Encompass SOA

The principles discussed in Section 4 concentrate on product variation. A second category of vari-

ation is related to the production of products in a product line. Such variation can help an organi-

zation achieve goals for improving the ability to produce products, such as

 increased market share while maintaining current market leadership (i.e., standard for func-

tion, quality, and architecture)

 improved product marketability through improved productivity (lower costs, shorter time to

market, and lower maintenance and support costs)

 ability to scale down for low-cost market as well as scale up

 ability to quickly deploy a partial system or deploy an existing system to new platforms

 distribution of work within and across development groups

These goals address production rather than product issues [Chastek 2009] and affect choices in

scope, core asset development, and variation. Achieving quicker time to market may dictate the

mining of service assets from a legacy system, thereby achieving variation by extracting two or

more similar services. Increasing market share may require significant variation within a core as-

set in order to satisfy the many needs coming from the marketplace. A production strategy ad-

dresses these goals (see Section 2.1).

Incorporating an SOA approach within a production plan will affect the following:

 choices about service extraction and variation

 enterprise integration across systems using common services

 end-user-defined variation selections

SEI SMART-SYS, a variation of SMART [Lewis 2008b], addresses SOA-based systems devel-

opment. This approach provides an understanding of a complete service-oriented system in the

form of services, consumers, environment, risks, and costs. Currently under development,

SMART-SYS considers many of the same issues that help shape the production strategy and, ul-

timately, the production plan. Merging SMART-SYS with product line production planning can

help incorporate variation management with an SOA approach. This connection will be a focus of

future work.

15 | CMU/SEI-2010-TN-007

5.2 Support for Dynamic Service Execution

One frequently cited distinction between the SOA and product line approaches is the advantage of

SOA in supporting dynamic execution [Cohen 2008]. This distinction generally focuses on dy-

namic service execution, while component execution is predefined. However, the product line

architecture may also support a dynamic variation mechanism via plug-ins or some other ―plug

and play‖ architecture.

Another way to link dynamic product line approaches and an SOA is through system self-

adaptation [Dolog 2008]. Self-adaptation supports access to variant information resources or func-

tions as provided by services. Knowledge about the needs of a processing step provides appropri-

ate information for service selection and configuration. These needs may vary based on the

 resource and information access environment

 application domain

 user/context

 configuration—variants and their meaningful combinations for specific purposes

Service providers offer many services that vary in functionality and quality attributes, while ser-

vice consumers have similar requirements and need to achieve value through composing applica-

tions from reusable service assets. On the service provider side, there are service attributes in the

form of features to describe the service. A variation point on the consumer side describes user

needs via features. Under this approach, a matching service uses a feature model to match the fea-

tures provided by a service to those needed by the consumer.

Future work in this area would need to consider, among other concerns, continuous configuration

management. Dynamic service selection may deliver different services for the same service re-

quest, depending on service availability or other conditions. An error state or other trace must

know the exact configuration that resulted from the specific service request. The use of a feature

model as a dynamic variation mechanism is another concern.

5.3 Addressing Quality Attributes Through SOA and Product Line Approaches

A quality attribute is a property of a work product or goods by which its quality will be judged by

some stakeholder or stakeholders. Quality attribute requirements such as those for performance,

security, modifiability, reliability, and usability are key drivers in architecture decisions, including

variation management [SEI 2009, Bass 2003]. Future work in this area will look at an actual ser-

vice-oriented system to identify the appropriate services for multiple applications as targets. These

services will be mined for shared service assets. The desired quality attributes of these applica-

tions will serve as drivers for design choices in the service-oriented product line or some hybrid

applications.

The Factory pattern describes the entire software product line organization. The pattern includes

steps to determine the scope of the product line, the production capability and its effective use, the

parts from which products are built, and the process to monitor the operations and apply course

corrections [Clements 2001]. This pattern could be applied to identify the scope of reuse across a

potential product line of service-oriented systems and develop or reengineer existing services as

software core assets. The effort would use appropriate architecture techniques to design the archi-

16 | CMU/SEI-2010-TN-007

tecture for the product line and identify common or varying quality attributes [Clements 2002,

Bianco 2007]. SEI Attribute-Driven Design [Bass 2003] or a similar technique would assure con-

formance to the identified quality attributes in developing services as core assets, and an architec-

ture evaluation would use appropriate quality attributes to assess the fitness of the architecture.

The production capability would apply services and other core assets as product parts for building

products in the product line. Operations monitoring would assure the successful use of service

mechanisms to achieve desired attributes for product development.

17 | CMU/SEI-2010-TN-007

6 Conclusions

This report looks at combining existing SOA and SPL approaches for variation management.

Both approaches

 encourage an organization to reuse existing assets and capabilities rather than repeatedly re-

develop them for new systems

 enable organizations to capitalize on reuse to achieve similar business goals regarding soft-

ware-reliant systems

Meeting business goals through a product line or through a set of service-oriented systems re-

quires the variation of assets, including services, to be managed. This report emphasizes the im-

portance of

 managing variation to identify and design services targeted to multiple service-oriented sys-

tems

 an approach for managing variation where services became a mechanism for variation within

a product line or for extending product line scope

This report describes four principles leading to the successful application of variation manage-

ment for both services and their use as a variation mechanism:

1. Recognize the commonality and variants across the scope of a product line or across some

group of service-oriented systems within the enterprise.

Following this principle helps organizations identify the services from legacy components or

capabilities that could be used by existing or potential applications. For those applications

requiring slight variations in the service, the scoping process could employ product line ap-

proaches to identify the service features that are common across all the products. Then, the

organization could engineer variations or variant services to accommodate the products’

unique features.

2. Leverage the recognized commonality by building core assets, including services, across the

variants with established points of variation.

Following this principle can lead organizations to address variation by packaging services as

core assets with selected features. Service invocation can be used as a product line variation

mechanism. An SOA approach may help identify variations that will lead to a change in

product line scope or that can respond to new or changing market conditions. Using services

to manage variability may lead to dynamic product line scope—where scope easily adapts to

changing needs—or to the identification of new product lines based on parts of an existing

core asset base.

3. Address the enterprise integration needs that service-oriented systems must address and that

can be applied within product lines.

Services used as variation mechanisms support enterprise integration. Varying needs across

systems are met by implementations with different variants or with implementations that in-

tegrate with external services. The SOA and product line connection has caused reduced in-

tegration time for connecting parts of the system to each other and to external systems. In

this context, enterprise integration could encompass many different sets of systems and

18 | CMU/SEI-2010-TN-007

product lines, enabling SOA integration mechanisms to share services across divergent sys-

tems in a context-independent fashion and lead again to dynamic product line scope.

4. Address end-user needs for variation within service-oriented systems that can be applied

within product lines.

Product line approaches can identify features and an implementation of variability at the end-

user level. By merging product line and SOA approaches, product functionality can be ex-

posed as services, enabling the workflow-based composition of services using a variation

mechanism to accommodate site-specific requirements. Merging these approaches with core

asset development practices could elevate variation management for end-user customization

needs in a product line.

Future work should capture promising techniques for applying these results to service identifica-

tion methods such as SMART and to variation mechanisms that apply an SOA within a product

line. A future workshop may be built around such techniques and bring together researchers and

practitioners whose work has been documented in this report.

19 | CMU/SEI-2010-TN-007

References

URLs are valid as of the publication date of this document.

[Arsanjani 2005]

Arsanjani, Ali & Holley, Kerrie. Increase Flexibility with the Service Integration Maturity Model

(SIMM). http://www.ibm.com/developerworks/webservices/library/ws-soa-simm/ (2005).

[Arsanjani 2006]

Arsanjani, Ali & Diaz, Jorge. Service Integration Maturity Model (SIMM): Introduction.

http://www.opengroup.org/conference-live/uploads/40/11051/3_Diaz.pdf (2006).

[Bachmann 2005]

Bachmann, F. & Clements, P. Variability in Software Product Lines (CMU/SEI-2005-TR-012,

ADA450337). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon University, 2005.

http://www.sei.cmu.edu/library/abstracts/reports/05tr012.cfm

[Balaji 2007a]

Balaji, Rishi S. Apply Asset-Based Development to Services in an SOA, Part 1: SOA and Asset

Development Tooling, Life Cycle, and Governance.

http://www.ibm.com/developerworks/webservices/library/ws-soa-

asset1/?S_TACT=105AGX04&S_CMP=EDU (2007).

[Balaji 2007b]

Balaji, Rishi S. Apply Asset-Based Development to Services in an SOA, Part 2: Manage and Mon-

itor Service Assets and Metadata. http://www.ibm.com/developerworks/webservices/library/ws-

soa-asset2/index.html?S_TACT=105AGX04&S_CMP=EDU (2007).

[Bartholdt 2008]

Bartholdt, Jörg, Franke, Bernd, Schwanninger, Christa, & Stal, Michael. ―Combining Product

Line Engineering and Service-Oriented Architecture in Health Care Infrastructure Systems: Expe-

rience Report,‖ 115-122. Proceedings of the 12th International Software Product Line Confe-

rence, Second Volume. Limerick, Ireland, September 2008. Lero International Science Centre,

2008 (ISBN 978-1-905952-06-9).

[Bass 2003]

Bass, Len, Clements, Paul, & Kazman, Rick. Software Architecture in Practice, 2nd ed.

Addison-Wesley, 2003. http://www.sei.cmu.edu/library/abstracts/books/0321154959.cfm

[Bianco 2007]

Bianco, Phil, Kotermanski, Rick, & Merson, Paulo. Evaluating a Service-Oriented Architecture

(CMU/SEI-2007-TR-015). Software Engineering Institute, Carnegie Mellon University, 2007.

http://www.sei.cmu.edu/library/abstracts/reports/07tr015.cfm

http://www-preview.sei.cmu.edu/publications/documents/05.reports/05tr012.html
http://www.ibm.com/developerworks/webservices/library/ws-soa-simm/
http://www.opengroup.org/conference-live/uploads/40/11051/3_Diaz.pdf
http://www.sei.cmu.edu/library/abstracts/reports/05tr012.cfm
http://www.ibm.com/developerworks/webservices/library/ws-soa-asset1/?S_TACT=105AGX04&S_CMP=EDU
http://www.ibm.com/developerworks/webservices/library/ws-soa-asset1/?S_TACT=105AGX04&S_CMP=EDU
http://www.ibm.com/developerworks/webservices/library/ws-soa-asset1/?S_TACT=105AGX04&S_CMP=EDU
http://www.ibm.com/developerworks/webservices/library/ws-soa-asset2/index.html?S_TACT=105AGX04&S_CMP=EDU
http://www.ibm.com/developerworks/webservices/library/ws-soa-asset2/index.html?S_TACT=105AGX04&S_CMP=EDU
http://www.ibm.com/developerworks/webservices/library/ws-soa-asset2/index.html?S_TACT=105AGX04&S_CMP=EDU
http://www.sei.cmu.edu/library/abstracts/books/0321154959.cfm
http://www.sei.cmu.edu/library/abstracts/reports/07tr015.cfm

20 | CMU/SEI-2010-TN-007

[Brandt 2003]
Brandt, Samuel & Dehaan, Jan. A System and User Interface Supporting Task Schedule Configu-
ration. http://www.wipo.int/pctdb/en/wo.jsp?IA=US2002026970&DISPLAY=DESC (2003).

[Butler 2006]

Butler, John. ―Applying Product Line Techniques to SOA.‖ CBDi Journal (February 2006):

22-31. CBDI-Everware, 2006.

[Chastek 2001]

Chastek, Gary, Donohoe, Patrick, Kang, Kyo Chul, & Thiel, Steffen. Product Line Analysis: A

Practical Introduction (CMU/SEI-2001-TR-001, ADA396137). Software Engineering Institute,

Carnegie Mellon University, 2001. http://www.sei.cmu.edu/library/abstracts/reports/01tr001.cfm

[Chastek 2009]

Chastek, Gary J. & McGregor, John D. ―Modeling Variation in Production Planning Artifacts,‖

45-50. Proceedings of the Third International Workshop on Variability Modelling of Software-

intensive Systems. Sevilla, Spain, January 2009. ICB-Research Report No. 29, 2009.

http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf

[Chen 2005]

Chen, Feng, Li, Shaoyun, Yang, Hongji, Wang, Ching-Huey, & Chu, William Cheng-Chung.

―Feature Analysis for Service-Oriented Re-Engineering,‖ 201-208. Proceedings of the 12th Asia-

Pacific Software Engineering Conference. Taipei, Taiwan, December 2005. IEEE Computer So-

ciety, 2005.

[Clements 2002]

Clements, Paul, Kazman, Rick, & Klein, Mark. Evaluating Software Architectures: Methods and

Case Studies. Addison-Wesley, 2002.

http://www.sei.cmu.edu/library/abstracts/books/020170482X.cfm

[Clements 2001]

Clements, P. & Northrop, L. M. Software Product Lines: Practices and Patterns. Addison-

Wesley, 2001. http://www.sei.cmu.edu/library/abstracts/books/0201703327.cfm

[Cohen 2008]

Cohen, Sholom & Krut, Robert. Proceedings of the First Workshop on Service-Oriented Architec-

tures and Product Lines (CMU/SEI-2008-SR-006). Software Engineering Institute, Carnegie Mel-

lon University, 2008. http://www.sei.cmu.edu/library/abstracts/reports/08sr006.cfm

[Dolog 2008]
Dolog, Peter & Schafer, Michael. Feature Based Design of Web Service Transaction Compensa-

tions. Proceedings of the 12
th

 International Software Product Line Conference. Limerick, Ireland,

September 2008. IEEE Computer Society, 2008. http://splc.net/prev-conferences/soapl-2008.pdf

[Jensen 2007]

Jensen, Paul. ―Experiences with Product Line Development of Multi-Discipline Analysis Soft-

ware at Overwatch Textron Systems,‖ 35-43. Proceeding of the 11th International Software

http://www.wipo.int/pctdb/en/wo.jsp?IA=US2002026970&DISPLAY=DESC
http://www.sei.cmu.edu/library/abstracts/reports/01tr001.cfm
http://www.vamos-workshop.net/proceedings/VaMoS_2009_Proceedings.pdf
http://www.sei.cmu.edu/library/abstracts/books/020170482X.cfm
http://www.sei.cmu.edu/library/abstracts/books/0201703327.cfm
http://www.sei.cmu.edu/library/abstracts/reports/08sr006.cfm
http://splc.net/prev-conferences/soapl-2008.pdf

21 | CMU/SEI-2010-TN-007

Product Line Conference. Kyoto, Japan, September 2007. IEEE Computer Society, 2007

http://splc.net/prev-conferences/soapl-2007.pdf

[John 2009]

John, I. & Pech, D. ―Scalable Variability Instantiation Strategies.‖ Scalable Modeling Techniques

for Software Product Lines (SCALE 2009) Workshop, 13th International Software Product Line

Conference (SPLC 2009). San Francisco, California, August 2009. http://www.splc.net/prev-

conferences/splc-2009.pdf

[Kang 1990]

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, A. Feature-Oriented Domain Analysis

(FODA) Feasibility Study (CMU/SEI-90-TR-021, ADA235785). Software Engineering Institute,

Carnegie Mellon University, 1990. http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm

[Lewis 2008a]

Lewis, Grace A. & Smith, Dennis B. Service-Oriented Architecture and its Implications for Soft-

ware Maintenance and Evolution.

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4659243&isnumber=4659234 (2008).

[Lewis 2008b]

Lewis, Grace A., Morris, Edwin J., Smith, Dennis B., & Simanta, Soumya. SMART: Analyzing the

Reuse Potential of Legacy Components in a Service-Oriented Architecture Environment

(CMU/SEI-2008-TN-008). Software Engineering Institute, Carnegie Mellon University, 2008.

http://www.sei.cmu.edu/library/abstracts/reports/08tn008.cfm

[Ludwig 2007]

Ludwig, Heiko, Bhattacharya, Kamal, & Setzer, Thomas. ―A Layered Service Process Model for

Managing Variation and Change in Service Provider Operations,‖ 484-492. Proceedings of Web

Information Systems Engineering – WISE 2007 (Lecture Notes in Computer Science volume

4831). Nancy, France, December 2007. Springer, 2007.

[Northrop 2009]
Northrop, L. & Clements, P. A Framework for Software Product Line Practice, Version 5.0.

http://www.sei.cmu.edu/productlines/tools/framework/ (2009).

[RTI 2007]

Research Triangle Institute. Interim Report on Solutions to Barriers to the Electronic Exchange of

Health Information, 2007. http://www.health.state.mn.us/e-health/mpsp/mpspsolrpt011707.pdf

[Schmid 2005]

Schmid, Klaus & Biffl, Stefan. ―Systematic Management of Software Product Lines.‖ Software

Process Improvement and Practice (Special Issue on Software Variability: Process and Manage-

ment) 1, 10: 61–76, 2005. Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/

spip.215.

[SEI 2009]

Software Engineering Institute. Software Architecture Glossary.

http://www.sei.cmu.edu/architecture/start/glossary/ (2009).

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4659243&isnumber=4659234
http://splc.net/prev-conferences/soapl-2007.pdf
http://www.splc.net/prev-conferences/splc-2009.pdf
http://www.splc.net/prev-conferences/splc-2009.pdf
http://www.splc.net/prev-conferences/splc-2009.pdf
http://www.sei.cmu.edu/library/abstracts/reports/90tr021.cfm
http://www.sei.cmu.edu/library/abstracts/reports/08tn008.cfm
http://www.sei.cmu.edu/productlines/tools/framework/
http://www.health.state.mn.us/e-health/mpsp/mpspsolrpt011707.pdf
http://www.interscience.wiley.com
http://www.sei.cmu.edu/architecture/start/glossary/

22 | CMU/SEI-2010-TN-007

[SOAPL 2007]

―Workshop on Service-Oriented Architectures and Software Product Lines - What is the Connec-

tion (SOAPL 2007).‖ Proceedings of the 11
th

 International Software Product Line Conference.

Kyoto, Japan, September 2007. http://splc.net/prev-conferences/soapl-2007.pdf

[SOAPL 2008]

―Workshop on Service-Oriented Architectures and Software Product Lines - Putting Both Togeth-

er (SOAPL 2008).‖ Proceedings of the 12
th

 International Software Product Line Conference. Li-

merick, Ireland, September 2008. http://splc.net/prev-conferences/soapl-2008.pdf

http://splc.net/prev-conferences/soapl-2007.pdf
http://splc.net/prev-conferences/soapl-2008.pdf

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

May 2010

3. REPORT TYPE AND DATES

COVERED

Final

4. TITLE AND SUBTITLE

Managing Variation in Services in a Software Product Line Context

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

Sholom Cohen and Robert Krut

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2010-TN-007

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK

5 Eglin Street

Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Software product line (SPL) and service-oriented architecture (SOA) approaches both enable an organization to reuse existing assets

and capabilities rather than repeatedly redeveloping them for new systems. Organizations can capitalize on such reuse in software-

reliant systems to achieve business goals such as productivity gains, decreased development costs, improved time to market, increased

reliability, increased agility, and competitive advantage. Both approaches accommodate variation in the software that is being reused or

the way in which it is employed. Meeting business goals through a product line or a set of service-oriented systems requires managing

the variation of assets, including services. This report examines combining existing SOA and software product line approaches for varia-

tion management. This examination has two objectives: 1) for service-oriented systems development, to present an approach for man-

aging variation by identifying and designing services explicitly targeted to multiple service-oriented systems, 2) for SPL systems, to

present an approach for managing variation where services are a mechanism for variation within a product line or for expanding the

product line scope.

14. SUBJECT TERMS

variation management, software product line, SPL, service-oriented architecture, SOA

15. NUMBER OF PAGES

32

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION

OF ABSTRACT

Unclassified

20. LIMITATION OF

ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18
298-102

	Managing Variation in Services in a Software Product Line Context
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 The Basics of Software Product Lines and Service-Oriented Architectures
	3 Combining SPL and SOA Approaches
	4 Variation Management for Services Under an SPL Approach
	5 Future Work
	6 Conclusions
	References

